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Abstract

We study the averaging of the Hamilton-Jacobi equation with fast variables in the viscosity
solution sense in infinite dimensions. We prove that the viscosity solution of the original
equation converges to the viscosity solution of the averaged equation and apply this result to
the limit problem of the value function for an optimal control problem with fast variables.

1. Introduction

In this paper we are concerned with the averaging of the Hamilton-Jacobi-Bellman
(HJB) equation with fast variables in n sense in Hilbert space X (X* is the dual of X
and X = X*):

l /e,x,Vx(t,x)) = O, (t,x)e[0,T)xX;

[ xeX,

where e e R+ = (0, +oo); H and g are given functions and satisfy conditions given
in Section 2. For the definition of the viscosity solution of the HJB equation, refer
to [6,7]. From [6,7], we know that equation (1.1) has a unique viscosity solution
Ve(t, x), which satisfies

\Vt(t,x) - Vt(i,x)\ < Le(\t-i\ + \\x - Jc | | ) ,Vr ,Fe [0, r ] ; | |x | | , | | i | | < R (1.2)

with R being a given constant and Le a constant which is dependent on £ and R
probably.

Our purpose in this paper is to study the limiting behavior of Ve(t, x) as e -> 0+.
This problem has been studied by Chaplais [3] and Barron [1] in finite dimensions
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(that is, X is R"). The main difficulty in the passage from finite to infinite dimensions
is to prove that the limit of Ve(t, x) exists. In [1,3], the Arzela-Ascoli theorem has
been used to deal with this, as a priori estimates of Ve(t, x) hold. However, in infinite
dimensions, such a method does not apply again for there is no "appropriate" Arzela-
Ascoli theorem available. In this paper, we overcome this difficulty by using the
properties of the viscosity solution itself and the perturbed test function method. We
directly prove that if Le is independent of s, then Ve(t, x) converges to V(t, x), which
is a unique viscosity solution of the HJB equation

,VAt,x)) = O, (t,x)€[0,T)xX,

\V(T,x) = g(x), x€X,

where ~H : [0, T] x X x X* -> Rl is defined by

~H(t,x,p)= I H(t,s,x,p)ds, V(t,x,p) e [0, T] x X x X*. (1.4)
Jo

Next, we apply this result to study the limit problem of the value function of an
optimal control problem with fast variables. The modeling of systems that have at
least one component that oscillates rapidly is an important problem in optimal control
theory. The motivation for this problem comes from the fact that the value function is
used in the construction of feedback controls (see [9]).

2. Averaging of the Hamilton-Jacobi equation

First, let us make the following assumptions.

HI. H : [0, T]xR+xXxX* - • fl'andg : X -> /?' are continuous; H(t, -,x,p)
is periodic with period 1. For any t,te [0, T]\ s,s € R+; x,x € X; p,q e X*, there
exist constants AX,A2,BX, B2, C such that

\H{t,s,x,p) - H{t,s,x,q)\ <(Ax\\x\\ + Bi)\\p - q\\, (2.1)

\H(t,s,x,p)-H(t,s,x,p)\
< (A2 + B2||p||)(|r - i\ + \s-s\ + \\x - jc||), (2.2)

\g(x) - g(x)\ < C\\x - xl

H2. Let H : [0, T] x X x X* —> Rl be a continuous function, which satisfies

~H(t,x,p)= f H(t,s,x,p)ds, V(t,x,p)€[0, T] xX xX*. (2.3)
Jo
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By assumption HI, for any t, t e [0, T\, x, x e X; p, q e X*, we have

\H(t,x,p)-7l(t,x,q)\<(Al\\x\\ + Bl)\\p-q\\, (2.4)

\H(t,x,p)-H(i,x,p)\<(A2 + B2\\p\\)(\t-I\ + \\x-x\\). (2.5)

From [6,7], we know equation (1.1) has a unique viscosity solution which satisfies
(1.2), and equation (1.3) has a unique viscosity solution V(t, x) satisfying

\V(t,x) - V(t,x)\ < L(\t - t\ + \\x-x\\),Vt, t e [0, T]; \\x\\, \\x\\ < R (2.6)

with R being a given constant and L a constant which is only dependent on R.

LEMMA 2.1. Let HI, H2 hold, Z(t,x,y) = Vs(t,x)-V(t,y),V(t,x,y) € [0, T]x
X x X; then Z(-, -, •) is a viscosity subsolution of the HJB equation

l(t,x,y) + H(t,t/e,x,Zx(t,x,y))-~H(t,y,-Zy(t,x,y)) = O,

W(t,x,y) € [0, T) xX xX,

Z(T,x,y) = g(x)-g(y), (x,y)eXxX.

The proof can be seen in [6] or [7].

THEOREM 2.2. Let HI, H2 hold and, in (1.2), Le = L be independent of e; then
lime_>0+ Ve{t,x) = V(t,x) uniformly on any bounded subset of [0, T] x X.

PROOF. We give a proof by contradiction. Suppose the assertion is not true. Then

there is a constant a' > 0, a bounded subset 6 : [0, T] x BR(0),
(BR(0) = [x e X \ \\x\\ < R}) and a subsequence {£*} C [s], such
thate* < l/kandsup[VEk(t,x)- V(t,x) : (t,x) e G\ > a' > 0.

(2.7)

Take 80 = minfa'/(6L + 6L),2R/(2A1R + Bi)}. If |fi - h\ + |U, - x2\\ < So, then
we have

\Ve(tuXl)- Ve(t2,x2)\<a'/6, (2.8)

\V(tuxx)-V{t2,x2)\<a'/6. (2.9)

Combining (2.7H2.9) we get

r,x) - V(r,jc) : (t,x) e [30/2, T] x BR(0)} > a'/2 > 0. (2.10)

Let m = [2T/8O], 5,' = [iS0/2, (i + l)S0/2] x 5,(0), 7]' = (i + 1)T, 1 < i < m
and 5^ = [T - So/2, T) x BR(0); then [S0/2, T) x BR(0) = U"=1S,'. Because
Vet(T, x) - V(T, x) = 0 and (2.10) holds, there exists some 1 < i0 < m such that

lim sup{VSl(f,jc) - V(t,x) : (t,x) e S'h} > 0 (2.11)
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and

Jim sup{Vtt(rh,x) - V(7?,*)} < 0. (2.12)

Assume i0 = m; we can deal with other cases similarly. Let

T0 = 80, L0 = 2R/80, (2.13)
1

CT = -lim sup{V£t(t,x) - V{t,x) : (t,x) e S'J > 0.

We replace {k} by a subsequence of {k}, if necessary, such that

mp{Vek(t,x) - V(t,x) : (t,x) e S'J > a > 0, V*.

Because

S'm C {(r, *) € [ r - «o/2, 7) x X : ||x|| < L0(t -T + To))

cSl = {(t,x)e(T-T0,T)xX: \\x\\ < L0(t - T + To)},

then

sup{V£l(f,Jt) - V(t,x) : (t,x) G Si} > a > 0. (2.14)

By(2.4)and(2.13),V(r,jt) e S,;/?,<7 G X* we have

\H(t,x,p)-H~(t,x,q)\ < (A1\\x\\ + 1

- 9II < ^.ollp - q\l (2-15)

Similarly,

\H{t, s,x,p) - H(t, s,x, q)\ < Lollp - q\\. (2.16)

We split the following proof into several steps.
Step 1. Definition of auxiliary functions and sets.

Define

S = [{f,x, y)£(T-T0,T)xXxX: \\x\\, \\y\\ < L0(t -T+ To)}. (2.17)

Take fi, S > 0 with fi + 8 < L0T0. Let

d(x,y) = \\x-y\\, (2.18)
2l/2. (2.19)
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By (1.2) and (2.6) (theorem assumptions), Ve{-, •) is locally bounded. Therefore,
we can choose K > 0 such that

K > sup{Vei(t,x)- V(t,y) :(t,x,y)<E S}. (2.20)

Let G(-) 6 Coo(/?1), which satisfies

< ? ( , ) > a 0 ( 0 - j ^ [ l ^ (2 .21,

For 0 < a < 1, A. > 0, we set

<P(t,x,y)= Vei(t,x)-V(t,y)

- {d(x, yf/a + G(v(x) - L0(t -T+ To)) - k(t - T)}. (2.22)

Step 2. Properties of <j>(t, x, y).
By (2.17) and (2.22), we see that 5 (the closure of S) is bounded, convex and (/>(•,-, •)
is bounded, continuous on S. According to Stegall [12],

there are elements ak e Rl; pk, qk e X* which satisfy la*! + ||p*|| + ]
\\qk\\ < a, such that (r,x,30 - • <f>(t,x,y) + akt + (pk,x) + (qk,y) \ (2.23)
attains its maximum over S at some point (tk, xk, yk). J

Let

cp(t, x, y) = (/>(t,x, y) + akt + {pk, x) + (qk, y) (2.24)

and so

V(h, xk, yk) > (p(tk, xk, xk). (2.25)

Using (2.22), (2.23) and (2.24) we have

d(xk,yk)
2/a < V(tk,xk) - V(tk,yk) + 4(L0+\)Ta. (2.26)

By (2.6), we can get

\ (2.27)

d(xk,yk)
2/a<L2a

l/\ (2.28)

where Lx, L2 are constants which are only dependent on Lo, To, L and L. Let

Met = s u p { 0 ( f , x , y ) :(t,x,y)eS). (2.29)
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Set

S0,s = {(t, x)eSr.(P + II* ||2)1/2 < L0(t -T+To)-S}. (2.30)

We can choose /? and S so small that Sfij ^ 0- Since

G(v(x) - L0(t -T+ TQ)) = 0, V(/, x) 6 S0,s.

Using (1.2), (2.6), (2.14) and (2.22), we choose P, 8 and k so small that

sup{(p(t,x,x) : (t,x) G

= sup{ Vtk(t, x) - V(t, x) + X(t - T) : (t, x) 6 Sfi.s) > a/2.

By (2.29), for any k, we have

MEk > a/2. (2.31)

Consider the following three possible cases
(I) / , - • Tor

(II) L0(tk -T+To)- max{ ||x*||, \\yk\\] -> 0 or
(III) for some JJ > 0, Nt > 0, if k > N{, then r) < tk < T - r)\ \\xk\\, \\yk\\ <

L0(tk -T+T0)-r).
By passing to a subsequence of {(tk, xk, yk)} if necessary, we can always reduce to a
case in which one of (I)—(III) holds.

Step 3. We claim that we can choose a so small that case (I) is impossible.
In fact, noticing that Vet[T, x) = V(T,x) = g(x), Vx e X, by (2.31), (2.29), (2.23),
(2.22), (1.2) and (2.6), we have

a/2 < Met < 4>(tk,xk, yk) + Lxa

< Vn(tk,xk)- V{tk,yk) + Lxa

< (Vet(tk,xk) - Vtt(T,xk)) + (VSi(T,xk) - V(tk,yk))

-(V(T,xk)-V(T,yk)) + Lia

<(L + L)\T- tk\ + LxCa1'2 + Lxa.

From the above, we see that case (I) is not possible if we choose a small enough.
Thus, our claim holds.

Step 4. We claim that case (II) is not possible provided that a is small enough.
Using (2.31), (2.29) and (2.22), we have

a/2 < MEk < 4>(tk,xk, yk)

< Vtt(tk,xk) - V(tk, yk) - G(v(xk) - L0(tk -T+ To))
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IfLo(rt-r+7b)-||jct| |-».O,then

G(v(jct) - L0(tk -T+ r0)) = -2K.

By (2.20), we have

cr/2 < -K + Lxa.

If a is small enough, we get a contradiction. Similarly, if L0(tk — T+ To)~ \\yk\\ ->• 0,
we also get a contradiction. Hence, our claim holds.

Step 5. Finally we consider case (III).
Let

A = {(t,x, y) e {T - To, T) x X x X : r? < t < T - rj;

\\xl\\y\\<Lo(t-T+To)-Ti}.

Let case (III) hold, then there exists r > 0 which is independent of k, such that

Sk = { ( t , x , y ) e S:\t- tk\
2 + \\x - xk\\

2 + \\y - yk\\
2 < r 2 } C 5 , (2.32)

and Sk / 0. Let

0( f , *, y) = d ( x , y ) 2 / a + G(v(x) - L 0 ( t - T + To)) (2.33)

and so

$,{t,x, y) = -L0G'(v(x) - L0(t -T+ 70)), (2.34)

$x{t,x, y) = 2d(x, y)dx(x, y)/ot + G'(v(x) - L0(t -T+ T0))Dv(x)

= 2(JC - y)/a + G'(v(x) - L0(t -T + T0))x/v(x), (2.35)

4y{t,x,y) = 2d{x,y)dy(x,y)/a = -2(x-y)/a. (2.36)

Let

dr,(s) — — -
^ = H(tk, xk, <p,(h, xk, yk)) - H(tk, s, xk, <j>x(h, xk, yk)). (2.37)ds

By assumptions HI and H2, we know that r i ( ) is periodic with period 1 and /•,(•) 6
C (/?'). Since G e C°°(Rl), there exists a constant C such that

sup{|G'(r)\,r < L0T} < C.

By (2.35), we have

H(tk,xk,(/>x(tk,xk,yk)) - H(tk,s,xk,<px(tk,xk,yk))

<[\\<t>Ah,xk,yk)\\
< (2L0T0/a + C+ 1)(1 + L0T0)L.
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Hence ri(-) is uniformly bounded in k. Assume for any k, sup In (01 < R (R may be
dependent on a). Consider

r/r(t,x,y) = <p(t,x,y) -Ekrx{t/ek)

- 3[R/(k?2)](d(x,xk)
2 + d(y, yk)

2 + \t - tk\
2) (2.38)

and so

1r(tk,xt,yk) >(p(tk,xk,yk)-R/k><p(t,x,y)-R/k. (2.39)

As (t, x, y) 6 dSk, we have

iKr, x, y) = <p(t,x, y) - ekrx{t/sk) - 3R/k

<<p(t,x,y)-2R/k

<Wk,xk,yk)-R/k. (2.40)

According to Stegall [12], for any 0 > 0,

there are elements d2 e /?' and p2, q2 € X* which satisfy \a2\ +
IIP2II + II92II < min{6»,a} such that (t, x, y) -+ ty(t,x,y) + a2t+
(Pi,x) + {qi, y) attains its maximum over Sk at some point (/, x, y).

(2.41)

Take 8 < R/[k(4L0T0 + 71)]; by (2.38), the maximum point must be an interior point
of St. Let

Z(t,x,y)= Vet(t,x)- V(t,y),

a = ak+a2, p = pk+p2, q = qk + qi-

Therefore (t,x,y)
(d(x,xk)

2 + d(y, yk)
2 + \t — tk\

2) — at — {p, x) — (q, y}} attains its maximum over
S* at (i, x, y). By Lemma 2.1 and the definition of the viscosity solution, we have

A < 0,(F, x, y) + dri{tJ£k) + 6[^/(A:P2)]|F - tk\ - a
as

+ H{t, i/ek, x, 0,(F, x, y) + 6[R/(k?2)](x - xk) - p)

- H{J, y, -ty(i,x, y) - 6[R/(kr2)](y - yk) + q). (2.42)

Thus

A. < 0,(F,i, y) + 6[R/(k?2)]\t - tk\ - a + {H{tk,xk, Qx(tk,xk, yk))

- ~H(tk, yk, -jy(tk,xk, yk) - 6[R/(k?2)](y - yk) + q)}

+ [H(t, i/sk, x, 0,(f, x, y) + 6[R/(kr2)](x - xk) - p)

- H(tk, i/ek,xk,4x(tk,xk,yk))). (2.43)
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Noticing that G € C00(/?'), 4>x, <py are Lipschitz continuous in all arguments and
combining (2.34)-(2.36) with the assumptions, we have

X. < A3r + A4r/a + 16R/(kr) + 3a, (2.44)

where A3, A4 are constants which are independent of a, k and r. In the above, first let
k —> oo, then let r —> 0, finally let a -> 0; then we get

A < 0 .

Thus, we obtain a contradiction. So Theorem 2.2 is proved.

3. Application: the limit problem of the value
function for an optimal control problem

Consider the following state equation in Hilbert space X:

^~=Ax(r)+f(r,r/s,x(r),u(r)), r e (t, T],

\x(t) =x, x € X,

where A : @(A) c X —>• X is the generator of some Co semigroup eAt and / :
[0, T] x /?' x X x (/ —> X is a given map with [/ being a metric space in which the
control «(•) takes values. Let

, T] = {M(-) : [0, T] -> [/|M(-) measurable}.

The cost function is given by

( j ) (3.2)

the value function is defined by

Vc(t,x)= inf y;x(K(-)). (3.3)
O ' S r i n •

Assume /(f, •, J:, M), /°(f, -,x, u) are periodic with period 1. Our aim is to see
whether the limit of Ve exists as £ —• 0+ and, if the limit exists, how to determine it.

In this section, we need the following assumptions.

H3. Assume / : [0, T] x R+ x X x U - • X,f° : [0, T] x R+ x X x U ->
Rl(R+ = [0, oo)) and g : X -> /?' are continuous; / ( r , -,^:, M) and/°(f, -,x, M)
are periodic with period 1. There exists a constant L > 0 and a continuous function
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o) : R+ x R+ —*• R+ which is increasing in all arguments with co(r, 0) = 0, V r > 0.
For any x, x € X; t, t e [0, T]; s,s e R+; u e U, the following hold:

\\f(t,s,0,u)\\<L,

\f°(t,s,x, u) - / ° (F < L(\t - t\

< L.

H4. Assume that there exists a sequence of linear bounded operators {AM, /x c
(0, +oo)}, sup n = +oo, for any z(-) e C([0, 7]; X),

lim sup
+

/ [̂ ('"r) - eA^"r)]f (r, -£, z(r), dr = 0

uniformly in «(•) e ^ , e e (0, +oo). For any x e X, limM^+00 fe'4'''^ - eA'x || = 0
uniformly in t e [0, T], and |kA»'|| < Le"', t e [0, 7], /x > 0, where a>' is a constant.

Consider the following optimal control problem:

|x"(r) = A»x»(r)+f{r, r/e,x»(r), u(r)), r € (t, T],
I A \l J — A , X t / \ .

(3.4)

The cost function is given by

f /0(r,J,
the value function is defined by

(3.5)

(3.6)

THEOREM 3.1. Let H3, H4 fcoW. V^(-, •) is a unique viscosity solution of the HJB
equation

I V,(t,x) + H^t, t/e,x, Vx(t,x)) = 0, V(/,x) € [0, T) x X,

[V(T,x) = g(x), xeX,

where H^it, s,x,p) = (p.A^x) + infu€U{p • f (t,s,x, u) + f°(t, s,x, «)}.

The proof of Theorem 3.1 can be seen in [1,7,8].

(3.7)

https://doi.org/10.1017/S0334270000011309 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011309


382 Shihong Wang and Zuoyi Zhou [11]

THEOREM 3.2. Let H3, H4 hold. Then for any R > 0 there exist constants M and
C\, which are dependent on R, such that

(i) \V?(t,x)\<M,
(ii) \V?{t,x)-V?(i,x)\<Q{\t-i\ + \\x-x\\), u > ' 8 '

Ve eR+;t,t€ [0,T]; \\x\\,\\x\\ < R.

The proof of the theorem is similar to the proof of [1, Lemma 1.2].
Define

"f(t,x,u(-)) = / f(t,s,x,u(s))ds,
Jo

7»(r,x.H(-))= I f°(t,s,x,u(s))ds,
Jo

where u{-) e si = [u : [0, 1] —> U \ u measurable }.
Define the averaging of the Hamiltonian

Hll(t,x,p)= inf {/>•/(/,*, «(•)

V(r ,x ,p)€[OJ]xXxX*. (3.9)

LEMMA 3.3. Ler H3, H4 hold. Then V(t,x,p) e [0, T] x X x X*,

f H^t,s,x,p)ds=~Hll(t,x,p). (3.10)
Jo

PROOF. Define the functional

•/(.V)= f {p-f (t, r,x, u(r)) + f°(t, r,x, u(r))}dr.
Jy

Defined the value function

I/(y)= inf / 0 0 .

According to [6], we know that U(•) is a unique viscosity solution of the HJB equation

t,y,x,u)) = 0, ye [0,1),{ p f ( , y , , ) f ( , y , , ) ) , y [ , ) ,
dy «€£/ (3.11)

Obviously, U(y) = /y inf,6l/{p-/(r, r,x, u)+f°(t, r,x, u))dr e C'[0, 1]. Thus,
the Lemma holds.
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By Lemma 3.3 and H3, H4 we have the following theorem.

THEOREM 3.4. Let H3, H4 hold. Then limE_0+ Vf(t,x) = W(f,x), W(t,x) e
[0, T] x X and VM is a unique viscosity solution of the HJB equation

V,(t, x) + inftt(.)€^{£>, V(t, x)J(t, x, «(•)) + / V , x, «(•))}

+(DX V(t, JC), A^x) = 0, V(r, x) e [0, T) x X, (3.12)

) = g(x), xeX.

Finally we give a method to determine the limit of the original value function.

THEOREM 3.5. Let H3, H4 hold. Then lim lim V?(t,x) = lim Ve(t,x),V(t,x)

€ [0, T] x X.

Before proving the above theorem we give the following lemma.

LEMMA 3.6. Let H3, H4 hold and xtx{-, «(•)), x*x{-, w()) stand for the solution of
systems (3.1) and (3.4) respectively with the initial value being (t,x) 6 [0, T] x X
and the control being u(-) e ^ . Then

(i) lim^oo ||x,,, (r, «(•)) - jc£(r, II(-))|| = 0 uniformly in «(•) € ^ , £ e /?+,
r e [ 0 , F].

(ii) Hm_ supa(.)€^ sup,£rs7. \\x*x(r, «(•)) - -<cM(r, «(-))|| = 0,

)€'ar sup,<r<r \\x^x(r, «(•)) -*,,*(>•, «(-))ll = 0.J
e->0+

PROOF. By H3, we have

+ [ [eMr~s) - eA»{r-s)]f (s,s/e,x(s), u(s))ds
Jt

+ LeaT I \xttX(s) — x?x(s)\\ ds.

Using Gronwall's inequality we obtain our conclusion. Part (ii) is a corollary of (i).

PROOF OF THEOREM 3.5. Forany«() € ^,byH3,wehave|y,M;£(M())-7,^(M())|
< L||j&(T)-x,AT)|| + / / \\x»x(r) - xUx(r)||dr and so

< C sup
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In the above, taking the infimum in w() e ^ on both sides respectively, we have

\V?(t,x) -Ve(t,x)\<C sup sup | | j c f » -* , , , ( / - ) | | .
!/()£•&• l<r<T

In the above, taking the superior limit and the inferior limit in s —> 0+ on both sides
respectively, we have

lim V?{t,x)- lim Ve(t,x)
£->0+ £-»0+

< Clim sup sup \\xfx(r) -x,,x(r)\\ ,
£ - > 0 + (*(•)£<&• t<r<T

lim V?(t,x)- lim_Ve(t,x)
£- •0+

< Clim sup sup 1 1 ^ (r) — JC,.X (r)
£ - > 0 + «(•)€•&• / < r < r

(3.13)

(3.14)

In (3.13) and (3.14), taking the superior limit and the inferior limit in /x —• oo on both
sides respectively, we get

lim (lim V?(t,x)) - lim Ve(t,x)
/1->OO \£->0+ / £^-0+

< C lim lim sup sup
o o 0 +

— J t , x ( f ) \ \ . (3.15)

Hm"(lim Vfq.x)) - lim Vg(f,
M->oo \£->0+ /

< Clim lim sup sup ^ ^ ( r ) — jc,-jt(r)|| . (3.16)
(i->oO£->0+ ^ e ^ t<r<T

By Lemma 3.6, we know that the right side of (3.15), (3.16) equals zero, so

lim ( l im V?{t,x)\ = lim Ve{t,x) > lim Ve(t,x) = lim (l im VM(f,;t)).
M=fOO \£->0+ / £^-0+ ^ ( j + /i->00 \£-)-0+ /

Thus lim Ve(t,x) = lim lim K.M('^)- Hence Theorem 3.5 holds.
£->0+ M->OO£->0+

Combining Theorems 3.4 and 3.5, we can determine the limit of Ve(-, •) as s ->• 0+.
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