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Abstract. We construct an algebraic almost closed 1-form with zero scheme not
expressible (even locally) as the critical locus of a holomorphic function on a non-
singular variety. The result answers a question of Behrend–Fantechi. We correct here
an error in our paper (D. Maulik, R Pandharipande and R. P. Thomas, Curves on K3
surfaces and modular forms, J. Topol. 3 (2010) 937–996. arXiv:1001.2719v3), where an
incorrect construction with the same claimed properties was proposed.

2010 Mathematics Subject Classification. 13D10, 14N35, 14J32.

1. Introduction. An algebraic 1-form ω on a non-singular variety V is almost
closed if dω vanishes on the zero scheme Z(ω) ⊂ V of ω. For example, for every
non-constant polynomial F ∈ �[x, y], the 1-form

ω = dF + Fdz (1)

is almost closed, but not closed, on �3 with coordinates x, y, z. By a construction of
Behrend and Fantechi [2], the zero schemeZ(ω) carries a natural symmetric obstruction
theory in case ω is almost closed.

Following is the question asked by Behrend and Fantechi [1, 2]: If ω is almost
closed, can we find an analytic neighbourhood

Z ⊂ U ⊂ V

and a holomorphic function � on U so that the equality

Z(ω) = Z(d�)

holds as subschemes? In other words, isZ(ω) always the critical locus of a holomorphic
function? In example (1), the function

� = ezF (2)

provides an affirmative answer. Such a � is called a potential for Z.
We will construct a non-reduced point at the origin

Z ⊂ �2
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which is the zero scheme of an algebraic almost closed 1-form on a Zariski open
neighbourhood of the orgin in �2, but not the critical locus of any holomorphic
function defined in a neighbourhood of the origin in �2. We also show that Z
cannot be a critical locus of a holomorphic function defined locally on �n for
any n.

We will primarily study almost closed 1-forms via formal power series analysis at
the origin. In Section 4 we show how these methods also yield algebraic almost closed
1-forms on Zariski open neighbourhoods of the origin as relevant to the Behrend–
Fantechi question.

The context of the problem that this paper addresses is Donaldson–Thomas theory
and its generalisations. One tries to define invariants of Calabi–Yau 3-fold X by virtual
counting of (semi-stable) objects of the derived category of coherent sheaves on X . The
obstruction theory of such objects is symmetric, so by Behrend [1] the moduli space
is locally described as the zero locus of an almost closed 1-form. It is expected that
these moduli spaces are in fact locally critical loci of holomorphic functions, and the
example of this paper shows that this is a stronger condition than symmetry of the
obstruction theory.

Recently, Pantev, Toën, Vaquie and Vezzosi [6] have introduced the notion of a
(−1)-shifted symplectic structure on a derived scheme. This is a stronger condition than
the existence of a symmetric obstruction theory on the underlying scheme Z. They
also show that the moduli space of objects in the derived category of a Calabi–Yau
3-fold admits such a structure; and Brav, Bussi and Joyce [3] have proved that a scheme
Z is locally a critical locus if and only if it underlies a derived scheme with (−1)-shifted
symplectic structure. In particular, our example cannot carry a (−1)-shifted symplectic
structure.

2. Construction of the almost closed 1-form. Consider �2 with coordinates x and
y. We will use capital letters to denote elements of the ring �[[x, y]]. In case the element
is polynomial and homogenous, the degree is designated in the subscript. As usual
partial derivatives will also be denoted by subscripts, so

Ad,xy = ∂2Ad

∂x∂y

is a homogeneous polynomial of degree d − 2.
We start by constructing an almost closed 1-form σ on �2 via formal power series.

The construction depends upon the initial choice of a sufficiently large degree d. Let

σ = Adx + Bdy

= (Ad + Ad+1 + Ad+2 + · · · )dx + (Bd + Bd+1 + Bd+2 + · · · )dy,

be a 1-form starting at order d satisfying

Ay − Bx = CA + DB = (C0 + C1 + C2 + · · · ) (Ad + Ad+1 + Ad+2 + · · · ) (3)

+ (D0 + D1 + D2 + · · · ) (Bd + Bd+1 + Bd+2 + · · · ),

where C, D ∈ �[[x, y]].
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The zero scheme Z(σ ) is Spec �[[x,y]]
(A,B) . We shall often use the trivialisation dy ∧ dx of

the 2-form on �2 to identify dσ with the function Ay − Bx. Equation (3) is the almost
closed condition,

dσ = Ay − Bx ∈ (A, B).

For sufficient large d, we will prove that the general σ satisfying (3) has zero scheme
which is not the critical locus of a holomorphic function.

Fixing C, D ∈ �[[x, y]], we construct solutions σ to the almost closed equation (3)
by the following procedure:
� First, Ad and Bd are degree d homogeneous polynomials satisfying

Ad,y − Bd,x = 0. (4)

Thus,

Ad = Pd+1,x , Bd = Pd+1,y , (5)

for any homogeneous degree d + 1 polynomial Pd+1. We pick a general solution: a
general element of the vector space

ker
(

Symd(�2)∗ ⊕ Symd(�2)∗
∂y⊕−∂x �� Symd−1(�2)∗

)
.

� Next, Ad+1 and Bd+1 are homogeneous polynomials of degree d + 1 satisfying

Ad+1,y − Bd+1,x = C0Ad + D0Bd (6)

for the given constants C0 and D0. The above is an affine linear equation on the
vector space of pairs (Ad+1, Bd+1) with a non-empty set of solutions (for example,
set Bd+1 = 0 and integrate to get Ad+1). We pick a general element of the affine space
of solutions.

� At the kth order, we have defined Ad, . . . , Ak−1 and Bd, . . . , Bk−1, and we pick degree
k homogeneous polynomials Ak, Bk satisfying the affine linear equation

Ak,y − Bk,x =
k−1−d∑

i=0

CiAk−1−i +
k−1−d∑

i=0

DiBk−1−i . (7)

Again, the affine space of solutions is non-empty, and we pick a general element.

Thus, we obtain a general formal power series almost-closed 1-form σ starting
at order d with given C, D ∈ �[[x, y]]. Later, we will show σ can be modified to be
algebraic.

3. Convergence. Although not necessary for our construction, the power series
solution σ can be taken to be convergent when conditions1 are placed on the series
C, D ∈ �[[x, y]].

1Stronger results are certainly possible, but the conditions we impose are sufficiently mild that the non-
existence result of Theorem 3 still holds if we replace the word ‘general’ with ‘general within the Euclidean
open set of Lemma 1’.
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LEMMA 1. Suppose C≥2 = 0 = D≥2. Then there is a power series solution σ starting
at order d with non-zero radius of convergence. Moreover, the set of solutions of (3) which
converge contains an Euclidean open set in the space of all solutions.

Proof. When C≥2 = 0 = D≥2, equation (7) simplifies to

Ak,y − Bk,x = C0Ak−1 + D0Bk−1 + C1Ak−2 + D1Bk−2. (8)

Let ‖p‖ denote the maximum of the absolute values of the coefficients of the polynomial
p(x, y), and make the following definitions:

λ = max(|C0|, |D0|, 2‖C1‖, 2‖D1‖),

μk = max(‖Ak‖, ‖Bk‖, ‖Ak−1‖, ‖Bk−1‖),

Ek−1 = C0Ak−1 + D0Bk−1 + C1Ak−2 + D1Bk−2.

We easily find

‖Ek−1‖ ≤ |C0|‖Ak−1‖ + |D0|‖Bk−1‖ + 2‖C1‖‖Ak−2‖ + 2‖D1‖‖Bk−2‖
≤ 4λμk−1.

A general solution of (8) is provided by integrating

Ak,y = Fk−1,

Bk,x = Fk−1 − Ek−1,

for a general choice of homogeneous degree k − 1 polynomial Fk−1. We now choose
Fk−1 to satisfy

‖Fk−1‖ < 4λμk−1,

which is a Euclidean open condition.
Since integration divides all coefficients by integers, we see

‖Ak‖ < 4λμk−1, ‖Bk‖ < 8λμk−1, (9)

so

μk ≤ max(1, 8λ)μk−1.

Therefore,

μk ≤ αβk

for some constants α, β. The 1-form σ solving (3) thus has radius of convergence at
least β−1. �

4. Algebraic almost closed 1-forms. We return to the formal power series
solutions σ of (3) starting at degree d. For general choices of Ad and Bd , the zero
locus Z(σ ) will be a non-reduced scheme Z0(σ ) at the origin of �2 (plus possibly some
other disjoint loci). For sufficiently large N,

Z0(σ ) ⊂ Spec(�[[x, y]]/mN),
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where m = (x, y) is the maximal ideal of the origin. Equivalently,

mN ⊂ (A, B) ⊂ �[[x, y]]. (10)

Consider the polynomial 1-form

σ≤N = A≤N dx + B≤N dy

= (Ad + Ad+1 + · · · + AN)dx + (Bd + Bd+1 + · · · + BN)dy.

While σ≤N need not be almost closed on all of �2 (issues may arise at the zeros of σ

away from the origin), σ≤N is almost closed in a Zariski open neighbourhood of the
origin.

LEMMA 2. In the localised ring �[x, y](x,y), the 1-form σ≤N is almost closed,

(dσ≤N) ⊂ (A≤N, B≤N) ⊂ �[x, y](x,y).

Proof. First, we claim σ≤N is almost closed when considered in the ring �[[x, y]] of
formal power series at the origin of �2. In fact, dσ≤N is

A≤N,y − B≤N,x = (Ay − Bx)≤N−1

= (CA + DB)≤N−1

= CA≤N + DB≤N + ε(N), (11)

where ε(N) consists only of terms of degree ≥ N and therefore

ε(N) ∈ mN ⊂ (A, B)

by (10). So we see σ≤N is almost closed modulo mN , and we can write

ε(N) = C0A + D0B

= C0A≤N + D0B≤N + (C0A>N + D0B>N)

= C0A≤N + D0B≤N + ε(N + 1) (12)

for series C0, D0 ∈ �[[x, y]]. Here

ε(N + 1) ∈ mN+1 = m.mN ⊂ m.(A, B),

which can therefore be written as

ε(N + 1) = C1A≤N + D1B≤N + ε(N + 2) (13)

just as in (12), with C1, D1 ∈ m. Continuing inductively, we write

mk.(A, B) ⊃ mN+k � ε(N + k) = CkA≤N + DkB≤N + ε(N + k + 1),

where Ck, Dk ∈ mk consist only of terms of degree ≥ k. We finally obtain

A≤N,y − B≤N,x = CA≤N + DB≤N,
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where the series

C = C + C0 + C1 + · · · , D = D + D0 + D1 + · · ·

are convergent in �[[x, y]]. So σ≤N is indeed almost closed in �[[x, y]].
The above results can be written as the vanishing

[A≤N,y − B≤N,x] = 0 in the �[[x, y]]-module
�[[x, y]]

(A≤N, B≤N)
,

or equivalently that

0 �� �[[x, y]] 1 �� �[[x, y]]
A≤N,y−B≤N,x �� �[[x,y]]

(A≤N ,B≤N ) (14)

is exact. We are left with showing similarly that

0 �� �[x, y](x,y)
1 �� �[x, y](x,y)

A≤N,y−B≤N,x �� �[x,y](x,y)

(A≤N ,B≤N ) (15)

is also exact.
Now (15) pulls back to (14) via the inclusion

�[x, y](x,y) ↪→ �[[x, y]]. (16)

Since (16) is flat [4, Theorem 8.8] and a local map of local rings, it is faithfully flat by
[4, Theorem 7.2]. Thus, the exactness of (15) follows from that of (14). �

5. Non-existence of a potential. Consider again formal power series solutions σ

of (3) starting at degree d. We will show for almost every choice2 of C and D, the zero
scheme Z(σ ) is not the critical locus of at the origin of any formal function if A and B
are chosen to be general solutions of (7).

THEOREM 3. If C1,x + D1,y �= 0, then for d ≥ 18 and general choices of A, B
satisfying (7), there is no potential function � ∈ �[[x, y]] satisfying

(�x,�y) = (A, B) ⊂ �[[x, y]].

Assume a potential function � ∈ �[[x, y]] exists satisfying

(�x,�y) = (A, B) ⊂ �[[x, y]].

Then both �x − A and �y − B are in the ideal (A, B), so we have

�x − A = XA + YB, (17)

�y − B = ZA + WB,

2In fact, we can set C = x, D = 0 and B≥(d+2) = 0 and the proof still works. But the restriction gives no
significant simplification in notation.
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for series X, Y, Z, W ∈ �[[x, y]]. As usual, we write

X = X0 + X1 + · · ·
with Xk homogeneous of degree k (and similarly for Y , Z and W ). To find � satisfying3

(17), integrability

�xy = �yx,

is a necessary and sufficient condition. In other words, we must have

−Ay + Bx = (XA + YB)y − (ZA + WB)x. (18)

We will analyse equation (18) for X, Y, Z, W order by order modulo higher and
higher powers mk of the maximal ideal. At each order, the issue is linear. For the first
few orders, equation (18) can be easily solved (with several degrees of freedom). But
each further stage imposes more stringent conditions on the choices at the previous
stage. In degree d + 2, we will see the conditions become overdetermined, with no
non-trivial solutions X, Y, Z, W for general A, B satisfying (3).

Degree d − 1. In homogeneous degree d − 1, (18) yields

−Ad,y + Bd,x = X0Ad,y + Y0Bd,y − Z0Ad,x − W0Bd,x.

From (4), we have the relation Ad,y = Bd,x. Otherwise the partial derivatives of Ad and
Bd are completely general. Therefore, the resulting equation

0 = (X0 − W0)Ad,y + Y0Bd,y − Z0Ad,x

implies the vanishing of (X0 − W0), Y0, and Z0. Thus, in homogeneous degree d,
equations (17) become

�d+1,x = (1 + X0)Ad,

�d+1,y = (1 + X0)Bd,

with � having no terms of degree ≤ d. Since we require (�x,�y) to generate the ideal
(A, B), and since

Ad, Bd �= 0

by generality, we find 1 + X0 �= 0. Rescaling �, we can assume

1 = 1 + X0

without loss of generality. So we have found the following conditions at order d − 1:

X0 = Y0 = Z0 = W0 = 0. (19)

3Equations (17) imply that only (�x, �y) ⊂ (A, B) and has the trivial solution

X = 1 = W and Y = 0 = Z

corresponding to constant f . We will rule out the trivial solution by requiring (�x, �y) = (A, B) shortly.
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Degree d. In homogeneous degree d, (18) yields

−Ad+1,y + Bd+1,x = (X1Ad)y + (Y1Bd)y − (Z1Ad)x − (W1Bd)x

+ (X0Ad+1)y + (Y0Bd+1)y − (Z0Ad+1)x − (W0Bd+1)x.

By our work in the previous degree (19), the second line on the right vanishes identically.
After substituting (6) on the left side, we find

−C0Ad − D0Bd = (X1Ad)y + (Y1Bd)y − (Z1Ad)x − (W1Bd)x. (20)

We rewrite (20) as the vanishing of

(X1,y − Z1,x + C0)Ad + X1Ad,y − Z1Ad,x

+ (Y1,y − W1,x + D0)Bd + Y1Bd,y − W1Bd,x.

After expanding the linear unknowns out fully via

X1 = X1,xx + X1,yy, Y1 = Y1,xx + Y1,yy,

Z1 = Z1,xx + Z1,yy, W1 = W1,xx + W1,yy,

we obtain a relation among the degree d homogeneous polynomials

Ad, xAd,x, xAd,y, yAd,x, yAd,y, (21)

Bd, xBd,x, xBd,y, yBd,x, yBd,y.

Since Ad and Bd were chosen generically subject to Ad,y = Bd,x, the polynomials (21)
are linearly independent except for the relations

Ad,y = Bd,x (multiplied by x, y),

xAd,x + yBd,y = dAd, (22)

xAd,x + yBd,y = dBd .

The first is (4). The last two are the Euler homogeneity relations. A simple check shows
that d ≥ 5 is sufficient to achieve the independence.

Using the first equation of (22) to eliminate xBd,x and yBd,x and the last two to
eliminate Ad, Bd , we find the following equations:

Coefficient of xAd,x : 0 = (X1,y − Z1,x + C0)/d − Z1,x,

yAd,x : 0 = −Z1,y,

xAd,y : 0 = X1,x + (Y1,y − W1,x + D0)/d − W1,x,

yAd,y : 0 = (X1,y − Z1,x + C0)/d + X1,y − W1,y,

xBd,y : 0 = Y1,x,

yBd,y : 0 = (Y1,y − W1,x + D0)/d + Y1,y.
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Therefore, we find

Y1,x = 0 = Z1,y,

W1,y = X1,y + Z1,x,

X1,x = Y1,y + W1,x, (23)

C0 = (d + 1)Z1,x − X1,y,

D0 = W1,x − (d + 1)Y1,y.

Equations (23) can be solved with room to spare – there is a two-dimensional
affine space of solutions. However, the constraints in next degree will impose further
conditions which specify X1, Y1, Z1, W1 uniquely.

Degree d + 1. In homogeneous degree d + 1, equation (18) yields

−Ad+2,y + Bd+2,x = (X2Ad)y + (Y2Bd)y − (Z2Ad)x − (W2Bd)x

+ (X1Ad+1)y + (Y1Bd+1)y − (Z1Ad+1)x − (W1Bd+1)x

+ (X0Ad+2)y + (Y0Bd+2)y − (Z0Ad+2)x − (W0Bd+2)x.

By the constraints (19), the third line vanishes identically. Substituting equation (7) for
k = d + 2 on the left side yields

−C0Ad+1 − D0Bd+1 − C1Ad − D1Bd = (X2Ad)y + (Y2Bd)y − (Z2Ad)x − (W2Bd)x

+ (X1Ad+1)y + (Y1Bd+1)y − (Z1Ad+1)x − (W1Bd+1)x. (24)

We work first modulo those degree d + 1 polynomials generated by Ad, Bd and
their first partial derivatives. More preciely, let

V ⊂ Symd+1(�2)∗

denote the subspace spanned by x and y multiplied by Ad, Bd , and x2, xy, y2 multiplied
by Ad,x, Ad,y, Bd,x, Bd,y. The subspace V has dimension 9 due to the relations (22). In
the quotient space Symd+1(�2)∗/V , equation (24) is

−C0Ad+1 − D0Bd+1 = (X1Ad+1)y + (Y1Bd+1)y − (Z1Ad+1)x − (W1Bd+1)x, (25)

where all terms are taken mod V .
Equation (25) has form identical to equation (20) analysed in the previous degree

with Ad, Bd replaced by Ad+1, Bd+1. The analysis of the previous sections applies again
here: The first relation of (22) holds mod V by (6), and the two Euler relations hold
with d replaced by d + 1. By generality, for d ≥ 13, the polynomials Ad+1, Bd+1 and
their partial derivatives (multiplied by x, y) are independent of Ad, Bd (multiplied by
x, y) and their partial derivatives (multiplied by x2, xy, y2) except for relation (6) and
the Euler relations. We conclude the equations corresponding to (23) hold (with d
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replaced by d + 1):

Y1,x = 0 = Z1,y,

W1,y = X1,y + Z1,x,

X1,x = Y1,y + W1,x,

C0 = (d + 2)Z1,x − X1,y,

D0 = W1,x − (d + 2)Y1,y.

After combining with the original equations (23), we find

Y1,x = 0 = Y1,y,

Z1,x = 0 = Z1,y,

X1,y = W1,y = −C0, (26)

X1,x = W1,x = D0.

We have uniquely solved for X1, Y1, Z1, W1.
We next consider X2, Y2, Z2, W2. There will be no obstruction to solving for

X2, Y2, Z2, W2 here. However, in the next degree, we will find further constraints:
the resulting overdetermined system for X2, Y2, Z2, W2 will have solutions only if
C1,x + D1,y = 0.

After substituting constraints (26) into (24), we obtained a simpler equation:

−C1Ad − D1Bd = (X2Ad)y + (Y2Bd)y − (Z2Ad)x − (W2Bd)x + X1(Ad+1,y − Bd+1,x).

By (6) and (26), the last term X1(Ad+1,y − Bd+1,x) is

X1(C0Ad + D0Bd) = (D0x − C0y)(C0Ad + D0Bd).

We define new terms

C̃1 = C1 + C0(D0x − C0y), D̃1 = D1 + D0(D0x − C0y).

Then we can write equation (24) as

−C̃1Ad − D̃1Bd = (X2Ad)y + (Y2Bd)y − (Z2Ad)x − (W2Bd)x. (27)

Note the similarity to (20).
We solve (27) following our approach to (20). After expanding the unknowns,

X2 = X2,xx
x2

2
+ X2,xyxy + X2,yy

y2

2
,

Y2 = Y2,xx
x2

2
+ Y2,xyxy + Y2,yy

y2

2
,

Z2 = Z2,xx
x2

2
+ Z2,xyxy + Z2,yy

y2

2
,

W2 = W2,xx
x2

2
+ W2,xyxy + W2,yy

y2

2
,

https://doi.org/10.1017/S0017089513000141 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000141


ALMOST CLOSED 1-FORMS 179

we obtain

−(C̃1,xx + C̃1,yy)Ad − (D̃1,xx + D̃1,yy)Bd

=
(
X2,xx

x2

2
+ X2,xyxy + X2,yy

y2

2

)
Ad,y + (X2,xyx + X2,yyy)Ad

+
(

Y2,xx
x2

2
+ Y2,xyxy + Y2,yy

y2

2

)
Bd,y + (Y2,xyx + Y2,yyy)Bd

−
(

Z2,xx
x2

2
+ Z2,xyxy + Z2,yy

y2

2

)
Ad,x − (Z2,xxx + Z2,xyy)Ad

−
(

W2,xx
x2

2
+ W2,xyxy + W2,yy

y2

2

)
Bd,x − (W2,xxx + W2,xyy)Bd . (28)

We consider the above to be a relation among

xAd, yAd, x2Ad,x, xyAd,x, y2Ad,x, x2Ad,y, xyAd,y, y2Ad,y,

xBd, yBd, x2Bd,x, xyBd,x, y2Bd,x, x2Bd,y, xyBd,y, y2Bd,y.

By generality, for d ≥ 7, these are linearly independent degree d + 1 homogeneous
polynomials modulo (4) and the Euler relations (22):

Ad,y = Bd,x (multiplied by x2, xy, y2),

xAd,x + yAd,y = dAd (multiplied by x, y), (29)

xBd,x + yBd,y = dBd (multiplied by x, y).

We use (29) to eliminate the terms

x2Bd,x, xyBd,x, y2Bd,x, xAd, yAd, xBd, yBd

on the right-hand side of (28). Then independence yields the following equations:

x2Ad,x : 0 = C̃1,x/d − Z2,xx/2 + X2,xy/d − Z2,xx/d,

xyAd,x : 0 = C̃1,y/d − Z2,xy + X2,yy/d − Z2,xy/d,

y2Ad,x : 0 = −Z2,yy/2,

x2Ad,y : 0 = D̃1,x/d + X2,xx/2 − W2,xx/2 + Y2,xy/d − W2,xx/d,

xyAd,y : 0 = C̃1,x/d + D̃1,y/d + X2,xy − W2,xy + X2,xy/d

−Z2,xx/d + Y2,yy/d − W2,xy/d,

y2Ad,y : 0 = C̃1,y/d + X2,yy/2 − W2,yy/2 + X2,yy/d − Z2,xy/d,

x2Bd,y : 0 = Y2,xx/2,

xyBd,y : 0 = D̃1,x/d + Y2,xy + Y2,xy/d − W2,xx/d,

y2Bd,y : 0 = D̃1,y/d + Y2,yy/2 + Y2,yy/d − W2,xy/d.

Use the second equation to eliminate X2,yy from the sixth equation. Use the eighth
equation to eliminate W2,xx from the fourth equation. Finally, use the first and last
equations to remove X2,xy and W2,xy from the fifth one. Tidying up, we find Z2,yy =
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0 = Y2,xx and

(d + 2)Z2,xx − 2X2,xy = 2C̃1,x,

(d + 1)Z2,xy − X2,yy = C̃1,y,

X2,xx − (d + 3)Y2,xy = D̃1,x,

(d + 3)(Z2,xx − Y2,yy) = 2(C̃1,x + D̃1,y), (30)

−W2,yy + (d + 3)Z2,xy = C̃1,y,

(d + 1)Y2,xy − W2,xx = −D̃1,x,

(d + 2)Y2,yy − 2W2,xy = −2D̃1,y.

Therefore, we can specify that Z2,xx, Z2,xy and Y2xy arbitrarily and uniquely solve for
X2, Y2, Z2, W2 after that. However, the conditions at the next degree will place further
constraints.
Degree d + 2. In homogeneous degree d + 2, equation (18) yields

−Ad+3,y + Bd+3,x = (X3Ad)y + (Y3Bd)y − (Z3Ad)x − (W3Bd)x

+ (X2Ad+1)y + (Y2Bd+1)y − (Z2Ad+1)x − (W2Bd+1)x

+ (X1Ad+2)y + (Y1Bd+2)y − (Z1Ad+2)x − (W1Bd+2)x

+ (X0Ad+3)y + (Y0Bd+3)y − (Z0Ad+3)x − (W0Bd+3)x.

By constraints (19), the fourth line vanishes identically. Substituting (7) for k = d + 3
on the left-hand side yields

−C0Ad+2 − D0Bd+2 − C1Ad+1 − D1Bd+1 − C2Ad − D2Bd .

Work modulo the (12-dimensional space of) degree d + 2 homogeneous polynomials
generated by Ad, Bd (multiplied by x2, xy or y2) and their first partial derivatives
(multiplied by x3, x2y, xy2, y3). We find

−C0Ad+2 − D0Bd+2 − C1Ad+1 − D1Bd+1 = (X2Ad+1)y + (Y2Bd+1)y

− (Z2Ad+1)x − (W2Bd+1)x + (X1Ad+2)y + (Y1Bd+2)y − (Z1Ad+2)x − (W1Bd+2)x.

Substituting (26) for X1, Y1, Z1, W1 into the third line and moving it to the first gives

−C1Ad+1 − D1Bd+1 − (D0x − C0y)(Ad+2,y − Bd+2,x)

= (X2Ad+1)y + (Y2Bd+1)y − (Z2Ad+1)x − (W2Bd+1)x.

By (7) for k = d + 2, we know the term

Ad+2,y − Bd+2,x = C0Ad+1 + D0Bd+1 + C1Ad + D1Bd .

Since we are working modulo Ad, Bd , we obtain

−C̃1Ad+1 − D̃1Bd+1 = (X2Ad+1)y + (Y2Bd+1)y − (Z2Ad+1)x − (W2Bd+1)x, (31)

where

C̃1 = C1 + C0(D0x − C0y), D̃1 = D1 + D0(D0x − C0y)

as before.
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Equation (31) is precisely the same as equation (27) studied at the previous degree
with d replaced by d + 1. Also, relations (29) still hold (after replacing d by d + 1) by
(6), since we are working mod Ad, Bd , and these are the only relations which hold for
general Ad+1, Bd+1 once d ≥ 18.

Hence, the analysis in the previous degree applies here verbatim. We derive the
same equations (30) with d replaced by d + 1. The first is Z2,yy = 0 = Y2,xx. And the
rest are

(d + 3)Z2,xx − 2X2,xy = 2C̃1,x,

(d + 2)Z2,xy − X2,yy = C̃1,y,

X2,xx − (d + 4)Y2,xy = D̃1,x,

(d + 4)(Z2,xx − Y2,yy) = 2(C̃1,x + D̃1,y),

−W2,yy + (d + 4)Z2,xy = C̃1,y,

(d + 2)Y2,xy − W2,xx = −D̃1,x,

(d + 3)Y2,yy − 2W2,xy = −2D̃1,y.

From the central equation and the counterpart in (30), we obtain a necessary condition
for there to exist any solutions:

C̃1,x + D̃1,y = 0,

or equivalently,

C1,x + D1,y = 0. (32)

We have completed the proof of Theorem 3. �

Since C1 and D1 can be chosen arbitrarily at the beginning, choosing them to
violate (32) will imply the non-existence of a potential �. More precisely, when Ak, Bk

are general solutions of equations (7), the resulting almost closed 1-form generates an
ideal at the origin which is not the critical locus of any formal power series � ∈ �[[x, y]].

By Lemma 2, we can find an algebraic almost closed 1-form on a Zariski open set
of the origin in �2 which is not the critical locus of any holomorphic (or even formal)
function � defined near the origin of �2.

6. Embedding in higher dimensions. Let σ be an algebraic almost closed 1-form
on a Zariski open set of the origin in �2 (as constructed above) whose zero locus Z(σ )
is both 0-dimensional and not the critical locus of any holomorphic potential function
� near the origin in �2.

PROPOSITION 4. The scheme Z(σ ) ⊂ �2 cannot be written as the critical locus Z(d�)
of any holomorphic function � on a non-singular variety.

Proof. For contradiction, suppose

Z(σ ) = Z(d�)

for some holomorphic function � on a non-singular analytic variety A. Let Z denote
Z(σ ) = Z(d�).
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We show A can be cut down to two dimensions. Since Z has a two-dimensional
Zariski tangent space, A has a product structure (perhaps after shrinking to an
Euclidean open neighbourhood),

A = B × C (33)

with B non-singular of dimension 2 and

Z ⊂ B × {c} ⊂ B × C = A .

Let b ∈ B be the point at which Z is supported, and

p = (b, c) ∈ A .

Now D(d�)|p is injective on TcC because TcC is a complement to the kernel TbB.
Since D(d�)|p is symmetric, Im D(d�)|p lies in the annihilator of ker D(d�)|p, which
is �C|c. Thus, the composition

TC
� � �� TA

D(d�) �� �A �� �� �C

on Z is injective at p. The composition is therefore an isomorphism at p, and hence, by
openness, an isomorphism in a neighbourhood of Z.

Thus, writing (dB�, dC�) for d� = (dB×C/C�, dB×C/B�) in the product structure
(33), we find that the zero locus

B′ = Z(dC�)

of dC� is tangent to B at p and smooth and two-dimensional in a neighbourhood.
Shrinking if necessary, we can assume that B′ is everywhere non-singular and never
tangent to the C fibres of A = B × C.

Now Z is the zero locus of dB� on B′. By the tangency condition, Z is the same
as the zero locus of (d�)|B′ = d(�|B′). Thus, Z is the critical locus of �|B′ , with B′

non-singular and two-dimensional, contradicting Theorem 3. �
ACKNOWLEDGEMENTS. We would like to thank Dominic Joyce for showing us the
potential (2) for the zeros of the 1-form (1) and pointing out the error in [5, Appendix
A.5]. Specifically, the averaging argument in Corollary 34 is incorrect. The error there
does not affect the other counterexamples in [5, Appendix A].

REFERENCES

1. K. Behrend, Donaldson–Thomas invariants via microlocal geometry, Ann. Math. 170
(2009) 1307–1338. math.AG/0507523.

2. K. Behrend and B. Fantechi, Symmetric obstruction theories and Hilbert schemes of
points on threefolds, Algebra Number Theory 2 (2008) 313–345. math.AG/0512556.

3. C. Brav, V. Bussi and D. Joyce, A Darboux theorem for derived schemes with shifted
symplectic structure, (2013) arXiv:1305.6302.

4. H. Matsumura, Commutative ring theory (Cambridge University Press, Cambridge, UK,
1989).

5. D. Maulik, R Pandharipande and R. P. Thomas, Curves on K3 surfaces and modular
forms, J. Topol. 3 (2010) 937–996. arXiv:1001.2719v3.
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