Inequalities for the Surface Area of Projections of Convex Bodies

Apostolos Giannopoulos, Alexander Koldobsky, and Petros Valettas

Abstract

We provide general inequalities that compare the surface area $S(K)$ of a convex body K in \mathbb{R}^{n} to the minimal, average, or maximal surface area of its hyperplane or lower dimensional projections. We discuss the same questions for all the quermassintegrals of K. We examine separately the dependence of the constants on the dimension in the case where K is in some of the classical positions or K is a projection body. Our results are in the spirit of the hyperplane problem, with sections replaced by projections and volume by surface area.

1 Introduction

The starting point of this article is a pair of inequalities from the second author regarding the surface area of hyperplane projections of projection bodies. In [10] it was proved that if Z is a projection body in \mathbb{R}^{n}, then

$$
\begin{equation*}
|Z|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(Z)\right) \leqslant b_{n} S(Z) \tag{1.1}
\end{equation*}
$$

where $S(A)$ denotes the surface area of $A, P_{\xi^{\perp}}(Z)$ stands for the orthogonal projection of Z to the hyperplane ξ^{\perp} perpendicular to a vector $\xi \in S^{n-1}$, and

$$
\begin{equation*}
b_{n}=\frac{(n-1) \omega_{n-1}}{n \omega_{n}^{\frac{n-1}{n}}}, \tag{1.2}
\end{equation*}
$$

where ω_{m} is the volume of the Euclidean unit ball B_{2}^{m} in \mathbb{R}^{m}. Note that $b_{n} \simeq 1$ and that (1.1) is sharp; there is equality if $Z=B_{2}^{n}$. Conversely, in [11] it was proved that if Z is a projection body in \mathbb{R}^{n} that is a dilate of a body in isotropic position, then

$$
\begin{equation*}
|Z|^{\frac{1}{n}} \max _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(Z)\right) \geqslant c(\log n)^{-2} S(Z), \tag{1.3}
\end{equation*}
$$

where $c>0$ is an absolute constant.
Our first aim is to discuss similar inequalities for the surface area of hyperplane projections of an arbitrary convex body K in \mathbb{R}^{n}. In what follows, we denote by ∂_{K} the minimal surface area parameter of K, defined by

$$
\begin{equation*}
\partial_{K}:=\min \left\{S(T(K)) /|T(K)|^{\frac{n-1}{n}}: T \in G L(n)\right\} . \tag{1.4}
\end{equation*}
$$

[^0]It is known that $c \sqrt{n} \leqslant \partial_{K} \leqslant c^{\prime} n$ for every convex body K in \mathbb{R}^{n}, where $c, c^{\prime}>$ 0 are absolute constants (see Section 2 for definitions, references, and background information).

Our analogue of (1.1) is the following theorem.
Theorem 1.1 There exists an absolute constant $c_{1}>0$ such that, for every convex body K in \mathbb{R}^{n},

$$
\begin{equation*}
|K|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{2 b_{n} \partial_{K}}{n \omega_{n}^{\frac{1}{n}}} S(K) \leqslant \frac{c_{1} \partial_{K}}{\sqrt{n}} S(K) \tag{1.5}
\end{equation*}
$$

This inequality is sharp e.g., for the Euclidean unit ball. Note that $c_{1} \partial_{K} / \sqrt{n} \leqslant c \sqrt{n}$ for every convex body K in \mathbb{R}^{n}, and hence we have the general upper bound

$$
|K|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant c \sqrt{n} S(K)
$$

Our method employs an estimate for the minimal volume of a hyperplane projection of K. One has

$$
\begin{equation*}
\min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| \leqslant c \sqrt{n}|K|^{\frac{n-1}{n}} \tag{1.6}
\end{equation*}
$$

for an absolute constant $c>0$.
Assuming that K is in the minimal surface area position, we have a converse of Theorem 1.1.

Theorem 1.2 Let K be a convex body in \mathbb{R}^{n} that is in the minimal surface area position. Then

$$
\begin{equation*}
|K|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \geqslant \frac{c}{\sqrt{n}} S(K) \tag{1.7}
\end{equation*}
$$

where $c>0$ is an absolute constant.
The estimate of Theorem 1.2 is sharp; we provide an example in which the two quantities in (1.7) are of the same order, using extremal (with respect to minimal hyperplane projections) bodies of minimal surface area that were constructed in [12].

In the case where K is a projection body, one can see that (1.6) holds true with $c \sqrt{n}$ replaced by b_{n} (see Section 3). This leads to an alternative proof of (1.1) with a constant that is weaker by a factor of 2 .

Theorem 1.3 Let Z be a projection body in \mathbb{R}^{n}. Then

$$
|Z|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(Z)\right) \leqslant 2 b_{n} S(Z)
$$

It should be noted that there are convex bodies that are not projection bodies, but whose minimal surface area parameter ∂_{K} is of the order of \sqrt{n}; an example is given by B_{1}^{n}, the unit ball of ℓ_{1}^{n}. On the other hand, there exist projection bodies whose minimal surface area parameter is of the order of n; an example is given by the cube. Thus, the estimates of Theorems 1.1 and 1.3 complement each other. In our next result we replace $\min S\left(P_{\xi^{\perp}}(K)\right)$ by the expectation of $S\left(P_{\xi^{\perp}}(K)\right)$ on the sphere.

Theorem 1.4 Let K be a convex body in \mathbb{R}^{n}. Then

$$
|K| \int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \leqslant \frac{2(n-1) \omega_{n-1}}{n^{2} \omega_{n}} S(K)^{2} \leqslant \frac{c_{2}}{\sqrt{n}} S(K)^{2},
$$

where $c_{2}>0$ is an absolute constant.
A consequence of Theorem 1.4 is that if K is in some of the classical positions (minimal surface area, isotropic or John's position, or is symmetric and in Löwner's position), then

$$
|K|^{\frac{1}{n}} \int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \leqslant c \sqrt{n} S(K)
$$

The reason is that, in all these cases, the surface area of K satisfies an inequality of the form $S(K) \leqslant c n|K|^{\frac{n-1}{n}}$ (see Section 2 for a brief description of the classical positions of a convex body and for a proof of this last assertion).

Passing to lower bounds, our analogue of (1.3) is the following theorem.
Theorem 1.5 Let K be a convex body in \mathbb{R}^{n}. Then

$$
\int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \geqslant c_{3} S(K)^{\frac{n-2}{n-1}}
$$

where $c_{3}>0$ is an absolute constant.
A consequence of Theorem 1.5 is that if K is in the minimal surface area, minimal mean width, isotropic, John, or Löwner position, then

$$
\begin{equation*}
|K|^{\frac{1}{n}} \int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \geqslant c S(K) \tag{1.8}
\end{equation*}
$$

where $c>0$ is an absolute constant. In particular,

$$
\begin{equation*}
|K|^{\frac{1}{n}} \max _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \geqslant c S(K) . \tag{1.9}
\end{equation*}
$$

Note that (1.9) is stronger than (1.3); moreover, for bounds of this type there is no need to assume that K is a projection body. In fact, our proof of Theorem 1.5 shows that (1.8) continues to hold as long as $S(K)^{\frac{1}{n-1}} \leqslant c|K|^{\frac{1}{n}}$ for an absolute constant $c>0$. This is a mild condition that is satisfied not only by the classical positions but also by all reasonable positions of K.

All these inequalities are proved in Section 4. Our main tools are a result from [7] stating that

$$
\begin{equation*}
\frac{S\left(P_{\xi^{\perp}}(K)\right)}{\left|P_{\xi^{\perp}}(K)\right|} \leqslant \frac{2(n-1)}{n} \frac{S(K)}{|K|} \tag{1.10}
\end{equation*}
$$

for every convex body K in \mathbb{R}^{n} and any $\xi \in S^{n-1}$, estimates from [9] for the volume of the projection body of a convex body in terms of its minimal surface area parameter, and Aleksandrov's inequalities. For the class of projection bodies, we prove and use
the following sharp estimate (Lemma 3.1): if Z is a projection body in \mathbb{R}^{n}, then

$$
\min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(Z)\right| \leqslant \frac{n b_{n}}{n-1}|Z|^{\frac{n-1}{n}}
$$

In Section 5 we study the same questions for the quermassintegrals $V_{n-k}(K)=$ $V\left((K, n-k),\left(B_{2}^{n}, k\right)\right)$ of a convex body K and the corresponding quermassintegrals of its hyperplane projections. We obtain the following estimates:
(i) For every $1 \leqslant p \leqslant n-2$ we have

$$
\begin{gathered}
|K|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{(p+1) \omega_{n-1} \partial_{K}}{n \omega_{n}} V_{n-p}(K) \leqslant \frac{c(p+1) \partial_{K}}{\sqrt{n}} V_{n-p}(K), \\
|K|^{\frac{1}{n}} \int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \leqslant \frac{(p+1) \omega_{n-1}}{n \omega_{n}} \frac{S(K)}{|K|^{\frac{n-1}{n}}} V_{n-p}(K) .
\end{gathered}
$$

(ii) If Z is a projection body in \mathbb{R}^{n}, then for every $1 \leqslant p \leqslant n-2$ we have

$$
|Z|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} V_{n-1-p}\left(P_{\xi^{ \pm}}(Z)\right) \leqslant(p+1) \frac{n b_{n}}{n-1} V_{n-p}(Z)
$$

(iii) If K is in the minimal surface area, isotropic, or John's position, or is symmetric and in Löwner's position, then, for every $1 \leqslant p \leqslant n-2$ we have

$$
|K|^{\frac{1}{n}} \int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \leqslant c(p+1) \sqrt{n} V_{n-p}(K) .
$$

(iv) For every $1 \leqslant p \leqslant n-2$ we have

$$
\int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \geqslant \frac{\omega_{n-1}}{\omega_{n}^{\frac{n-1-p}{n-p}}}\left[V_{n-p}(K)\right]^{\frac{n-1-p}{n-p}}
$$

(v) If K is in the minimal surface area, isotropic or John's position, or is symmetric and in Löwner's position, then, for every $1 \leqslant p \leqslant n-2$, we have

$$
|K|^{\frac{1}{n}} \int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \geqslant \frac{\omega_{n-1} c_{0}^{\frac{p}{n-p}}}{\omega_{n}^{\frac{n-1-p}{n-p}}} V_{n-p}(K) \geqslant\left(\frac{c_{1}}{n}\right)^{\frac{p}{2(n-p)}} V_{n-p}(K)
$$

The proofs employ the same tools as in the surface area case. The main additional ingredient is a generalization of (1.10) to subspaces of arbitrary dimension and quermassintegrals of any order, proved in [5]. If K is a convex body in \mathbb{R}^{n} and $0 \leqslant p \leqslant k \leqslant$ n, then, for every $F \in G_{n, k}$,

$$
\frac{V_{n-p}(K)}{|K|} \geqslant \frac{1}{\binom{n-k+p}{n-k}} \frac{V_{k-p}\left(P_{F}(K)\right)}{\left|P_{F}(K)\right|}
$$

This inequality allows us to obtain further generalizations of the results of Section 4; we can compare the surface area of a convex body K to the minimal, average, or maximal surface area of its lower dimensional projections $P_{F}(K), F \in G_{n, k}$, for any given $1 \leqslant k \leqslant n-1$. This is done in Section 6.

There are several questions that arise from this work, and we hope that the reader might find them interesting; these are stated explicitly throughout the text.

2 Notation and Background

We work in \mathbb{R}^{n}, which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote by $\|\cdot\|_{2}$ the corresponding Euclidean norm and write B_{2}^{n} for the Euclidean unit ball and S^{n-1} for the unit sphere. We denote the unit ball of ℓ_{p}^{n} by $B_{p}^{n}, 1 \leqslant p \leqslant \infty$. In particular, we also write Q_{n} for the cube $B_{\infty}^{n}=[-1,1]^{n}$ and $C_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ for the cube of volume 1 . Volume is denoted by $|\cdot|$. We write ω_{n} for the volume of B_{2}^{n} and σ for the rotationally invariant probability measure on S^{n-1}. The Grassmann manifold $G_{n, k}$ of k-dimensional subspaces of \mathbb{R}^{n} is equipped with the Haar probability measure $v_{n, k}$. For every $1 \leqslant k \leqslant n-1$ and $F \in G_{n, k}$, we write P_{F} for the orthogonal projection from \mathbb{R}^{n} onto F, and we set $B_{F}=B_{2}^{n} \cap F$ and $S_{F}=S^{n-1} \cap F$. Finally, we write \bar{A} for the homothetic image of volume 1 of a symmetric convex body $A \subseteq \mathbb{R}^{n}$, i.e., $\bar{A}:=|A|^{-1 / n} A$.

The letters $c, c^{\prime}, c_{1}, c_{2}$ etc. denote absolute positive constants that may change from line to line. Whenever we write $a \simeq b$, we mean that there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} a \leqslant b \leqslant c_{2} a$. Also, if $K, L \subseteq \mathbb{R}^{n}$ we will write $K \simeq L$ if there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} K \subseteq L \subseteq c_{2} K$.

We refer to the books $[6,14]$ for basic facts from the Brunn-Minkowski theory and to [1] for basic facts from asymptotic convex geometry. We also refer to [3] for more information on isotropic convex bodies.

2.1 Convex Bodies

A convex body in \mathbb{R}^{n} is a compact convex subset K of \mathbb{R}^{n} with non-empty interior. We say that K is symmetric if $x \in K$ implies that $-x \in K$, and that K is centered if its barycenter $\frac{1}{|K|} \int_{K} x d x$ is at the origin. The support function of a convex body K is defined by $h_{K}(y)=\max \{\langle x, y\rangle: x \in K\}$, and the mean width of K is

$$
w(K)=\int_{S^{n-1}} h_{K}(\theta) d \sigma(\theta) .
$$

The circumradius of K is the quantity $R(K)=\max \left\{\|x\|_{2}: x \in K\right\}$ i.e., the smallest $R>0$ for which $K \subseteq R B_{2}^{n}$. If $0 \in \operatorname{int}(K)$, then we write $r(K)$ for the inradius of K (the largest $r>0$ for which $r B_{2}^{n} \subseteq K$), and we define the polar body K° of K by

$$
K^{\circ}:=\left\{y \in \mathbb{R}^{n}:\langle x, y\rangle \leqslant 1 \text { for all } x \in K\right\} .
$$

The volume radius of K is the quantity $\operatorname{vrad}(K)=\left(|K| /\left|B_{2}^{n}\right|\right)^{1 / n}$. Integration in polar coordinates shows that if the origin is an interior point of K, then the volume radius of K can be expressed as

$$
\operatorname{vrad}(K)=\left(\int_{S^{n-1}}\|\theta\|_{K}^{-n} d \sigma(\theta)\right)^{1 / n}
$$

where $\|\theta\|_{K}=\min \{t>0: \theta \in t K\}$. We also define

$$
M(K)=\int_{S^{n-1}}\|\theta\|_{K} d \sigma(\theta)
$$

2.2 Mixed Volumes

From Minkowski's fundamental theorem we know that if K_{1}, \ldots, K_{m} are non-empty, compact convex subsets of \mathbb{R}^{n}, then the volume of $t_{1} K_{1}+\cdots+t_{m} K_{m}$ is a homogeneous polynomial of degree n in $t_{i}>0$. That is,

$$
\left|t_{1} K_{1}+\cdots+t_{m} K_{m}\right|=\sum_{1 \leqslant i_{1}, \ldots, i_{n} \leqslant m} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) t_{i_{1}} \cdots t_{i_{n}},
$$

where the coefficients $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ are chosen to be invariant under permutations of their arguments. The coefficient $V\left(K_{1}, \ldots, K_{n}\right)$ is the mixed volume of K_{1}, \ldots, K_{n}. In particular, if K and C are two convex bodies in \mathbb{R}^{n}, then the function $|K+t C|$ is a polynomial in $t \in[0, \infty)$:

$$
|K+t C|=\sum_{j=0}^{n}\binom{n}{j} V_{n-j}(K, C) t^{j}
$$

where $V_{n-j}(K, C)=V((K, n-j),(C, j))$ is the j-th mixed volume of K and C (we use the notation (C, j) for $C, \ldots, C j$-times $)$. If $C=B_{2}^{n}$, then we set $V_{n-j}(K):=$ $V_{n-j}\left(K, B_{2}^{n}\right)=V\left((K, n-j),\left(B_{2}^{n}, j\right)\right)$; this is the j-th quermassintegral of K. Note that

$$
V_{n-1}(K, C)=\frac{1}{n} \lim _{t \rightarrow 0^{+}} \frac{|K+t C|-|K|}{t},
$$

and by the Brunn-Minkowski inequality we see that

$$
V_{n-1}(K, C) \geqslant|K|^{\frac{n-1}{n}}|C|^{1 / n}
$$

for all K and C (this is Minkowski's first inequality). The mixed volume $V_{n-1}(K, C)$ can be expressed as

$$
V_{n-1}(K, C)=\frac{1}{n} \int_{S^{n-1}} h_{C}(\theta) d \sigma_{K}(\theta),
$$

where σ_{K} is the surface area measure of K; this is the Borel measure on S^{n-1} defined by

$$
\sigma_{K}(A)=\lambda(\{x \in \operatorname{bd}(K): \text { the outer normal to } K \text { at } x \text { belongs to } A\}),
$$

where λ is the Hausdorff measure on $\operatorname{bd}(K)$. In particular, the surface area $S(K):=$ $\sigma_{K}\left(S^{n-1}\right)$ of K satisfies $S(K)=n V_{n-1}(K)$. We will also use the Aleksandrov inequalities: if K is a convex body in \mathbb{R}^{n}, then the sequence

$$
Q_{k}(K)=\left(\frac{1}{\omega_{k}} \int_{G_{n, k}}\left|P_{F}(K)\right| d v_{n, k}(F)\right)^{\frac{1}{k}}
$$

is decreasing in k. This is a consequence of the Aleksandrov-Fenchel inequality (see $[4,14]$). In particular, for every $1 \leqslant k \leqslant n-1$ we have

$$
\left(\frac{|K|}{\omega_{n}}\right)^{\frac{1}{n}} \leqslant\left(\frac{1}{\omega_{k}} \int_{G_{n, k}}\left|P_{F}(K)\right| d v_{n, k}(F)\right)^{\frac{1}{k}} \leqslant w(K) .
$$

2.3 Classical Positions

Let K be a centered convex body in \mathbb{R}^{n}. We introduce the classical positions of K that we are going to discuss; we set the notation and provide some background information.

Minimal surface area position We say that K has minimal surface area if $S(K) \leqslant$ $S(T(K))$ for every $T \in S L(n)$. Petty ([13]; see also [9]) proved that K has minimal surface area if and only if σ_{K} satisfies the isotropic condition

$$
\begin{equation*}
S(K)=n \int_{S^{n-1}}\langle\xi, \theta\rangle^{2} d \sigma_{K}(\theta) \tag{2.1}
\end{equation*}
$$

for every $\xi \in S^{n-1}$. From the isoperimetric inequality we know that $S(K) \geqslant$ $n \omega_{n}^{1 / n}|K|^{\frac{n-1}{n}}$. The reverse isoperimetric inequality of K. Ball [2] states that if K has minimal surface area and volume 1 then $S(K) \leqslant S\left(C_{n}\right)=2 n$ in the symmetric case and $S(K) \leqslant S\left(\Delta_{n}\right) \leqslant c_{0} n$ in the not necessarily symmetric case, where Δ_{n} is a regular simplex of volume 1 in \mathbb{R}^{n} and $c_{0}>0$ is an absolute constant.

Minimal mean width position We say that K is in minimal mean width position if $w(K) \leqslant w(T(K))$ for every $T \in S L(n)$. It was proved in [8] that K has minimal mean width if and only if

$$
w(K)=n \int_{S^{n-1}}\langle\xi, \theta\rangle^{2} h_{K}(\theta) d \sigma(\theta)
$$

for every $\xi \in S^{n-1}$. From results of Figiel-Tomczak, Lewis, and Pisier (see [1, Chapter 6]) it follows that if a symmetric convex body K in \mathbb{R}^{n} has minimal mean width, then

$$
\begin{equation*}
M(K) w(K) \leqslant c_{1} \log \left(d_{K}+1\right) \tag{2.2}
\end{equation*}
$$

where $d_{K}:=d\left(K, B_{2}^{n}\right)$ is the Banach-Mazur distance from K to B_{2}^{n} and $c_{1}>0$ is an absolute constant. If we assume that $|K|=1$, then it is easy to check that $M(K) \geqslant$ c / \sqrt{n}, and hence from (2.2) we see that $w(K) \leqslant c \sqrt{n} \log \left(d_{K}+1\right)$. Then a simple argument shows that a not necessarily symmetric convex body of volume 1 in \mathbb{R}^{n} that has minimal mean width satisfies a similar bound: $w(K) \leqslant c \sqrt{n} \log n$.

Isotropic position For every centered convex body K of volume 1 in \mathbb{R}^{n} and any $q \geqslant 1$, we define

$$
I_{q}(K)=\left(\int_{K}\|x\|_{2}^{q} d x\right)^{1 / q}
$$

We say that K is in the isotropic position if $I_{2}(K) \leqslant I_{2}(T(K))$ for every $T \in S L(n)$. This is equivalent to the existence of a constant $L_{K}>0$ such that

$$
\int_{K}\langle x, \xi\rangle^{2} d x=L_{K}^{2}
$$

for every $\xi \in S^{n-1}$. It is known that if K is centered, then

$$
\int_{K}\langle x, \xi\rangle^{2} d x \simeq\left|K \cap \xi^{\perp}\right|^{-2}
$$

for every $\xi \in S^{n-1}$. Therefore, if K is isotropic, we see that all hyperplane sections $K \cap \xi^{\perp}$ of K have volume equal (up to an absolute constant) to L_{K}^{-1}.

John and Löwner position We say that a convex body K is in John's position if the ellipsoid of maximal volume inscribed in K is a multiple of the Euclidean unit ball B_{2}^{n}. We say that a convex body K is in Löwner's position if the ellipsoid of minimal volume containing K is a multiple of the Euclidean unit ball B_{2}^{n}. One can check that this holds true if and only if K° is in John's position. The volume ratio of a centered convex body K in \mathbb{R}^{n} is the quantity

$$
\operatorname{vr}(K)=\inf \left\{\left(\frac{|K|}{|\mathcal{E}|}\right)^{\frac{1}{n}}: \mathcal{E} \text { is an ellipsoid and } \mathcal{E} \subseteq K\right\}
$$

The outer volume ratio of a centered convex body K in \mathbb{R}^{n} is the quantity $\operatorname{ovr}(K)=$ $\operatorname{vr}\left(K^{\circ}\right)$. K. Ball proved in [2] that if K is in John's position, then $\operatorname{vr}(K) \leqslant \operatorname{vr}\left(C_{n}\right) \simeq \sqrt{n}$ in the symmetric case and $\operatorname{vr}(K) \leqslant \operatorname{vr}\left(\Delta_{n}\right) \simeq \sqrt{n}$ in the not necessarily symmetric case; in fact, the reverse isoperimetric inequality follows from this fact.

2.4 Surface Area and Inradius

Let K be a centered convex body in \mathbb{R}^{n}. Recall that the inradius $r(K)$ of K is the largest $r>0$ for which $r B_{2}^{n} \subseteq K$. Using the monotonicity of mixed volumes, we can write

$$
S(K)=n V_{n-1}\left(K, B_{2}^{n}\right) \leqslant n V_{n-1}\left(K, \frac{1}{r(K)} K\right) .
$$

Since the mixed volumes are homogeneous with respect to each of their arguments and $V(K, \ldots, K)=|K|$, we have the following general estimate for the surface area $S(K)$ of K.

Lemma 2.1 Let K be a convex body in \mathbb{R}^{n} with $0 \in \operatorname{int}(K)$. Then

$$
S(K) \leqslant \frac{n|K|}{r(K)}
$$

Using Lemma 2.1 we obtain upper bounds for the surface area of a body that is in isotropic, John's, or Löwner's position.

Proposition 2.2 Let K be a centered convex body of volume 1 in \mathbb{R}^{n}.
(i) If K is isotropic, then $S(K) \leqslant c n / L_{K} \leqslant c^{\prime} n$, where $c, c^{\prime}>0$ are absolute constants.
(ii) If K is in minimal surface area position or in John's position, then $S(K) \leqslant c n$, where $c>0$ is an absolute constant.
(iii) If K is symmetric and in Löwner's position, then $S(K) \leqslant c n$, where $c>0$ is an absolute constant.
(iv) If K is symmetric and in the minimal mean width position, then $S(K) \leqslant c n \log n$, where $c>0$ is an absolute constant.

Proof The inclusion $L_{K} B_{2}^{n} \subseteq K$ for an isotropic symmetric convex body K in \mathbb{R}^{n} is clear, since

$$
h_{K}(u)=\|\langle\cdot, u\rangle\|_{L^{\infty}(K)} \geqslant\|\langle\cdot, u\rangle\|_{L^{2}(K)}=L_{K}
$$

for every $u \in S^{n-1}$. This shows that $r(K) \geqslant L_{K}$ in this case. If K is centered but not necessarily symmetric, then we still have $h_{K}(u) \geqslant c L_{K}$. To see this, we use the fact that $e^{-1} \max \left\{\left|K \cap\left(t \theta+\theta^{\perp}\right)\right|: t \in \mathbb{R}\right\} \leqslant\left|K \cap \theta^{\perp}\right|$ (see [3, Chapter 2]) and then write

$$
\begin{aligned}
L_{K}^{-1} h_{K}(u) & \geqslant c_{1} h_{K}(u)\left|K \cap \theta^{\perp}\right| \geqslant c_{2} \int_{0}^{\infty}\left|K \cap\left(t \theta+\theta^{\perp}\right)\right| d t \\
& =c_{2}|\{x \in K:\langle x, \theta\rangle \geqslant 0\}| \geqslant c_{3}
\end{aligned}
$$

where $c_{3}>0$ is an absolute constant (the last inequality follows from Grünbaum's lemma; see [3, Chapter 2]). To conclude the proof of (i) we recall that $L_{K} \geqslant c$ for any convex body K in \mathbb{R}^{n}.

Assume that K is in John's position. Then using the volume ratio estimate, we see that

$$
\frac{\sqrt{n}}{r(K)} \simeq\left(\frac{|K|}{\left|r(K) B_{2}^{n}\right|}\right)^{\frac{1}{n}}=\operatorname{vr}(K) \leqslant c \sqrt{n}
$$

which implies that $r(K) \geqslant c$, and hence $S(K) \leqslant c^{-1} n$. It follows that if K is in minimal surface area position, we also have $S(K) \leqslant c^{-1} n$.

Next, assume that K is symmetric and in Löwner's position; this time we use the fact that $R(K) \leqslant \sqrt{n} r(K)$ by John's theorem, and then

$$
1=|K|^{1 / n} \leqslant\left|R(K) B_{2}^{n}\right|^{1 / n} \leqslant c R(K) / \sqrt{n} \leqslant c r(K) .
$$

Finally, if K is symmetric and in the minimal mean width position, we can use the direct estimate

$$
R\left(K^{\circ}\right) \leqslant c \sqrt{n} w\left(K^{\circ}\right)=c \sqrt{n} M(K) \leqslant c^{\prime} \log n
$$

which is a consequence of (2.2) and of the fact that $w(K) \geqslant c \sqrt{n}$ by Urysohn's inequality. This shows that $r(K)=1 / R\left(K^{\circ}\right) \geqslant c / \log n$, and (iv) follows.

Note The example of the cube C_{n} shows that the bounds (i), (ii), and (iii) of Proposition 2.2 are sharp up to an absolute constant.

3 Projections of Projection Bodies

A zonoid is the limit of Minkowski sums of line segments in the Hausdorff metric. Equivalently, a symmetric convex body Z is a zonoid if and only if its polar body is the unit ball of an n-dimensional subspace of an L_{1}-space; i.e., if there exists a positive measure μ (the supporting measure of Z) on S^{n-1} such that

$$
h_{Z}(x)=\|x\|_{Z^{\circ}}=\frac{1}{2} \int_{S^{n-1}}|\langle x, y\rangle| d \mu(y)
$$

The class of origin-symmetric zonoids coincides with the class of projection bodies. Recall that the projection body ΠK of a convex body K is the symmetric convex body
whose support function is defined by

$$
h_{\Pi K}(\xi)=\left|P_{\xi^{\perp}}(K)\right|, \quad \xi \in S^{n-1}
$$

From Cauchy's formula

$$
\left|P_{\xi^{\perp}}(K)\right|=\frac{1}{2} \int_{S^{n-1}}|\langle\xi, \theta\rangle| d \sigma_{K}(\theta)
$$

where σ_{K} is the surface area measure of K, we see that the projection body of K is a zonoid whose supporting measure is σ_{K}. Minkowski's existence theorem implies that, conversely, every origin-symmetric zonoid is the projection body of some symmetric convex body in \mathbb{R}^{n}. Moreover, if we denote by \mathcal{C}_{n} the class of origin-symmetric convex bodies and by z_{n} the class of origin-symmetric zonoids, Aleksandrov's uniqueness theorem shows that the Minkowski map $\Pi: \mathfrak{C}_{n} \rightarrow Z_{n}$, with $K \mapsto \Pi K$, is injective. Note also that Z_{n} is invariant under invertible linear transformations and closed in the Hausdorff metric.

Let K be a convex body of volume 1 in \mathbb{R}^{n}. Then the volume of ΠK and of its polar body $\Pi^{*} K$ satisfy the bounds (see [9])

$$
\begin{align*}
&\left(\frac{\partial_{K}}{n}\right)^{n} \leqslant|\Pi K| \leqslant \omega_{n}\left(\frac{\omega_{n-1} \partial_{K}}{n \omega_{n}}\right)^{n} \tag{3.1}\\
& \omega_{n}\left(\frac{n \omega_{n}}{\omega_{n-1} \partial_{K}}\right)^{n} \leqslant\left|\Pi^{*} K\right| \leqslant \frac{4^{n} n^{n}}{n!\partial_{K}^{n}} .
\end{align*}
$$

All these inequalities are sharp as one can see from the examples of the ball and the cube.

Our next lemma provides an estimate for the volume of the minimal hyperplane projection of a zonoid.

Lemma 3.1 Let Z be a zonoid in \mathbb{R}^{n}. Then

$$
\min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(Z)\right| \leqslant \frac{n b_{n}}{n-1}|Z|^{\frac{n-1}{n}} .
$$

Proof We write $Z=\Pi K$ for some convex body K. Recall the volume formula for zonoids (see e.g., [15])

$$
\begin{aligned}
|Z| & =V_{n-1}(Z, \Pi K)=V_{n-1}(K, \Pi Z)=\frac{1}{n} \int_{S^{n-1}} h_{\Pi Z}(\xi) d \sigma_{K}(\xi) \\
& =\frac{1}{n} \int_{S^{n-1}}\left|P_{\xi^{\perp}}(Z)\right| d \sigma_{K}(\xi)
\end{aligned}
$$

Therefore,

$$
|Z| \geqslant \frac{S(K)}{n} \min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(Z)\right|
$$

On the other hand, by (3.1) we have

$$
|Z|^{\frac{1}{n}}=|\Pi K|^{\frac{1}{n}} \leqslant \frac{\omega_{n-1} \partial_{K}}{n \omega_{n}^{\frac{n-1}{n}}}|K|^{\frac{n-1}{n}} \leqslant \frac{b_{n} S(K)}{n-1}
$$

where we used definition (1.2) of the constant b_{n} and the fact that $S(K) \geqslant \partial_{K}|K|^{\frac{n-1}{n}}$ by definition (1.4) of the minimal surface area parameter ∂_{K}. Then

$$
\frac{S(K)}{n} \min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(Z)\right| \leqslant|Z|^{\frac{1}{n}}|Z|^{\frac{n-1}{n}} \leqslant \frac{b_{n} S(K)}{n-1}|Z|^{\frac{n-1}{n}},
$$

and the result follows.
Since every projection of a zonoid is a zonoid, a simple induction argument leads to the following general result.

Theorem 3.2 Let Z be a zonoid in \mathbb{R}^{n}. Then for every $1 \leqslant k \leqslant n-1$, we have

$$
\min _{F \in G_{n, k}}\left|P_{F}(Z)\right| \leqslant \rho_{n, k}|Z|^{\frac{k}{n}}
$$

where $\rho_{n, k}=\frac{\omega_{k}}{\omega_{n}^{k / n}}$.
The example of the ball shows that Lemma 3.1 and Theorem 3.2 are sharp. In fact, they correspond to the known fact that Shephard's problem has a positive answer for zonoids (see [6, Corollary 9.3.4]).

4 Surface Area of Hyperplane Projections

Our generalization of (1.1) is in terms of the minimal surface area parameter ∂_{K} of K.
Proof of Theorem 1.1 The main ingredient in the proof is (1.10); we have

$$
|K| S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{2(n-1)}{n} S(K)\left|P_{\xi^{\perp}}(K)\right|
$$

for every $\xi \in S^{n-1}$. Therefore,

$$
\begin{equation*}
|K| \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{2(n-1)}{n} S(K) \min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| \tag{4.1}
\end{equation*}
$$

Next, we observe that

$$
\min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(K)\right|=\min _{\xi \in S^{n-1}} h_{\Pi K}(\xi)=r(\Pi K) .
$$

Since, by (3.1),

$$
|\Pi K|^{\frac{1}{n}} \leqslant \frac{\omega_{n-1} \partial_{K}}{n \omega_{n}^{\frac{n-1}{n}}}|K|^{\frac{n-1}{n}}
$$

we get

$$
\begin{equation*}
r(\Pi K) \leqslant \operatorname{vrad}(\Pi К) \leqslant \frac{\omega_{n-1} \partial_{K}}{n \omega_{n}}|K|^{\frac{n-1}{n}} \tag{4.2}
\end{equation*}
$$

Going back to (4.1), we see that

$$
|K| \min _{\xi \in S^{n-1}} S\left(P_{\xi^{ \pm}}(K)\right) \leqslant \frac{2(n-1) \omega_{n-1} \partial_{K}}{n^{2} \omega_{n}} S(K)|K|^{\frac{n-1}{n}},
$$

and this proves (1.5).
Question 4.1 It would be interesting to decide whether there exist convex bodies K such that

$$
|K|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \geqslant c \sqrt{n} S(K) .
$$

This would show that Theorem 1.1 is asymptotically sharp. Note that in the case of the Euclidean ball, one has

$$
\left|B_{2}^{n}\right|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}\left(B_{2}^{n}\right)\right) \geqslant c S\left(B_{2}^{n}\right)
$$

We can prove an inequality which is reverse to (1.5) for any convex body K that is in the minimal surface area position, using the following fact (see [7, Theorem 1.2]): for any convex body K in \mathbb{R}^{n} and any $\xi \in S^{n-1}$, one has

$$
\frac{V_{n-2}(K)}{2 V_{n-1}(K)} \leqslant \frac{V_{n-2}\left(P_{\xi^{\perp}}(K)\right)}{\left|P_{\xi^{\perp}}(K)\right|}
$$

Proof of Theorem 1.2 Note that

$$
V_{n-2}(K)=\omega_{n}\left[Q_{n-2}(K)\right]^{n-2} \geqslant \omega_{n}\left[Q_{n-1}(K)\right]^{n-2}=\omega_{n}^{\frac{1}{n-1}}\left[V_{n-1}(K)\right]^{\frac{n-2}{n-1}}
$$

while

$$
n V_{n-1}(K)=S(K), \quad(n-1) V_{n-2}\left(P_{\xi^{\perp}}(K)\right)=S\left(P_{\xi^{\perp}}(K)\right)
$$

and if K is in the minimal surface area position by (2.1), we also have

$$
\left|P_{\xi^{\perp}}(K)\right|=\frac{1}{2} \int_{S^{n-1}}|\langle u, \xi\rangle| d \sigma_{K}(u) \geqslant \frac{1}{2} \int_{S^{n-1}}\langle u, \xi\rangle^{2} d \sigma_{K}(u)=\frac{S(K)}{2 n}=\frac{V_{n-1}(K)}{2} .
$$

Combining the above we get

$$
S\left(P_{\xi^{\perp}}(K)\right) \geqslant \frac{(n-1) \omega_{n}^{\frac{1}{n-1}}}{4}\left[V_{n-1}(K)\right]^{\frac{n-2}{n-1}}
$$

Therefore, we have

$$
\begin{aligned}
|K|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) & \geqslant \frac{(n-1) \omega_{n}^{\frac{1}{n-1}}}{4}\left[V_{n-1}(K)\right]^{\frac{n-2}{n-1}}|K|^{\frac{1}{n}} \\
& =\frac{(n-1) \omega_{n}^{\frac{1}{n-1}}}{4 n^{\frac{n-2}{n-1}}}[S(K)]^{\frac{n-2}{n-1}}|K|^{\frac{1}{n}}
\end{aligned}
$$

Since $S(K)=\partial_{K}|K|^{\frac{n-1}{n}}$, we get

$$
|K|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) \geqslant \frac{(n-1) \omega_{n}^{\frac{1}{n-1}}}{4 n^{\frac{n-2}{n-1}} \partial_{K}^{\frac{1}{n-1}}} S(K) .
$$

This proves Theorem 1.2.

Remark 4.2 Theorem 1.2 is sharp. In [12] it was proved that there exists an unconditional convex body K_{0} of volume 1 in \mathbb{R}^{n} which has minimal surface area and satisfies

$$
\min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}\left(K_{0}\right)\right| \leqslant \frac{c_{1}}{\sqrt{n}}
$$

where $c_{1}>0$ is an absolute constant. From (4.1) we see that

$$
\left|K_{0}\right| \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}\left(K_{0}\right)\right) \leqslant \frac{2(n-1)}{n} S\left(K_{0}\right) \min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}\left(K_{0}\right)\right| \leqslant \frac{2 c_{1}}{\sqrt{n}} S\left(K_{0}\right)
$$

and since $\left|K_{0}\right|=1$ we get the following proposition.
Proposition 4.3 There exists an unconditional convex body K_{0} in \mathbb{R}^{n} that has minimal surface area and satisfies

$$
\left|K_{0}\right|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}\left(K_{0}\right)\right) \leqslant \frac{c}{\sqrt{n}} S\left(K_{0}\right)
$$

where $c>0$ is an absolute constant.
Next, assume that $K=Z$ is a zonoid. Repeating the proof of Theorem 1.1 but using Lemma 3.1 in order to estimate $r(\Pi Z)$, we obtain an alternative proof of (1.1) (with a weaker, by a factor of 2 , constant).

Proof of Theorem 1.3 We have

$$
|Z| \min _{\xi \in S^{n-1}} S\left(P_{\xi^{\perp}}(Z)\right) \leqslant \frac{2(n-1)}{n} S(Z) \min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(Z)\right| \leqslant \frac{2(n-1)}{n} \frac{n b_{n}}{n-1} S(Z)|Z|^{\frac{n-1}{n}}
$$

by Lemma 3.1. Dividing by $|Z|^{\frac{n-1}{n}}$, we get the result.
Question 4.4 It would be interesting to decide whether in the case of zonoids one has

$$
|Z| S\left(P_{\xi^{\perp}}(Z)\right) \leqslant \frac{(n-1)}{n} S(Z)\left|P_{\xi^{\perp}}(Z)\right|
$$

for every $\xi \in S^{n-1}$. This improvement of (1.10) (for the class of zonoids) would give a sharp version of Theorem 1.3.

Next, we pass to estimates for the average surface area of hyperplane projections of K.

Proof of Theorem 1.4 From (1.10) we have

$$
|K| S\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{2(n-1)}{n} S(K)\left|P_{\xi^{\perp}}(K)\right|
$$

for every $\xi \in S^{n-1}$. Integrating on S^{n-1} and using the identity

$$
S(K)=\frac{n \omega_{n}}{\omega_{n-1}} \int_{S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| d \sigma(\xi)
$$

we get

$$
\begin{aligned}
|K| \int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) & \leqslant \frac{2(n-1)}{n} S(K) \int_{S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| d \sigma(\xi) \\
& =\frac{2(n-1)}{n} \frac{\omega_{n-1}}{n \omega_{n}} S(K)^{2} .
\end{aligned}
$$

Since

$$
\frac{2(n-1)}{n} \frac{\omega_{n-1}}{n \omega_{n}}=\frac{2 b_{n}}{n \omega_{n}^{\frac{1}{n}}} \simeq \frac{1}{\sqrt{n}}
$$

we get the result.
Now, let us assume that K is in the minimal surface area, isotropic, or John's position, or is symmetric and in Löwner's position. Then from Proposition 2.2 we know that $S(K) \leqslant c_{0} n|K|^{\frac{n-1}{n}}$, where $c_{0}>0$ is an absolute constant. From Theorem 1.4 we get the following theorem.

Theorem 4.5 Let K be a convex body in \mathbb{R}^{n}. If K is in the minimal surface area, isotropic, or John's position, or is symmetric and in Löwner's position, then

$$
|K|^{\frac{1}{n}} \int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \leqslant c_{2} \sqrt{n} S(K)
$$

where $c_{2}>0$ is an absolute constant.
Note If K is symmetric and in the minimal mean width position, using Proposition 2.2 again, we get a weaker (by a $\log n$ term) result

$$
|K|^{\frac{1}{n}} \int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \leqslant c_{2} \sqrt{n}(\log n) S(K)
$$

where $c_{2}>0$ is an absolute constant.
We pass now to lower bounds. Our analogue of (1.3) is Theorem 1.5
Proof of Theorem 1.5 We write

$$
\begin{aligned}
\int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) & =\frac{(n-1) \omega_{n-1}}{\omega_{n-2}} \int_{S^{n-1}} \int_{S^{n-1} \cap \xi^{\perp}}\left|P_{\langle\xi, \theta\rangle^{\perp}}(K)\right| d \sigma_{\xi^{\perp}}(\theta) d \sigma(\xi) \\
& =\frac{(n-1) \omega_{n-1}}{\omega_{n-2}} \int_{G_{n, n-2}}\left|P_{F}(K)\right| d v_{n, n-2}(F)
\end{aligned}
$$

From the Aleksandrov inequalities it follows that

$$
\begin{aligned}
\left(\frac{1}{\omega_{n-2}} \int_{G_{n, n-2}}\left|P_{F}(K)\right| d v_{n, n-2}(F)\right)^{\frac{1}{n-2}} & \geqslant\left(\frac{1}{\omega_{n-1}} \int_{S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| d \sigma(\xi)\right)^{\frac{1}{n-1}} \\
& =\left(\frac{S(K)}{n \omega_{n}}\right)^{\frac{1}{n-1}}
\end{aligned}
$$

which gives

$$
\int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \geqslant \frac{(n-1) \omega_{n-1}}{\left(n \omega_{n}\right)^{\frac{n-2}{n-1}}} S(K)^{\frac{n-2}{n-1}} \geqslant c_{3} S(K)^{\frac{n-2}{n-1}}
$$

where $c_{3}>0$ is an absolute constant.
Now, let us assume that K is in the minimal surface area, minimal mean width, isotropic, John or Löwner position. Then from Proposition 2.2 (or from simple estimates in the cases of a not necessarily convex body K that are not covered there), we know that, e.g., $S(K) \leqslant c_{0} n^{2}|K|^{\frac{n-1}{n}}$, where $c_{0}>0$ is an absolute constant. It follows that

$$
S(K)^{\frac{1}{n-1}} \leqslant\left(c_{0} n^{2}\right)^{\frac{1}{n-2}}|K|^{\frac{1}{n}} \leqslant c_{4}|K|^{\frac{1}{n}}
$$

where $c_{4}>0$ is an absolute constant. Then $|K|^{\frac{1}{n}} S(K)^{\frac{n-2}{n-1}} \geqslant c_{4}^{-1} S(K)$. Thus, we have proved the following theorem.

Theorem 4.6 Let K be a convex body in \mathbb{R}^{n}. If K is in the minimal surface area, minimal mean width, isotropic, John's or Löwner's position, then

$$
\begin{equation*}
|K|^{\frac{1}{n}} \int_{S^{n-1}} S\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \geqslant c_{5} S(K) \tag{4.3}
\end{equation*}
$$

where $c_{5}>0$ is an absolute constant.
Note The proof of Theorem 4.6 shows that (4.3) continues to hold as long as the mild condition $S(K)^{\frac{1}{n-1}} \leqslant c|K|^{\frac{1}{n}}$ is satisfied by K with an absolute constant $c>0$.

5 Quermassintegrals of Hyperplane Projections

A generalization of (1.10) to subspaces of arbitrary dimension and quermassintegrals of any order was given in [5].

Theorem 5.1 Let K be a convex body in \mathbb{R}^{n} and let $0 \leqslant p \leqslant k \leqslant n$. Then for every k-dimensional subspace F of \mathbb{R}^{n}, if $P_{F}(K)$ denotes the orthogonal projection of K onto F, we have

$$
\frac{V_{n-p}(K)}{|K|} \geqslant \frac{1}{\binom{n-k+p}{n-k}} \frac{V_{k-p}\left(P_{F}(K)\right)}{\left|P_{F}(K)\right|}
$$

Setting $k=n-1$, for every $1 \leqslant p \leqslant n-2$ we have

$$
\begin{equation*}
\frac{V_{n-p}(K)}{|K|} \geqslant \frac{1}{p+1} \frac{V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right)}{\left|P_{\xi^{\perp}}(K)\right|} \tag{5.1}
\end{equation*}
$$

Therefore,

$$
|K| \min _{\xi \in S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) \leqslant(p+1) V_{n-p}(K) \min _{\xi \in S^{n-1}}\left|P_{\xi^{\perp}}(K)\right|,
$$

and using (4.2) and Lemma 3.1 we immediately get the following theorem.

Theorem 5.2 Let K be a convex body in \mathbb{R}^{n}. For every $1 \leqslant p \leqslant n-2$, we have

$$
|K|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) \leqslant \frac{(p+1) \omega_{n-1} \partial_{K}}{n \omega_{n}} V_{n-p}(K) \leqslant \frac{c_{1}(p+1) \partial_{K}}{\sqrt{n}} V_{n-p}(K)
$$

where $c_{1}>0$ is an absolute constant. If Z is a zonoid in \mathbb{R}^{n}, then, for every $1 \leqslant p \leqslant n-2$, we have

$$
|Z|^{\frac{1}{n}} \min _{\xi \in S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(Z)\right) \leqslant(p+1) \frac{n b_{n}}{n-1} V_{n-p}(Z)
$$

Starting from (5.1) and integrating on the sphere, we get

$$
\begin{aligned}
|K| \int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) & \leqslant(p+1) V_{n-p}(K) \int_{S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| d \sigma(\xi) \\
& =\frac{(p+1) \omega_{n-1}}{n \omega_{n}} V_{n-p}(K) S(K) .
\end{aligned}
$$

Dividing by $|K|^{\frac{n-1}{n}}$ we get the following theorem.
Theorem 5.3 Let K be a convex body in \mathbb{R}^{n}. For every $1 \leqslant p \leqslant n-2$, we have

$$
|K|^{\frac{1}{n}} \int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \leqslant \frac{(p+1) \omega_{n-1}}{n \omega_{n}} \frac{S(K)}{|K|^{\frac{n-1}{n}}} V_{n-p}(K) .
$$

In particular, if K is in the minimal surface area, isotropic or John's position, or is symmetric and in Löwner's position, then we have

$$
|K|^{\frac{1}{n}} \int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \leqslant c_{1}(p+1) \sqrt{n} V_{n-p}(K),
$$

where $c_{1}>0$ is an absolute constant.
For the lower bound, an analogue of Theorem 1.5, we first observe that

$$
V_{n-p}(K)=\omega_{n}\left[Q_{n-p}(K)\right]^{n-p} \text { and } V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right)=\omega_{n-1}\left[Q_{n-1-p}\left(P_{\xi^{\perp}}(K)\right)\right]^{n-1-p}
$$

for every $\xi \in S^{n-1}$. Then we write

$$
\begin{aligned}
\int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) & =\frac{\omega_{n-1}}{\omega_{n-1-p}} \int_{S^{n-1}} \int_{G_{\xi^{\perp}}(n-1, n-1-p)}\left|P_{E}(K)\right| d(E) d \sigma(\xi) \\
& =\frac{\omega_{n-1}}{\omega_{n-1-p}} \int_{G_{n, n-1-p}}\left|P_{F}(K)\right| d v_{n, n-1-p}(F) \\
& =\omega_{n-1}\left[Q_{n-1-p}(K)\right]^{n-1-p} .
\end{aligned}
$$

From the Aleksandrov inequalities, we have $Q_{n-1-p}(K) \geqslant Q_{n-p}(K)$, and hence

$$
\int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \geqslant \omega_{n-1}\left[Q_{n-p}(K)\right]^{n-1-p}=\omega_{n-1}\left(\frac{V_{n-p}(K)}{\omega_{n}}\right)^{\frac{n-1-p}{n-p}},
$$

which gives the next theorem.

Theorem 5.4 Let K be a convex body in \mathbb{R}^{n}. For every $1 \leqslant p \leqslant n-2$, we have

$$
\int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \geqslant \frac{\omega_{n-1}}{\omega_{n}^{\frac{n-1-p}{n-p}}}\left[V_{n-p}(K)\right]^{\frac{n-1-p}{n-p}}
$$

Using the monotonicity of mixed volumes we can write

$$
\begin{equation*}
V_{n-p}(K) \leqslant V_{n-p}\left((K, n-p),\left(r(K)^{-1} K, p\right)\right) \leqslant \frac{|K|}{r(K)^{p}} \tag{5.2}
\end{equation*}
$$

Now, let us assume that K is in the minimal surface area, isotropic, or John's position, or is symmetric and in Löwner's position. Then $r(K) \geqslant c_{0}|K|^{\frac{1}{n}}$ for an absolute constant $c_{0}>0$, and (5.2) gives $|K|^{\frac{n-p}{n}} \geqslant c_{0}^{p} V_{n-p}(K)$. Therefore,

$$
|K|^{\frac{1}{n}}\left[V_{n-p}(K)\right]^{\frac{n-1-p}{n-p}} \geqslant c_{0}^{\frac{p}{n-p}}\left[V_{n-p}(K)\right]^{\frac{1}{n-p}}\left[V_{n-p}(K)\right]^{\frac{n-1-p}{n-p}}=c_{0}^{\frac{p}{n-p}} V_{n-p}(K)
$$

From Theorem 5.4 we get the following theorem.
Theorem 5.5 Let K be a convex body in \mathbb{R}^{n}, which is in the minimal surface area, isotropic or John's position, or is symmetric and in Löwner's position. For every $1 \leqslant p \leqslant$ $n-2$, we have

$$
|K|^{\frac{1}{n}} \int_{S^{n-1}} V_{n-1-p}\left(P_{\xi^{\perp}}(K)\right) d \sigma(\xi) \geqslant \frac{\omega_{n-1} c_{0}^{\frac{p}{n-p}}}{\omega_{n}^{\frac{n-1-p}{n-p}}} V_{n-p}(K) \geqslant\left(\frac{c_{1}}{n}\right)^{\frac{p}{2(n-p)}} V_{n-p}(K)
$$

where $c_{1}>0$ is an absolute constant.
Note that $\left(\frac{c_{1}}{n}\right)^{\frac{p}{2(n-p)}} \geqslant c_{2}$ for an absolute constant $c_{2}>0$ as long as $p \leqslant c n /(\log n)$.

6 Surface Area of Projections of Higher Codimension

Recall that $m V_{m-1}(A)=S(A)$ for every convex body A in \mathbb{R}^{m}. Therefore, setting $p=1$ in Theorem 5.1, we get the following lemma.

Lemma 6.1 Let K be a convex body in \mathbb{R}^{n} and let $1 \leqslant k \leqslant n-1$. Then for every k-dimensional subspace F of \mathbb{R}^{n}, we have

$$
\begin{equation*}
\frac{S(K)}{|K|} \geqslant \frac{n}{k(n-k+1)} \frac{S\left(P_{F}(K)\right)}{\left|P_{F}(K)\right|} \tag{6.1}
\end{equation*}
$$

We first prove an analogue of Theorem 1.3.
Theorem 6.2 Let Z be a zonoid in \mathbb{R}^{n} and let $1 \leqslant k \leqslant n-1$. Then

$$
|Z|^{\frac{n-k}{n}} \min _{F \in G_{n, k}} S\left(P_{F}(Z)\right) \leqslant \frac{k(n-k+1)}{n} \rho_{n, k} S(Z)
$$

where $\rho_{n, k}$ is the constant in Theorem 3.2.

Proof From (6.1) we see that

$$
\begin{aligned}
|Z| \min _{F \in G_{n, k}} S\left(P_{F}(Z)\right) & \leqslant \frac{k(n-k+1)}{n} S(Z) \min _{F \in G_{n, k}}\left|P_{F}(Z)\right| \\
& \leqslant \frac{k(n-k+1)}{n} \rho_{n, k} S(Z)|Z|^{\frac{k}{n}},
\end{aligned}
$$

where in the last step we have also used Theorem 3.2. Dividing by $|Z|^{\frac{k}{n}}$, we get the result.

Definition 6.3 For every convex body K in \mathbb{R}^{n} and every $1 \leqslant k \leqslant n-1$, we introduce the parameter

$$
p_{k}(K):=\frac{1}{|K|^{\frac{k}{n}}} \int_{G_{n, k}}\left|P_{F}(K)\right| d v_{n, k}(F)
$$

Using Lemma 6.1 and applying the same argument as in the proof of Theorem 1.4, we get the following theorem.

Theorem 6.4 Let K be a convex body in \mathbb{R}^{n} and let $1 \leqslant k \leqslant n-1$. Then

$$
|K|^{\frac{n-k}{n}} \int_{G_{n, k}} S\left(P_{E}(K)\right) d v_{n, k}(E) \leqslant \frac{k(n-k+1)}{n} S(K) p_{k}(K) .
$$

Proof From Lemma 6.1, we have

$$
|K| S\left(P_{F}(K)\right) \leqslant \frac{k(n-k+1)}{n} S(K)\left|P_{F}(K)\right|
$$

for every $F \in G_{n, k}$. Integrating with respect to $v_{n, k}$ on $G_{n, k}$, we get

$$
|K| \int_{G_{n, k}} S\left(P_{F}(K)\right) d v_{n, k}(F) \leqslant \frac{k(n-k+1)}{n} S(K) \int_{G_{n, k}}\left|P_{F}(K)\right| d v_{n, k}(F)
$$

and the result follows.
Remark 6.5 Let us assume that K is in the minimal surface area, isotropic or John's position, or is symmetric and in Löwner's position. From (5.2) and the fact that $r(K) \geqslant$ $c_{0}|K|^{\frac{1}{n}}$, we get

$$
p_{k}(K)=\frac{1}{|K|^{\frac{k}{n}}} \frac{\omega_{k}}{\omega_{n}} V_{k}(K) \leqslant \frac{1}{|K|^{\frac{k}{n}}} \frac{\omega_{k}}{\omega_{n}} \frac{|K|}{c_{0}^{n-k}|K|^{\frac{n-k}{n}}}=\frac{\omega_{k}}{\omega_{n} c_{0}^{n-k}} .
$$

Then Theorem 6.4 gives the following analogue of Theorem 4.5.
Theorem 6.6 Let K be a convex body in \mathbb{R}^{n}. If K is in the minimal surface area, isotropic, or John's position, or is symmetric and in Löwner's position, then

$$
|K|^{\frac{n-k}{n}} \int_{G_{n, k}} S\left(P_{F}(K)\right) d v_{n, k}(F) \leqslant \frac{k(n-k+1)}{n} \frac{\omega_{k}}{\omega_{n} c_{0}^{n-k}} S(K)
$$

where $c_{0}>0$ is an absolute constant.

The lower bound of Theorem 1.5 can be generalized as follows.

Theorem 6.7 Let K be a convex body in \mathbb{R}^{n}. For every $1 \leqslant k \leqslant n-1$, we have

$$
\int_{G_{n, k}} S\left(P_{F}(K)\right) d v_{n, k}(F) \geqslant \frac{k \omega_{k}}{\left(n \omega_{n}\right)^{\frac{k-1}{n-1}}} S(K)^{\frac{k-1}{n-1}}
$$

Proof We write

$$
\begin{aligned}
\int_{G_{n, k}} S\left(P_{F}(K)\right) d v_{n, k}(F) & =\frac{k \omega_{k}}{\omega_{k-1}} \int_{G_{n, k}} \int_{E \cap \xi^{\perp}}\left|P_{F \cap \xi^{\perp}}(K)\right| d \sigma_{F}(\xi) d v_{n, k}(F) \\
& =\frac{k \omega_{k}}{\omega_{k-1}} \int_{G_{n, k-1}}\left|P_{E}(K)\right| d v_{n, k-1}(E) .
\end{aligned}
$$

From the Aleksandrov inequalities, we have

$$
\begin{aligned}
\left(\frac{1}{\omega_{k-1}} \int_{G_{n, k-1}}\left|P_{E}(K)\right| d v_{n, k-1}(E)\right)^{\frac{1}{k-1}} & \geqslant\left(\frac{1}{\omega_{n-1}} \int_{S^{n-1}}\left|P_{\xi^{\perp}}(K)\right| d \sigma(\xi)\right)^{\frac{1}{n-1}} \\
& =\left(\frac{S(K)}{n \omega_{n}}\right)^{\frac{1}{n-1}},
\end{aligned}
$$

which gives

$$
\int_{G_{n, k}} S\left(P_{F}(K)\right) d v_{n, k}(F) \geqslant \frac{k \omega_{k}}{\left(n \omega_{n}\right)^{\frac{k-1}{n-1}}} S(K)^{\frac{k-1}{n-1}}
$$

as claimed.

Now, let us assume that K is in the minimal surface area, isotropic, or John's position, or is symmetric and in Löwner's position. Then from Proposition 2.2 we know that $S(K) \leqslant c_{0} n|K|^{\frac{n-1}{n}}$, where $c_{0}>0$ is an absolute constant. Therefore,

$$
|K|^{\frac{n-k}{n}} S(K)^{\frac{k-1}{n-1}} \geqslant \frac{1}{\left(c_{0} n\right)^{\frac{n-k}{n-1}}} S(K)^{\frac{n-k}{n-1}} S(K)^{\frac{k-1}{n-1}}=\frac{1}{\left(c_{0} n\right)^{\frac{n-k}{n-1}}} S(K),
$$

and Theorem 6.7 implies the following theorem.
Theorem 6.8 Let K be a convex body in \mathbb{R}^{n}. If K is in the minimal surface area, isotropic, or John's position, or is symmetric and in Löwner's position, then

$$
|K|^{\frac{n-k}{n}} \int_{G_{n, k}} S\left(P_{F}(K)\right) d v_{n, k}(F) \geqslant \frac{k \omega_{k}}{\left(n \omega_{n}\right)^{\frac{k-1}{n-1}}\left(c_{0} n\right)^{\frac{n-k}{n-1}}} S(K)
$$

where $c_{0}>0$ is an absolute constant.

Acknowledgment We would like to thank the referee for valuable comments and suggestions.

References

[1] S. Artstein-Avidan, A. Giannopoulos, and V. D. Milman, Asymptotic geometric analysis. Vol. I. Mathematical Surveys and Monographs, 202, American Mathematical Society, Providence, RI, 2015. http://dx.doi.org/10.1090/surv/202
[2] K. M. Ball, Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. (2) 44(1991), no. 2, 351-359. http://dx.doi.org/10.1112/jlms/s2-44.2.351
[3] S. Brazitikos, A. Giannopoulos, P. Valettas, and B.-H. Vritsiou, Geometry of isotropic convex bodies. Mathematical Surveys and Monographs, 196, American Mathematical Society, Providence, RI, 2014. http://dx.doi.org/10.1090/surv/196
[4] Y. D. Burago and V. A. Zalgaller, Geometric inequalities. Springer Series in Soviet Mathematics, Springer-Verlag, Berlin-New York, 1988. http://dx.doi.org/10.1007/978-3-662-07441-1
[5] M. Fradelizi, A. Giannopoulos, and M. Meyer, Some inequalities about mixed volumes. Israel J. Math. 135(2003), 157-179. http://dx.doi.org/10.1007/BF02776055
[6] R. J. Gardner, Geometric tomography. Second Ed., Encyclopedia of Mathematics and its Applications, 58, Cambridge University Press, Cambridge, 2006. http://dx.doi.org/10.1017/CBO9781107341029
[7] A. Giannopoulos, M. Hartzoulaki, and G. Paouris, On a local version of the Aleksandrov-Fenchel inequality for the quermassintegrals of a convex body. Proc. Amer. Math. Soc. 130(2002), no. 8, 2403-2412. http://dx.doi.org/10.1090/S0002-9939-02-06329-3
[8] A. Giannopoulos and V. D. Milman, Extremal problems and isotropic positions of convex bodies. Israel J. Math. 117(2000), 29-60. http://dx.doi.org/10.1007/BF02773562
[9] A. Giannopoulos and M. Papadimitrakis, Isotropic surface area measures. Mathematika 46(1999), 1-13. http://dx.doi.org/10.1112/S0025579300007518
[10] A. Koldobsky, Stability and separation in volume comparison problems. Math. Model. Nat. Phenom. 8(2013), 156-169. http://dx.doi.org/10.1051/mmnp/20138111
[11] , Stability inequalities for projections of convex bodies. Discrete Comput. Geom. 57(2017), 152-163. http://dx.doi.org/10.1007/s00454-016-9844-9
[12] E. Markessinis, G. Paouris, and Ch. Saroglou, Comparing the M-position with some classical positions of convex bodies. Math. Proc. Cambridge Philos. Soc. 152(2012), 131-152. http://dx.doi.org/10.1017/S0305004111000703
[13] C. M. Petty, Surface area of a convex body under affine transformations. Proc. Amer. Math. Soc. 12(1961), 824-828. http://dx.doi.org/10.1090/S0002-9939-1961-0130618-0
[14] R. Schneider, Convex bodies: The Brunn-Minkowski theory. Second expanded ed., Encyclopedia of Mathematics and its Applications, 151, Cambridge University Press, Cambridge, 2014.
[15] R. Schneider and W. Weil, Zonoids and selected topics. In: Convexity and its Applications, Birkhauser, Boston, Mass., 1983.

Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis 157-84, Athens, Greece
e-mail: apgiannop@math.uoa.gr
Department of Mathematics, University of Missouri, Columbia, MO, USA
e-mail: koldobskiya@missouri.edu valettasp@missouri.edu

[^0]: Received by the editors July 27, 2016; revised January 4, 2017.
 Published electronically March 27, 2017.
 Author A. K. was partially supported by the US National Science Foundation grant DMS-1265155. Author P. V. was partially supported by the US National Science Foundation grant DMS-1612936

 AMS subject classification: 52A20, 46B05.
 Keywords: surface area, convex body, projection.

