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ON TRACES OF SEPARABLE SIMPLE SUBALGEBRAS
IN MATRIX RINGS

Dedicated to Professor Kazuo Kishimoto on his 60th birthday

TAKASI NAGAHARA AND SEIYA YOKOTA

ABSTRACT. For the trace map on an irreducible semigroup of n X n matrices over
afield, I. N. Herstein presented a theorem in [3] which enables us to limit the nature of
matrix groups of a certain kind. However, this is incorrect in general. For the theorem, we
shall present a counter example, a revision, and some generalizations to non-irreducible
semigroups.

Throughout this note, F will mean a commutative field, F” an F-module which is
a direct sum of n-copies of F, and F,, the ring of n X n matrices over F where n is any
positive integer. We identify F,, with Homy(F", F'™). For an F-subalgebra R of F,, F'"™
is said to be irreducible over R if F is an irreducible R-module, that is, F" = vR for all
v #0 € F"_ By x(F), we denote the characteristic of F. For any a € F,, tr, /r(a) denotes
the trace of a as a matrix. For a (multiplicative) sub-semigroup S of F,, FS denotes the
F-subalgebra of F,, generated by S over F, that is, F'S = Y5 F's. Moreover, for a simple
ring T and its a subset E, we denote by r(T) (resp. by |E| (resp. by V(E),)) the rank of
T over its center (resp. the cardinality of E (resp. the set of elements @ in T such that
ax = xa for all x € E)).

In [3], I. N. Herstein presented the following theorem.

THEOREM A [3, THEOREM 2.3.3]. Let S be a sub-semigroup of F, such that F'™ is
irreducible over FS, and K = {t, /¢(s) ; s € S}. Then |S| < K|

He proved this theorem only in the case where F is algebraically closed. The proof
is somewhat simpler than that of I. Kaplansky [7, p. 19, Theorem B]. However, in the
other cases, this does not hold in general. In this note, we shall first present a counter
example, and next, we shall prove that in Theorem A, the inequality |S| < |K|”2 holds if
and only if FS is a separable F-algebra such that r(V[-‘”(FS)) is not a multiple of x(F),
and whence this theorem holds, provided that x(F) = 0 (Corollary 6 and Theorem 8).
Moreover, this result will be generalized to a sub-semigroup S of F, such that FS is a
simple F-subalgebra of F, containing F (Theorems 4, 5 and 7).
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EXAMPLE 1. Let E be a field which is a purely inseparable simple extension of F of
rank n = p™ > 1 where x(F) = p > 0. Let « be a generating element of E over F. Now,
we consider a regular representation ¢ of E into F,, = Homg(F", F”) with respect to
the F-basis {1, a,...,o" '} of E. Then S = {¢p(a)™ ; m = 1,2,...} is a sub-semigroup
of F, with |S| > n > 1. Clearly FS = ¢(E) which is an F-algebra isomorphic to E.
Hence, for any v # 0 € F, v(FS) is an F-submodule of F" of rank n, which implies
v(FS) = F™. Therefore F' is irreducible over FS. We set (a;) = ¢(a) € F,. Then,
since " € F, we have a;, = ", a;;_; = 1 for i = 2,...,n, and the other g;’s are
zero. Hence tF”/F(cp(a)”’) =0form =1,2,..., thatis, ty /r(s) = O for all s € S.
Therefore Theorem A does not hold. Next, we consider the algebraic closure £ of F and
p(E) = FS C F, C F,. Clearly FS is acommutative F-subalgebra of F,. Hence FS # F,.
This implies that F™ is not irreducible over F'S. For example, if F = GF(2)(x) (the ring of
rational functions of an indeterminate x over GF(2) = {0, 1}) then, for & = (a;j) € F, with
aj =axp =0,a; =1anda; =x, thesetS={o™ ;m=1,2,...}is a sub-semigroup of
F, such that FS is a subfield of F, which is a purely inseparable simple extension of F'
of rank 2. Hence F*? is irreducible over FS and |S| = 00 > 1 = |{t, /¢(s) ; s € S}|*.

Notations and Terminologies. In what follows, we shall use the following conven-
tions: For a ring A and a right A-module M,
I(M,) = the length of composition series of right A-module M when M has such
composition series,
[M: Al =I(M,) when A is a field,
I(A) = I(A4) when [(A,) is defined,
A, = the ring of m X m matrices over A where m is any positive integer. For
integers r, s,,
r| s (resp. r / s) means that r is (resp. is not) a divisor of s.
For a subset B of A and a map f: A — C where C'is a set,
f|B = the restriction of f to B.
Now, let C be acommutative ring with the identity 1, A a C-algebra with identity which
is finitely generated and projective over C. Then, there is a C-dual basis {xi,...,x} C
A5 {fi,....fi} C Home(A,C) such that 3, xfi(x) = x for all x € A (cf. [2, p. 4]).
Define T4 ¢ € Homc(A, C) by

Ta/clx) = Zlfi(xxi), X €A.

If {y1,...,»}isasystem of generators for A over Candx; = ¥/, yicu (k= 1,...,5, ¢y €
C) then for gj = 35, ciufi, Ty ¥i8/(¥) = x and T, gj(xy;) = 2, filxx;) for all
x € A. For an other C-dual basis {y;,...,y} C A ; {h,...,h} C Homc(4, C), we
have iy = ¥ (yj)g; (1 < k < 1) and Y_ hilxyi) = chzl( - hk(Yj)gj)(xyk) =
Y g,-(x‘[,;(:, hk(yj)yk) = ¥, (xy)). This shows that T, is independent of the
choice of a dual basis for A. We call T4/¢ the trace from A to C. For any element
a € Ap, we denote by t; s4(cr) the sum of diagonal elements of c, and we write

https://doi.org/10.4153/CMB-1995-014-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1995-014-3

106 T. NAGAHARA AND S. YOKOTA

ta,/cla@) = TA/C(tAm/A(a)). Clearly t4 c(a) = Ty c(e) (for m = 1). The bilinear
map Ay, X Ap — C defined by (x,y) — ty c(xy) will be called non-degenerate if
ta,, /c(AmX) # {0} and ta,,/c(xAm) # {0} for all x # 0 € A,,. Further, A will be called
separable over C if the left and right A-A-homomorphism A ®c A — A (x ® y > xy)
splits. For a simple algebra R over a field F, R is separable over F if and only if R is a
finitely generated F-module and the center of R is separable over F in the usual sense of
field theory (cf. [2, p. 40 and p. 55, Theorem 2.3.8]).

REMARK 1. As in the preceding remarks, let A be a commutative C-algebra which is
finitely generated and projective over C. Then, by [2, Theorem 3.2.1 and Corollary 3.2.2],
Ais separable over Cif and only if the bilinear map T4 /c(xy) (x, y € A) is non-degenerate.
Hence, as is well known, for a field extension E/F, E is separable over F if and only if
Te/r # 0. Next, we refer to non-commutative separable algebras. Let F be a field with
X(F) = 2. Then F; is a separable F-algebra, and th/F(xy) (x,y € F») is non-degenerate.
However, TFZ/F(xy) (x,y € F3) is not non-degenerate. Indeed, if d| = ey, d2 = ez,
d3 = ey, ds = ey are the matrix units of F; then {d; ; 1 <i < 4} is an F-basis for F,
and the 4 X 4 matrix (T’.‘:/F(d,’d/‘)) is zero, as claimed, cf. [5, Theorem 5.3.2]. Thus, the
assertion is holds. Hence, given a non-commutative separable C-algebra A, it doesn’t
always follow that T /c(xy) (x,y € A) is non-degenerate.

Now, we shall start our study with the following

LEMMA 1. Let D be a division F-algebra of finite rank, and m a positive integer.
Then, the following conditions are equivalent.
(a) Dy, is separable over F and x(F) ,{' r(D).
(b) tD,,,/F # 0.
(c) The bilinear map
Dy X Dy — F5 (x,y) = tp, /p(xy)

is non-degenerate.

PROOF. Let Bbe the center of D, and M a maximal subfield. Then D®@gM = M, where
q =+/ID : Bl = \/r(D) (cf. [3, p. 96, Corollary]). Let {e;; ; 1 <i,j < g} be the system
of matrix units of My, and set dy—1; = e; (1 <i,j <gq). Then {d; ; | <k <g’}isa
free B-basis for M. If e,,dyi—1)4j = dgi—1)+j then ee;j = ejandsou=v=i(1 <j <gq).
This implies that TM‘//M(eW) = d,vq1 for all u, v, where é,,, denotes the Kronecker’s delta.
Hence Ty, /p(en) = q1 # 0 if and only if Ty, /,, # O which is equivalent to T,/ # 0.
Therefore, it follows that T,/ # 0 if and only if X(F) f g, equivalently x(F) f r(D).
(a) = (c): Clearly t,)m/D(xy) (x,y € Dy,) is non-degenerate. Since x(F) ,{/ r(D), we
have Tp /p # 0. Since D,, is separable over F, B is separable over F. Hence Ts/r #0.
Now, let a be a non-zero element of D,,. Then, there exists an element b in D,, such
that tp, /p(ab) # 0. Clearly tp, /p(abD) = tp, /p(ab)D = D. This enables us to see that
t,)m/F(abD) = T[)/I"t[),,,/l)(ahD) = TB/FTD/BtD,,,/D(abD) = F, and so tDm/,,«(aD,,,) = F.
Similarly, we have tp, /r(Dma) = F. Therefore, it follows that tp, /Fxy) (x,y € D) is
non-degenerate. (c) = (b): It is obvious. (b) = (a): Let d be an element of D,, with
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tDm/F(d) % 0 Then tD,,,/F(d) = TB/FTD/BtDm/D(d) "Tl 0 Hence TD/B # 0 and TB/F # 0
Therefore x(F) J r(D) and B is separable over F. Therefore, D,, is separable over F.

LEMMA 2. Let D be a division F-algebra with s = [D : F|, and m, | any positive
integers. Then

(i) There is an F-algebraisomorphism ¢ of D, into F,,s with o(D,,) D F. For any F-
algebra isomorphism ¢\ of Dy, into Fys with o (D) D F, tp / F(X) = 1tg / F(tp; (x))
forall x € D,,.

(ii) There is an F-algebra isomorphism ¢ of Dy, into F,g with Y(D,) D F. For
any F-algebra isomorphism ¢ of Dy, into Fyg with ¥(Dy) D F, ltp, /F(x) =
tFm\_l/F(ip](x)) forall x € D,

(iii) Let o be an F-algebra automorphismof Dy, = 3_["._, e;D where {e;;1<i,j<m}
is a system of matrix units of Dyand D = Vp, ({e;; 5 1 < i,j < m}). Thenty jp(x) =
tp,/F(00)) = top), /(x) for all x € Dy, where a(D)y = Y7, aley)a(D).

PROOF. Let ¢ be a regular representation of the F-algebra D into F;. We consider the
map
¢: Dy — Fs 5 (@) — (&(ay))  (a € D).

Then ¢ is an F-algebra isomorphism such that ¢(Dy) D Fand tp /p(x) = tg, /F(go(x))
for all x € D,,. Let ¢; be an arbitrary F-algebra isomorphism of D,, into F,, with
@1(Dm) D F. Then, by the theory of simple algebras (c¢f. [3, Theorem 4.3.1], [6] and
[8]), there is a regular element u in F,; such that ¢ (x) = u(p()c)u_1 for all x in D. Hence
tp, /F(x) = tFm/F(go(x)) = tpm/p(cpl(x)) for all x in D,,. Next, we shall prove (ii). As is
easily seen, there is an F-algebra isomorphism 1: F gy — (Fyy5); = Fog suchthat n(F,s) D
Fandtg F(n(y)) =Itg, p(y) forally € Fy,. By (i), there is an F-algebra isomorphism
¢ of D,, into F,s with ¢(D,,) D F. Then ny is an F-algebra isomorphism of D,, into
Fust such that no(D,,) D F. Moreover, for x € Dy, tr, /r(ne®) = lty, /r(0(x)).
Now, ¢, be an F-algebra isomorphism of D,, into F, such that y(D,,) D F. Then
¥ 1(Dy,) is F-algebra isomorphic to n¢(D,,). Hence there is a regular element u of F,y
such that ¥, (x) = une(x)u~! for all x € D,,. Therefore, it follows that tr,.) F(wl(x)) =
tr,,/r(Ne@) = Itg, /r(¢() = ltp, /p(x) for all x € Dy. To see (iii), let ¢ be an
F-algebra isomorphism of D,, into F,; with ¢(D,) D F. Then, for any x € D,,
we have tp /p(x) = tp, /F(ap(x)) =tp, /F(apa" (o(x)) =1tp, /F(U(x)) and t,p), /p(x) =
ty /ﬁ‘(@(x)) =tp, /F(x).

LEMMA 3. Let R be a simple F-subalgebra of F,, containing F, that is, R = D,, where
D is a division ring, and set | = I(V,(R)). Then tz, ;p(x) = ltp, ;7(x) for all x € R, and
Vi, (R) is a simple ring with r(VFn (R)) = r(D).

PROOF. Clearly Homp(F", F") = F,. We set T = Vg, (R). Then, it follows from
[6, p. 132, Theorem 6.4.2] that T = D; for a division ring D’ containing F which is
F-linear anti-isomorphic to D, n(T) = Pr(D") = >r(D) and

n*=[F,:F]=[R:FIT:Fl=m*D:FIJ*D : F]=mlD : F])’.
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This implies n = mi[D : F]. Considering the inclusion map D,, — R C F,, we obtain
our assertion by Lemma 2 (ii).

Now we are at the position to prove the following theorem which is essential in our
study.

THEOREM 4. Let R be a simple F-subalgebra of F,, containing F, and r = V(V[-'”(R)).
Then, the following conditions are equivalent.
(a) R is separable over F and x(F) [ r.
(b) tr, kIR #0.
(c) tg, / rxy) (x,y € R) is non-degenerate.
If X(F) = 0O then there hold the conditions (a)—(c).

PROOF. Since R is a simple ring, we may write R = D,, where D is a division ring
containing F. We set [ = I(VF”(R)>. Then by Lemma 3, we have r = r(Vp” (R)) = r(D)
and tr,/p(X) = ltp, /p(x) for all x € R. (a) = (c): Since x(F) [ r, we have x(F) [ [
and x(F) } r(D). By Lemma 1 ((a) = (c)), tDm/F(xy) (x,y € R) is non-degenerate.
Hence tg, p(xy) (x,y € R) is non-degenerate. (c) = (b): It is obvious. (b) = (a): Since
tr,/FIR = Itp, /p # 0, we have x(F) f land t /p # 0. By Lemma 1 ((b) = (a)), Dy, is
separable over F and x(F) } r(D), whence x(F) } r.

THEOREM 5. Let S be a sub-semigroup of F,, such that FS is a simple F-subalgebra
of F,, containing F. Let r = r(VF”(S)), and K = {tF”/F(s) ; s € S}. Then, the following
conditions are equivalent.

(a) |S] < |K|FSH.
(b) |S| < |K|".
(c) Either FS is separable over F and x(F) [ r or S = {1} and x(F)|r.
(d) Eithertg, |S # 0 or tF”{FlS =0andS=A{1}.
If X(F) = 0 then |S| < |K|\FSF],

PROOF. If |S| < |K|FS#) then |S| < |K|”. We assume that |S| < |K|”. We shall
distinguish two cases. Case |S| = 1: In this case, we see that F'S = F which is separable
over F. Since S is a semigroup, we have S = {1}. If x(F) f r then there holds the
first part of (c). Case |S| > 1: In this case, we have |K| > 1 which implies K # {0}.
Hence, it follows that t;, /g[S # 0 and so t p|FS # 0. Clearly V,(S) = Vg, (FS).
Applying Theorem 4 ((b) = (a)), we see that FS is separable over F and x(F) [ r.
Thus we obtain (c). Now, in case S = {1}, we have r = n*, and so if x(F) | r then
tr,/r(S) = tg,p(1) = n = 0. From this and Theorem 4, it follows that (c) implies
(d). Next, we assume that tr, /. | S # 0, the first part of (d). For convenience, we set
R=FS,t=tp pand g = [FS : F]. Then, there is a F-basis {s,...,s,} of R which is a
subset of S. We consider the map ¢ of R into F{9 defined by

@) = ((512),... ,1(s5)), xER.
Clearly ¢ is an F-linear homomorphism. Let x € Ker ¢. Then #(s;x) =0 fori=1,...,q,
and whence #(yx) = O for all y € R which implies x = 0, since #(yx) (x,y € R) is non-
degenerate by Theorem 4. Hence ¢ is injective and so |S] = |¢(S)| < |K]?. The other
assertions will be easily seen.
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Now, we shall prove the following corollary which contain a revision of Hersteins’
theorem [3, Theorem 2.3.3] (Theorem A).

COROLLARY 6. Let S be a sub-semigroup of F,, such that F™ is irreducible over FS,
equivalently FS is a simple F-subalgebra of F, containing F and Vg, (S) is a division
ring. Let r = r(Vp"(S)) and K = {tg, /p(s) ; s € S}. Then

(i) The following conditions are equivalent.

(@) |S| < |K["F5H1.
(b) IS| <|K|".
(c) FS is separable over F and x(F) [ r.
(d) tF"/FlS #0.
If X(F) = 0 or F is algebraically closed, then |S| < |K|lFSF],
(if) For an element a of F, with tr, p(a) # 0, FS[a] (the subring of F, generated by a
over FS) is a simple separable F-algebra with x(F) J r(Vp"(FS[a])). In particular,
if e is a primitive idempotent of F,, then tr, ;p(e) = 1 and FS[e] = F,.
(iii) Let S be abelian. Then, |S| < |K|'FSF) if and only if FS is separable over F.

PROOF. By [3,p.41, Theorem2.1.2 (Density Theorem)], we see that F{" is irreducible
over FS if and only if FS is a simple ring with FS D F and VF,(S) is a division ring. If
F is algebraically closed then Vg, (S) = Fand FS = F,. Incase S = {1}, we have FS = F
and Vg, (FS) = F which implies x(F) f rand tg, JF # 0. Hence the assertion (i) is a
direct consequence of Theorem 5. For any element a in F,,, F™ is irreducible over FS[a].
Hence the first assertion in (ii) follows from Theorem 4 ((b) = (a)). Now, we shall show
that FS[e] = F, for any primitive idempotent e of F,. By [6, Proposition 3.7.5], there
exists a system {e;; ; 1 <i,j < n} of matrix units for F, such that 3°};_, e;F = F,, and
eir = e. Thentg, jp(e) = 1 (¢f. Lemma 2). Hence, it suffices to prove that if 7'is a simple
subring of F, containing F and e¢;; then T = F,,. Let {tij ; 1 <i,j < m} be asystem of
matrix units of 7 such that T = ¥ ; ;D = D,, where D is a division ring containing F.
Clearly e, F, is a minimal right ideal of F),. Since 37, t;; = 1, we have e # 0 for
some k. Then

enF, = tyxey F, (asright F,-modules), j=1,...,m.

Since ;T D tien T and ;T is a minimal right ideal of 7, it follows that t; € ;T =
tren T C tyey Fy, (1 <j < m), and so Zj'ﬁl tiwe11F, = F, which implies that I(F,,) = m =
I(T). Hence n = m and

n*=[F,:F}|>[T:F|=[T:D]D:F]=n’D:F].

Thus we obtain [F, : F] = [T : F] and F, = T. Next, to see (iii), let S be abelian. Since
FS is a commutative simple ring, F'S is a field. Hence by [6, Theorem 6.4.2], we have
Vr, (FS) = FS and r = 1. Therefore, our assertion follows immediately from (i).

Next, we shall look at the case where S is a finite sub-semigroup of F),.

THEOREM 7. Let S be a finite sub-semigroup of F, such that FS is a simple F-
subalgebra of F,, containing F. Let r = r(Vp"(S)) and K = {tF"/F(s) ;5 € S}. Then
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(i) FS is separable over F, and if x(F) # O then FS = B, and Vg /(S) =
B, (mr[B : F] = n) for the center B of FS.
(i) |S| < |K|'FSFVif and only if either x(F) f ror S = {1} and x(F)|r.

PROOF. By Theorem 5, it suffice to prove the theorem for the case x(F) # 0. We set
FS = D,, where D is a division ring. Let B be the center of F'S. ThenD D B D F. Let P
be the prime field of F, and set T = P[S], the subring of F, generated by S over P. Then
FT = FS and T is a finite ring whose Jacobson radical N is nilpotent. Clearly FN is a
nilpotent ideal of FT = FS (simple). This implies that FN = {0} and so N = {0}. Thus
T is semi-simple. If e a central idempotent of T with e # 1 then e is a central idempotent
of FT = FS (simple) with e # 1 and so e = 0. Therefore, it follows that T is a simple
ring. Let C be the center of 7. Then C is a finite field and FC is contained in the center
Bof FT = FS = D,,. Clearly FC is separable over F. Since FC ®@¢ T is a simple ring, the
ring homomorphism FC®¢ T — FC - T = FS (3 a; ® b; — Y a;b;) is an isomorphism.
Hence FC coincides with the center B of FS. Since T is a finite simple ring, 7 is a total
matrix ring over C. Therefore, it follows that B = FC = D and FS = B,, which is a
separable F-algebra. Moreover, by [6, p. 132, Theorem 6.4.2], we have Vf, (S) = B, and
mr[B : F] = n. The other assertions follow from Theorem 5.

In virtue of Theorem 7, we shall prove the following theorem which is a revision of
Theorem A.

THEOREM 8. Let S be a finite sub-semigroup of F,, such that F™ is irreducible over
FS, and K = {tz, ;s(s) : s € S}. Then || < |K[FSF) < |K|".

PROOF. By Corollary 6 (i), it suffices to prove the theorem for the case x(F) # 0.
Let B be the center of FS. Then, since FS is a simple F-subalgebra of F, containing F,
it follows from Theorem 7 that FS is separable over F, Vr,(S) = B and so r(Vp”(S)) =1.
Therefore the assertion follows from Corollary 6 (i).

EXAMPLE 2. Let F' = GF(2)(x) and B = GF(4)(x) where x is an indeterminate. By a
regular representation of GF(4) into GF(2),, we may set GF(4) C GF(2),. Let r be an
arbitrary positive integer. Then

B> ®@p B, = By, = (F ®GF2) GF(4))2r
= Fy Qcr) GF(4) C Fyr Qcro) GF(2), = Fy,.

Moreover, we have Vg, (B>) = B, and Vy, (B,) = B;. Clearly Fy, is irreducible over
B, if and only if r = 1. Now, we set S = GF(4), C B». Then S is a finite sub-semigroup
of B> and B, = FS which is separable over F. By Theorem 5, we see that 2 } r if
and only if ty, /¢|S # 0. Further, if r = 1 then |S] = 2° = |[{t;, /s(s) ; s € S}F5F),
since By = F'- GF(4), = F ®cr) GF(4), and so (o), /Gro)(5) = tg,/p(s) = tr,/p(s)

(€ {0,1}) for all s € GF(4), = § (Lemma 3). Ne“"e‘e”:(g é)’”'z(? 8)

a = (g g) € GF(4), where GF(2)[«] = GF(4), and S’ the (multiplicative) sub-

semigroup of GF(4), generated by {e|2, €21, «}. Then GF(2)S’ = GF(4), and FS' = B.
Hence, if r = 1 then 13 = |S'| < [{tg, ¢(s) 5 s € S}[IFS"F1 = 28,
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REMARK 2. As in Remark 1, let A be a commutative separable C-algebra which
is projective over C. Then, by [2, Theorem 3.2.1 and Corollary 3.2.2], the bilinear
map Ty, c(xy) (x,y € A) is non-degenerate. Hence, for any positive integer m, t, Jc(xy)
(x,y € Ap) is non-degenerate. Now, let S be a sub-semigroup of A,, such thatA,, = CS =
Csy + -+ + Cs, for some sy,...,s, in S, and set K = {tA,,,/C(S) ; s € S}. Then we can
prove that |S| < |K|? by making use of the same methods as in the proof of Theorem 5.
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