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ON TRACES OF SEPARABLE SIMPLE SUB ALGEBRAS 
IN MATRIX RINGS 

Dedicated to Professor Kazuo Kishimoto on his 60th birthday 

TAKASI NAGAHARA AND SEIYA YOKOTA 

ABSTRACT. For the trace map on an irreducible semigroup ofnxn matrices over 
a field, I. N. Herstein presented a theorem in [3] which enables us to limit the nature of 
matrix groups of a certain kind. However, this is incorrect in general. For the theorem, we 
shall present a counter example, a revision, and some generalizations to non-irreducible 
semigroups. 

Throughout this note, F will mean a commutative field, Fin) an ^-module which is 
a direct sum of rc-copies of F, and Fn the ring of n x n matrices over F where n is any 
positive integer. We identify Fn with Honif(^n), 7*w)). For an F-subalgebra R of Fn, F^n) 

is said to be irreducible over R if F^ is an irreducible 7?-module, that is, F^ = vR for all 
v / O E F^n\ By x(/0, we denote the characteristic of F. For any a 6 Fn, tFjF(a) denotes 
the trace of a as a matrix. For a (multiplicative) sub-semigroup S of Fn, FS denotes the 
F-subalgebra of Fn generated by S over F, that is, FS = T,ses Fs. Moreover, for a simple 
ring T and its a subset E, we denote by r(T) (resp. by \E\ (resp. by VV(£),)) the rank of 
T over its center (resp. the cardinality of E (resp. the set of elements a in T such that 
ax = xa for all x G E)). 

In [3], I. N. Herstein presented the following theorem. 

THEOREM A [3, THEOREM 2.3.3]. Eet S be a sub-semigroup ofFn such that Fin) is 
irreducible over FS, and K = {tF/F(s) ; s G S}. Then \S\ < \K\n . 

He proved this theorem only in the case where F is algebraically closed. The proof 
is somewhat simpler than that of I. Kaplansky [7, p. 19, Theorem B]. However, in the 
other cases, this does not hold in general. In this note, we shall first present a counter 
example, and next, we shall prove that in Theorem A, the inequality \S\ < \K\n holds if 
and only if FS is a separable F-algebra such that r(vFn(FS)) is not a multiple of x(F)> 
and whence this theorem holds, provided that x(^) = 0 (Corollary 6 and Theorem 8). 
Moreover, this result will be generalized to a sub-semigroup S of Fn such that FS is a 
simple F-subalgebra of Fn containing F (Theorems 4, 5 and 7). 
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ON TRACES OF SEPARABLE SUB ALGEBRAS 105 

EXAMPLE 1. Let E be a field which is a purely inseparable simple extension of F of 
rank n = pm > 1 where \(F) = p > 0. Let a be a generating element of E over F. Now, 
we consider a regular representation (p of E into Fn = H o m ^ ^ , ^ ) with respect to 
the F-basis {1, a , . . . , a" - 1} of E. Then S = {(f(a)m \m= 1,2,...} is a sub-semigroup 
of Fn with \S\ > n > 1. Clearly FS = <p(E) which is an F-algebra isomorphic to E. 
Hence, for any v ̂  0 G F^n\ v(FS) is an F-submodule of Fin) of rank n, which implies 
v(F5) = Z*0. Therefore /*"> is irreducible over FS. We set {aij) = (f((x) G Fn. Then, 
since a" G F, we have ai„ = a", <z/i_i = 1 for / = 2 , . . . , « , and the other at/s are 
zero. Hence tFn/F(^p(a)m^ = 0 for m = 1,2,... , that is, tFn/F(s) = 0 for all 5 G 5. 
Therefore Theorem A does not hold. Next, we consider the algebraic closure F of F and 
(f(E) = FScFnCFn. Clearly FS is a commutative F-subalgebra of Fn. Hence FS ^ Fn. 
This implies that F^n) is not irreducible over FS. For example, if F = GF(2)(JC) (the ring of 
rational functions of an indeterminate JC over GF(2) = {0,1}) then, for a = (atj) G F2 with 
«il = «22 = 0, «21 = 1 and «12 = x, the set S - {a™ ; m = 1,2,...} is a sub-semigroup of 
F2 such that FS is a subfield of F2 which is a purely inseparable simple extension of F 
of rank 2. Hence f*2) is irreducible over FS and |S| = 00 > 1 = |{tF2 /F(s) ; 5 G 5}|4 . 

Notations and Terminologies. In what follows, we shall use the following conven
tions: For a ring A and a right A-module M, 

1(MA) = the length of composition series of right A-module M when M has such 
composition series, 
[M : A] = l(MA) when A is a field, 
1(A) = 1(AA) when l(AA) is defined, 
Am = the ring of m x m matrices over A where m is any positive integer. For 
integers r, s„ 
r I 5 (resp. r / .s) means that r is (resp. is not) a divisor of s. 

For a subset B of A and a map/: A —-+ C where C is a set, 
/|2? = the restriction of/ to J5. 

Now, let C be a commutative ring with the identity 1, A a C-algebra with identity which 
is finitely generated and projective over C. Then, there is a C-dual basis {JCI, ...,Xy} C 
A ; { / , . . . , /} C Homc(A, Q such that £-=i *$(*) = JC for all x G A (c/ [2, p. 4]). 
Define TA/C G Homc(A, C) by 

TA/CW = Z^teX * e A. 
i=l 

If {v i , . . . , yt} is a system of generators for A over C and JC* = £-=1 v/C;* (fc = 1 , . . . , 5, cik G 
Q then for gj = Y:s

k=xcjkfk,Y!j=xyjgj(x) = x and Ej=1 «/(xy;) = Eti/K-**/) for all 
x G A. For an other C-dual basis {yi, . . . ,y t} C A ; {fti,...,ft,} C Homc(A, Q, we 
have ft* = Ej=i A*(y./)# (1 < * < 0 and E U **to*) = 5ZJUife=i hk(yj)gj)(xyk) = 
Y!j=\gj{xY!k=xhk(yj)yk} = Ej=1 g/(xy/). This shows that TA/C is independent of the 
choice of a dual basis for A. We call TA/C the trace from A to C. For any element 
a G Am, we denote by tA /^(a) the sum of diagonal elements of a, and we write 

https://doi.org/10.4153/CMB-1995-014-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-014-3
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t4w/c(°0 = TA/C(U„7A(<*))• Clearly t A l / c ( a ) = TA/C(a) (for m = 1). The bilinear 

map Am x Am —> C defined by (x,y) i—• tA /c(xy) wiH t>e called non-degenerate if 

tAm/c(Amx) ^ {0} and iAm/c(xAm) ^ {0} for all x ^ 0 G Am. Further, A will be called 

separable over C if the left and right A-A-homomorphism A ^ c A —> A (x 0 y '—> xy) 

splits. For a simple algebra /? over a field F, /? is separable over F if and only if R is a 

finitely generated F-module and the center of R is separable over F in the usual sense of 

field theory (cf. [2, p. 40 and p. 55, Theorem 2.3.8]). 

REMARK 1. As in the preceding remarks, let A be a commutative C-algebra which is 

finitely generated and projective over C. Then, by [2, Theorem 3.2.1 apd Corollary 3.2.2], 

A is separable over C if and only if the bilinear map TA/C(xy) (x, y G A) is non-degenerate. 

Hence, as is well known, for a field extension E/F, E is separable over F if and only if 

TE/F ^ 0. Next, we refer to non-commutative separable algebras. Let F be a field with 

X(F) = 2. Then Fj is a separable F-algebra, and iFljF(xy) (x,y G F2) is non-degenerate. 

However, TFliF(xy) (x,y G F2) is not non-degenerate. Indeed, if d\ - e\\, 0*2 = e\2, 

di = £21, ̂ 4 = £22 are the matrix units of F2 then {dj ; 1 < / < 4} is an F-basis for F2, 

and the 4 x 4 matrix (TFi/F(didj)) is zero, as claimed, cf [5, Theorem 5.3.2]. Thus, the 

assertion is holds. Hence, given a non-commutative separable C-algebra A, it doesn't 

always follow that TA/C(xy) (x, y G A) is non-degenerate. 

Now, we shall start our study with the following 

LEMMA 1. Let D be a division F-algebra of finite rank, and m a positive integer. 

Then, the following conditions are equivalent, 

{a) Dm is separable over F and x(E) / r(D)> 

(b) tDin/F?0. 

(c) The bilinear map 

DmxDm-+F\ (x,y) 1—> tDm/F(xy) 

is non-degenerate. 

PROOF. Let B be the center ofD, and Ma maximal subfield. Then D®BM = Mq where 

q = y/[D : B] = ^Jr(D) (cf. [3, p. 96, Corollary]). Let {ei} ; 1 < ij < q} be the system 

of matrix units of Mq, and set dq(yi-\)+j = e^ (1 < ij < q). Then {d^ ; 1 < k < q2} is a 

free 5-basis forM^. If euvdqa-\)+j = dqa-\)+j then euvetj = eij and so u = v = / (1 <j<q). 

This implies that TM /M(^WV) = ^uvQ^ for all w, v, where 5UV denotes the Kronecker's delta. 

Hence TM /M(e\\) = q\ ^ 0 if and only if TM jM ^ 0 which is equivalent to TD/B ^ 0. 

Therefore, it follows that TD/B ^ 0 if and only if \(F) / g, equivalently \(F) / r(D). 

(a) => (c): Clearly tDwj/D(jcy) (x,y G Dm) is non-degenerate. Since x(^) / r(P\ w e 

have TD//fi 7̂  0. Since Z)m is separable over F, B is separable over F. Hence TB/F ^ 0. 

Now, let a be a non-zero element of Dm . Then, there exists an element b in £)m such 

that tDw/D(aZ?) ^ 0. Clearly iDm/D(abD) = tD jD(ab)D = D. This enables us to see that 

tDm/F(abD) = TD/FtDm/D(abD) = TB/FTD/BtDm/D(abD) = F, and so tDm/F(aDm) = F. 

Similarly, we have iDm/F(Dma) = F. Therefore, it follows that tDjF(xy) (x,y G Dm) is 

non-degenerate, (c) =̂> (b): It is obvious, (b) =4> (a): Let d be an element of Dm with 
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tDw/F(d) ± 0. Then tDm/F(d) = TB/FTD/BtDm/D(d) ± 0. Hence TD/B ^ 0 and TB/F ^ 0. 
Therefore \(F) I r(D) and B is separable over F. Therefore, Dm is separable over F. 

LEMMA 2. Let D be a division F-algebra with s = [D : F], and m, I any positive 
integers. Then 

(i) There is an F-algebra isomorphism tp ofDm into Fms with ip(Dm) D F. For any F-
algebraisomorphism (f i ofDm intoFms with tp\(Dm) D F, tDm/F(x) = tFm/FUp\(x)\ 
for all x G Dm. 

(ii) There is an F-algebra isomorphism \p of Dm into Fmsi with ip(Dm) D F. For 
any F-algebra isomorphism ij)\ of Dm into Fmsi with \jj\(Dm) D F, /tD /F(x) = 

^msi/F^i to) M all x G Dm. 
(Hi) Let <J be an F-algebra automorphism of Dm = Y!u=\ ^ijD where {e^ ; 1 < ij < m} 

is a system of matrix units of Dm and D = Vom({eij ; 1 < ij < m}). TheniDmiF(x) = 
t ^ / F ^ t o ) = ta{D)miF(x)forallx G Dm where a(D)m = £™=1 a(^)cr(D). 

PROOF. Let £ be a regular representation of the F-algebra D into Fs. We consider the 
map 

V'.Dm—>Fms; (ay) H-> (£(fl//)) K ' £ D). 

Then 99 is an F-algebra isomorphism such that <p(Dm) D F and tDm/F(x) = tFmv/F (<£(*)) 
for all JC G Dm. Let 991 be an arbitrary F-algebra isomorphism of Dm into Fms with 
(f\(Dm) D F. Then, by the theory of simple algebras (cf [3, Theorem 4.3.1], [6] and 
[8]), there is a regular element u in Fms such that <̂ i (x) = u(f(x)u~{ for all x in D. Hence 
k^/Fto ~ V ^ / F ^ t o ) = V^/F^ito) f°r an" * m An- Next, we shall prove (ii). As is 
easily seen, there is an F-algebra isomorphism rj: Fms —> (Fms)i = Fmsi such that r)(Fms) D 
F and tFmj//F(/n(y)) = /tF /F(y) for all y G F m . By (i), there is an F-algebra isomorphism 
(f of Dm into FmiS with (f(Dm) D F. Then 77̂  is an F-algebra isomorphism of Dm into 
Fmsi such that r](f(Dm) D F. Moreover, for x G Dm, tFm//F (77 (/?(.*)) = hFmsjF(ip(x)). 
Now, 1̂1 be an F-algebra isomorphism of Dm into F m / such that ip\(Dm) D F. Then 
i/j\(Dm) is F-algebra isomorphic to r](p(Dm). Hence there is a regular element u of Fm^ 
such that V^ito = urf(p(x)u~{ for all x G F>w. Therefore, it follows that ^Fmsl/F{^\(x)) = 
tFmi/F(ri(p(x)} = /tFm/F(<^(;c)) = /t/)m//F(x) for all x G Dm. To see (iii), let <p be an 
F-algebra isomorphism of Dm into Fm5 with (f(Dm) D F. Then, for any x G Dffl, 
we have tDm/F(x) = tFms/F(<p(xj) = tFms/F(ip(J~{[a(x)) = tDm/F(a(xj) and tff(D)jn/F(*) = 

t /WF^to) = ^ / F W -

LEMMA 3. L̂ /̂ 7? Z?e a simple F-subalgebra ofFn containing F, £/za£ is, R = Dm where 
D is a division ring, and set I = l[VFn(R)\ Then tF/F(x) = ltDm/F(x)for all x G R, and 
VFn(R) is a simple ring with r(VFn(RJ) = l2r(D). 

PROOF. Clearly HomF(F(n),F(n)) = Fn. We set T = VFn(R). Then, it follows from 
[6, p. 132, Theorem 6.4.2] that T = D\ for a division ring D' containing F which is 
F-linear anti-isomorphic to D, r(T) = l2r(D') = l2r(D) and 

n2 = [Fn : F] = [R : F][T : F] = m2[D : F]l2[Df : F] = (ml[D : F])2. 
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This implies n = ml[D : F]. Considering the inclusion map Dm —> R C Fn, we obtain 
our assertion by Lemma 2 (ii). 

Now we are at the position to prove the following theorem which is essential in our 
study. 

THEOREM 4. Let R be a simple F-subalgebra ofFn containing F, and r = r\VFn (/?)). 
Then, the following conditions are equivalent. 

(a) R is separable over F and x(F) / r. 
(b) tFn/F\R^0. 
(c) tF/F(xy) (x,y G R) is non-degenerate. 

Ifx(F) = 0 then there hold the conditions (a)-(c). 

PROOF. Since R is a simple ring, we may write R = Dm where D is a division ring 
containing F. We set / = l(yFn(R)). Then by Lemma 3, we have r = r[VFn(R)) = l2r(D) 
and tFn/f{x) = ltom/F(x) f° r a ^ x e R. (a) => (c): Since \(F) X r> w e have XCO / / 
and \(F) / r(D). By Lemma 1 ((a) => (c)), t£>w/F(xy) (x^y ^ ^) *s non-degenerate. 
Hence tFJFO^) (x^y £ ^) *s non-degenerate, (c) => (b): It is obvious, (b) => (a): Since 
tFn/F\R = ^Dm/F ̂  0> w e have XOO / I and tDm//r ^ 0. By Lemma 1 ((b) => (a)), Dm is 
separable over F and x(F) X r(D), whence x(F) X r-

THEOREM 5. Let S be a sub-semigroup ofFn such that FS is a simple F-subalgebra 
ofFn containing F. Let r = r(vFn(S)\ and K = {tF/F(s) ; s E S}. Then, the following 
conditions are equivalent. 

(a) \S\ < \Kfs^. 
(b) \S\ < \K\"\ 
(c) Either FS is separable over F and x(F) X r or S = {1} ond x(-^)|r-
(d) Either tFjF\S / 0 or tFjF\S = 0 and S - {1}. 

Ifx(F) = 0 then \S\ < \K\[FS:^. 

PROOF. If \S\ < \K\[FS:F] then \S\ < \Kf. We assume that \S\ < \Kf. We shall 
distinguish two cases. Case \S\ = 1: In this case, we see that FS = F which is separable 
over F. Since S is a semigroup, we have S = {1}. If x(^) / r then there holds the 
first part of (c). Case \S\ > 1: In this case, we have \K\ > 1 which implies K ^ {0}. 
Hence, it follows that tFn/F\S ^ 0 and so tFn/F\FS ^ 0. Clearly VFn(S) = VFn(FS). 
Applying Theorem 4 ((b) => (a)), we see that FS is separable over F and x(^) / r-
Thus we obtain (c). Now, in case S = {1}, we have r = n2, and so if xOO I r then 
tFjF(S) = iFn/F{\) = n = 0. From this and Theorem 4, it follows that (c) implies 
(d). Next, we assume that tF/F \ S ^ 0, the first part of (d). For convenience, we set 
R = FS, t = tFjF and q = [FS : F]. Then, there is a F-basis {s\,..., sq} of R which is a 
subset of S. We consider the map (p of R into F^q) defined by 

(f(x) = (V(six),... , t(sqx)), x G R. 

Clearly <p is an F-linear homomorphism. Let x G Ker (p. Then t(six) = 0 for / = 1 , . . . , q, 
and whence t(yx) = 0 for all y G R which implies x = 0, since tiyx) (x, _y G /?) is non-
degenerate by Theorem 4. Hence (/? is injective and so |5| = \<p(S)\ < \K\q. The other 
assertions will be easily seen. 
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Now, we shall prove the following corollary which contain a revision of Hersteins' 
theorem [3, Theorem 2.3.3] (Theorem A). 

COROLLARY 6. Let S be a sub-semigroup ofFn such that F^ is irreducible over FS, 
equivalently FS is a simple F-subalgebra of Fn containing F and VFn(S) is a division 
ring. Let r = r(VFn(S)) and K = {tFjF(s) ; s € S}. Then 

(i) The following conditions are equivalent. 
(a) \S\ < |*P : f l 
(b) \S\ < \Kf. 
(c) F S is separable over F and x(/0 / r. 
(d) tFn/F\SjéO. 

tfx(F) = 0 or F is algebraically closed, then \S\ < \K\[FS:F]. 
(ii) For an element a ofFn with tF/F(a) ^ 0, FS[a] (the subring ofFn generated by a 

overFS) is a simple separable F-algebra with x(F) t ryFn(FS\d\y\. In particular, 
if e is a primitive idempotent of Fn then iFniF(e) = 1 and FS[e] = Fn. 

(Hi) Let S be abelian. Then, \S\ < |^|[F5:F1 if and only ifFS is separable over F. 

PROOF. By [3, p. 41, Theorem 2.1.2 (Density Theorem)], we see that F^n) is irreducible 
over FS if and only if FS is a simple ring with FS D F and VFn(S) is a division ring. If 
F is algebraically closed then VFn(S) = F and FS = Fn. In case S = {1}, we have FS = F 
and Vfn(FS) = F which implies \(F) / r a nd tF/F ^ 0. Hence the assertion (i) is a 
direct consequence of Theorem 5. For any element a in Fn, F ^ is irreducible over FS[a]. 
Hence the first assertion in (ii) follows from Theorem 4 ((b) => (a)). Now, we shall show 
that FS[e] = Fn for any primitive idempotent e of Fn. By [6, Proposition 3.7.5], there 
exists a system {etj ; 1 < ij < n} of matrix units for Fn such that Ey=i eyF = Fn and 
e\\ = e. Then tF/F(e) = 1 (cf. Lemma 2). Hence, it suffices to prove that if T is a simple 
subring of Fn containing F and e\\ then T = Fn. Let {ttj ; 1 < ij < m) be a system of 
matrix units of T such that T = £/j UjD = Dm where D is a division ring containing F. 
Clearly e\\Fn is a minimal right ideal of Fn. Since ££i f# = 1, we have ^ ^ n ^ 0 for 
some k. Then 

en^* ^ tjkeuFn (as right Fn-modules), 7 = 1 , . . . , m. 

Since ^ T D tjke\\T and ^ T is a minimal right ideal of T, it follows that tjj G tjjT = 
tjke\\T C tjke\\Fn (1 <7 < m), and so Y!L\ tjkeuFn = Fn which implies that l(Fn) = m = 
l(T). Hence n-m and 

n2 = [Fn : F] > [T : F] = [T : D][Z) : F] = n2[D : F|. 

Thus we obtain [Fn : F] = [T : F] and Fn = T. Next, to see (iii), let S be abelian. Since 
FS is a commutative simple ring, FS is a field. Hence by [6, Theorem 6.4.2], we have 
VFn(FS) = FS and r = 1. Therefore, our assertion follows immediately from (i). 

Next, we shall look at the case where S is a finite sub-semigroup of Fn. 

THEOREM 7. Let S be a finite sub-semigroup of Fn such that FS is a simple F-
subalgebra ofFn containing F. Let r = r(VFn(S)j and K = {tFjF(s) ; s € S}. Then 
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(i) FS is separable over F, and if x(F) ^ 0 then FS - Bm and VFn(S) = 

Br (mr[B : F] = n)for the center B of FS. 

(ii) \S\ < \K\[FS:F] if and only if either x(F) / r or S = {1} and x(F)\r. 

PROOF. By Theorem 5, it suffice to prove the theorem for the case \(F) / 0. We set 

F S = Dm where D is a division ring. Let B be the center of FS. Then D D B D F. Let P 

be the prime field of F, and set T = P[S], the subring of Fn generated by S over P. Then 

FT = FS and F is a finite ring whose Jacobson radical N is nilpotent. Clearly FN is a 

nilpotent ideal of FT = FS (simple). This implies that FN = {0} and so N = {0}. Thus 

F is semi-simple. If e a central idempotent of F with e ^ 1 then e is a central idempotent 

of FT = FS (simple) with e ^ 1 and so e = 0. Therefore, it follows that F is a simple 

ring. Let C be the center of F Then C is a finite field and FC is contained in the center 

B of FT = FS = Dm. Clearly FC is separable over F. Since FC <S>c F is a simple ring, the 

ring homomorphism FC 0 c T —> FC • T = FS (E 0/ ® £; '—• E « A ) is an isomorphism. 

Hence FC coincides with the center B of FS. Since F is a finite simple ring, F is a total 

matrix ring over C. Therefore, it follows that B = FC = D and FS = Bm which is a 

separable F-algebra. Moreover, by [6, p. 132, Theorem 6.4.2], we have VF„(S) = Br and 

mr[B : F] = n. The other assertions follow from Theorem 5. 

In virtue of Theorem 7, we shall prove the following theorem which is a revision of 

Theorem A. 

THEOREM 8. Let S be a finite sub-semigroup of Fn such that F^n) is irreducible over 

FS, andK= {tFn/F(s) ; s G S}. Then \S\ < \K\[FS:F] < \Kf. 

PROOF. By Corollary 6 (i), it suffices to prove the theorem for the case x(F) ^ 0. 

Let B be the center of FS. Then, since FS is a simple F-subalgebra of Fn containing F, 

it follows from Theorem 7 that FS is separable over F, VFn(S) = B and so r(VFn(SJ) = 1. 

Therefore the assertion follows from Corollary 6 (i). 

EXAMPLE 2. Let F = GF(2)(JC) and B = GF(4)(JC) where x is an indeterminate. By a 

regular representation of GF(4) into GF(2)2, we may set GF(4) C GF(2)2. Let r be an 

arbitrary positive integer. Then 

B2 ®B Br = B2r = (F® G F ( 2 ) GF(4))2r 

= Fir ®GF(2) GF(4) C F2r 0GF(2) GF(2)2 = F4r. 

Moreover, we have VF4r(B2) = Br and VF4r(Br) = B2. Clearly F 4 r is irreducible over 

B2 if and only if r = 1. Now, we set S = GF(4)2 C B2. Then S is a finite sub-semigroup 

of B2 and B2 = FS which is separable over F. By Theorem 5, we see that 2 / r if 

and only if tF4r/F\S ^ 0. Further, if r = 1 then \S\ = 28 = \{tF4/F(s) ; s G S}\[FS:FK 

since B2 = F - GF(4)2 = F ®GF(2) GF(4)2 and so tGF(4)2//GF(2)(s) = tf l2/F(j) = iF4/F(s) 

(G {0, l } ) f o r a l l s £ G F ( 4 ) 2 = S ( L e m m a 3 ) . Next, let e , 2 = f j i ) ' ^ 2 1 = f? o)' 

a = I 0 a) e G F ( 4 ) 2 w h e r e G F ( 2 ) [ a l = G F ^ 4 ) ' a n d S' t h e (multiplicative) sub-

semigroup of GF(4)2 generated by {exl, e2{, a}. Then GF(2)^ = GF(4)2 and FS' = B2. 

Hence, if r = 1 then 13 = |5 ; | < \{tF4/F(s) ; 5 G 5 ;}| [ F 5 , : / r i = 28 . 
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REMARK 2. As in Remark 1, let A be a commutative separable C-algebra which 
is projective over C. Then, by [2, Theorem 3.2.1 and Corollary 3.2.2], the bilinear 
map TA/C(xy) (x,y e A) is non-degenerate. Hence, for any positive integer m, ty4w/c(xy) 
(x, y G Am) is non-degenerate. Now, let S be a sub-semigroup of Am such that Am = CS = 
Cs\ + • • • + Csq for some s\,..., sq in 5, and set K = {tA /c(s) ; s G S}. Then we can 
prove that \S\ < \K\q by making use of the same methods as in the proof of Theorem 5. 
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