
Canad. Math. Bull. Vol. 60 (4), 2017 pp. 807–815
http://dx.doi.org/10.4153/CMB-2016-077-5
©Canadian Mathematical Society 2017

The Shifted Classical Circulant and Skew
Circulant Splitting Iterative Methods for
Toeplitz Matrices

Zhongyun Liu, Xiaorong Qin, Nianci Wu, and Yulin Zhang

Abstract. It is known that every Toeplitz matrix T enjoys a circulant and skew circulant splitting
(denoted CSCS) i.e., T = C−S with C a circulantmatrix and S a skew circulantmatrix. Based on the
variant of such a splitting (also referred to asCSCS),we ûrst develop classicalCSCS iterativemethods
and then introduce shi�ed CSCS iterative methods for solving hermitian positive deûnite Toeplitz
systems in this paper. _e convergence of each method is analyzed. Numerical experiments show
that the classical CSCS iterative methods work slightly better than the Gauss–Seidel (GS) iterative
methods if the CSCS is convergent, and that there is always a constant α such that the shi�ed CSCS
iteration converges much faster than the Gauss–Seidel iteration, no matter whether the CSCS itself
is convergent or not.

1 Introduction

_is paper is concerned with the classical iterative solution to a large linear system of
equations

(1.1) Tx = b,
where b ∈ Cn , T ∈ Cn×n is an hermitian positive deûnite (HPD) Toeplitz matrix,
which has an extensive applications and has intrigued the researchers for decades [7].

Recall that the representation A = M − N is called a splitting of A ifM is nonsin-
gular. _e classical iterativemethods for solving Ax = b can be described as
(1.2) Mx(k+1) = Nx(k) + b, k = 0, 1, . . . ,

where x(0) is an initial approximation to the solution of Ax = b.
It is well known that method (1.2) converges for any initial vector x(0) if and only

if the spectral radius ρ(H) < 1, where H = M−1N is the iteration matrix.
_e classical iterative methods for solving large linear systems of equations (1.1)

require eõcient splittings of the coeõcient matrix A; that is to say that M−1 is easy
to obtain and ρ(H) < 1. Now, these techniques are rarely used separately. However,
when combined with the more eõcient methods, they can be quite successful; see
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for example, [4,6, 8, 19] and references therein. Moreover, there are a few application
areas where variations of these methods are still quite popular; see for instance [2, 3,
5, 10, 13, 15–17].

Let A be decomposed into the form A = D − E − F, where D, −E, and −F are
thematrices consisting of diagonal entries, strictly lower triangular part, and strictly
upper triangular part of A, respectively. It is always assumed that D /= 0. _en one
can obtain:
● the Jacobi splitting by taking M = D;
● Gauss–Seidel splitting by taking M = D − E;
● the successive over relaxation(SOR) splitting by taking M = 1

ω (D − ωE);
● the symmetric successive over relaxation(SSOR) splitting by taking

M = 1
ω(2 − ω)(D − ωE)D−1(D − ωF).

_e matrices M = D and M = 1
ω(2−ω)(D − ωE)D−1(D − ωF) are usually re-

ferred to as Jacobi and SSOR preconditioners for the preconditioned conjugate gra-
dient method (PCG) and the preconditioned generalizedminimum residual method
(PGMRES).

In this paper we consider T = (t i j)n×n in (1.1) being an hermitian Toeplitz matrix
deûned by t i j = t i− j and t i j = t̄ ji .

_ere are two main types ofmethods for solving Toeplitz systems: direct methods
and iterative methods. _e complexity of fast direct Toeplitz solvers is O(n log2 n);
see, e.g., [1, 11]. What is more, the stability of these fast direct algorithms is still in
question. Because of these stability problems, considerable attention has recently been
given to iterativemethods for solving Toeplitz systems; for an early review, see [7].

It is known that aToeplitzmatrix T always possesses a circulant and skew-circulant
splitting (CSCS)

(1.3) T = Cβ − Sγ ,

where

Cβ =
⎛
⎜⎜⎜
⎝

β t−1+tn−1
2 ⋅ ⋅ ⋅ t1−n+t1

2t1+t1−n
2 β ⋅ ⋅ ⋅ t2−n+t2

2⋮ ⋮ ⋱ ⋮
tn−1+t−1

2
tn−2+t−2

2 ⋅ ⋅ ⋅ β

⎞
⎟⎟⎟
⎠

is a circulant matrix, and

Sγ = −
⎛
⎜⎜⎜
⎝

γ t−1−tn−1
2 ⋅ ⋅ ⋅ t1−n−t1

2t1−t1−n
2 γ ⋅ ⋅ ⋅ t2−n−t2

2⋮ ⋮ ⋱ ⋮
tn−1−t−1

2
tn−2−t−2

2 ⋅ ⋅ ⋅ γ

⎞
⎟⎟⎟
⎠

is a skew-circulant matrix, and the parameters β, γ satisfy β + γ = t0.
If taking β = γ = t0

2 , then the splitting (1.3) becomes one used byNg in [17], which
resulted in a so-called CSCS iterative method consisting of two half-step iterations,
for nonhermitian positive deûnite Toeplitz systems, analogously to the classical al-
ternating direction implicit (ADI) iteration for solving partial diòerential equations.
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Moreover, based on this splitting, Chan and Jin in [8] developed some circulant and
skew-circulant preconditioners for skew hermitian type Toeplitz systems.

In this paper,we propose the following classical iterative solver for hermitian posi-
tive deûnite Toeplitz systems based on the circulant/skew-circulant splitting iteration
by always taking β > γ.

_e Classical CSCS iteration Given an initial guess x(0), for k = 0, 1, 2, . . . ,
until {x(k)} converges, compute

(1.4) Cβx(k+1) = Sγx(k) + b,
where Cβ is assumed to be nonsingular.

We remark here that themain operations in (1.4) arematrix-vector products C−1
β u

and Sγv. Since circulant matrices can be diagonalized by the discrete Fourier matrix
F and the skew-circulant matrices can be diagonalized by the diagonal times discrete
Fourier matrix F̂, i.e.,

Cβ = F∗ΛF and Sγ = F̂∗ΣF̂ ,
where Λ and Σ are diagonal matrices holding the eigenvalues of Cβ and Sγ , respec-
tively, the exact solutions with circulant matrices can be obtained by using 8 fast
Fourier transforms (FFTs) of n-vectors. We emphasize that the use of circulant and
skew-circulant matrices for solving Toeplitz systems allows the use of FFT through-
out the computations, and FFT is highly parallelizable and has been implemented on
multiprocessors eõciently. _e proposedmethod iswell adapted for parallel comput-
ing.

Of course, we can use the Gauss–Seidel iterative method for solving hermitian
positive deûne Toeplitz systems. If T is split as (D − L) − L∗, then the Gauss-Seidel
iteration is as follows.

_e Classical GS iteration Given an initial guess x(0), for k = 0, 1, 2, . . . until
{x(k)} converges, compute

(1.5) (D − L)x(k+1) = L∗x(k) + b,
where D − L is the lower triangular Toeplitzmatrix and L∗ is the strictly upper
triangular Toeplitz matrix.

_e main operation in (1.5) is to calculate (D − L)−1, (D − L)−1u, and L∗v. A
fast algorithm in [9, 14] for computing (D − L)−1 requires about 10 FFTs of n-vectors.
Furthermore, to compute (D − L)−1u and L∗v requires 6 FFTs of 2n-vectors; see,
e.g., [7]. _at is to say that the exact solutions with lower triangular Toeplitzmatrices
can be obtained by using 22 FFTs of n-vectors. _is means that our classical CSCS
iteration ensures signiûcant savings, as compared to the classical GS iteration, at each
iterative step.

_e paper is organized as follows. In the next section, we ûrst recall some prelimi-
naries, then study the convergence of the classicalCSCS iteration and ûnally propose a
new CSCS iterationwith a shi�. Numerical experiments are presented in Section 3 to
show the eòectiveness of our methods. A brief conclusion is also drawn in Section 4.
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2 The Shifted CSCS Iteration

In this section, we ûrst review some known results needed in the remaining parts of
this paper, then introduce the shi�ed CSCS iterativemethods for Toeplitz system(1.1);
ûnally, convergence results are given for each scheme.

2.1 Preliminaries

Amatrix A is said to be positive deûnite if x∗Ax > 0 for x ∈ Cn , x /= 0.
Regarding splittings of the positive deûnite matrix A, we need the following deû-

nition and theorems which can be found in [12, 15, 16, 18].

Deûnition 2.1 _e splitting A = M −N is called P-regular if T̃ = M∗ +N is positive
deûnite.

_eorem 2.2 Let A = M − N be an hermitian positive deûnitematrix, where M is a
invertible hermitian matrix. _en ρ(M−1N) < 1 if and only if the splitting A = M − N
is P-regular.

_eorem 2.3 Let A be hermitian, and let the splitting A = M −N be P-regular. _en
ρ(M−1N) < 1 if and only if A is positive deûnite.

_eorem 2.4 (Weyl’s theorem) Let A, B ∈ Cn×n beHermitian and let the eigenvalues
λ i(A), λ i(B), λ i(A+ B) of A, B, and A+ B be arranged in an increasing order. _en,
for each i = 1, 2, . . . , n, we have
(i) λ i(A) + λ1(B) ≤ λ i(A+ B) ≤ λ i(A) + λn(B),
(ii) λ1(A) + λ i(B) ≤ λ i(A+ B) ≤ λn(A) + λ i(B).

2.2 The Classical CSCS Iteration with a Shift

Notice ûrst that if T is hermitian, then thematrices Cβ and Sγ deûned as in (1.3) are
also hermitian. In this case their eigenvalues λ i(Cβ) and λ i(Sγ) are all real, can be
arranged in an increasing order, and obtained easily by using 2 FFTs. As a natural
consequence of_eorem 2.2, we have the following results.

Lemma 2.5 Let T be an hermitian positive deûnite Toeplitz matrix, and let T =
Cβ − Sγ be the circulant and skew-circulant splitting. If the splitting T = Cβ − Sγ is
P-regular, then ρ(C−1

β Sγ) < 1.

Now, we can establish a suõcient condition on the convergence of the classical
CSCS iteration.

_eorem 2.6 Let T be an hermitian positive deûnite Toeplitzmatrix, let T = Cβ − Sγ
be the circulant and skew-circulant splitting, and let λ1(Cβ) and λ1(Sγ) be the smallest
eigenvalues of Cβ and Sγ , respectively. If λ1(Cβ) + λ1(Sγ) > 0, then ρ(C−1

β Sγ) < 1; i.e.,
the iteration (1.4) converges to the exact solution x⋆ of the linear systemof equations (1.1).
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Proof From the hypothesis and by _eorem 2.4, we have that
λ i(C∗β + Sγ) ≥ λ1(Cβ) + λ1(Sγ) > 0.

_is means that T̃ = C∗β + Sγ is hermitian positive deûnite. _us, the splitting T =
Cβ − Sγ is P-regular. By Lemma 2.5, we have ρ(C−1

β Sγ) < 1 immediately.

We observe here that the splitting T = Cβ − Sγ is not always P-regular for given β
and γ, even if β > γ (the assumption λ1(Cβ)+ λ1(Sγ) > 0 implies β > γ). In this case,
we introduce a positive parameter α and consider the splitting

(2.1) T = Ĉβ − Ŝγ ,

where Ĉβ = αI +Cβ and Ŝγ = αI + Sγ , which are obtained from Cβ and Sγ by shi�ing
αI, respectively. We refer to the splitting (2.1) as the shi�ed CSCS and its correspond-
ing iteration as the shi�ed CSCS iteration. It is as follows.

_e shi�ed CSCS iteration Given an initial guess x(0), for k = 0, 1, 2, . . . , un-
til {x(k)} converges, compute

(2.2) Ĉβx(k+1) = Ŝγx(k) + b,
where Ĉβ is nonsingular.

Since Ĉβ and Ŝγ in (2.1) are circulant and skew circulant matrices respectively, we
can quickly perform the shi�ed CSCS iteration by employingDFT, similar to the clas-
sical CSCS iteration used.

_eorem 2.7 Let T be an hermitian positive deûnite Toeplitz matrix, and let T =
Ĉβ − Ŝγ be the shi�ed CSCS deûned in (2.1). If the splitting T = Cβ − Sγ is not P-regular,
then there exists a positive constant α such that ρ(Ĉ−1

β Ŝγ) < 1; i.e., the iteration (2.2)
converges to the exact solution x⋆ of the linear system of equations (1.1).

Proof By _eorem 2.2, it suõces to show that there is a constant such that ̃̂T =
Ĉβ

∗ + Ŝγ is positive deûnite. Note that
̃̂T = 2αI + (C∗β + Sγ) = 2αI + T̃ ,

λ i( ̃̂T) = 2α + λ i(T̃) ≥ 2α + λ1(T̃) ≥ 2α + λ1(Cβ) + λ1(Sγ).
_us,we can take a α such that α > −λ1(T̃)/2,whichmeans that ̃̂T is positive deûnite.
However, λ1(T̃) is unknown. Note that λ1(Cβ) and λ1(Sγ) can be easily obtained.
Instead, we can take a α such that α > −[λ1(Cβ) + λ1(Sγ)]/2, which also means
that ̃̂T is positive deûnite; i.e., T = Ĉβ − Ŝγ is P-regular. By _eorem 2.2, we have
ρ(Ĉ−1

β Ŝγ) < 1. _e proof is thus complete.

_eorem 2.7 tell us that even if the splitting T = Cβ − Sγ is not P-regular, there
is always a constant α > 0 such that the shi�ed CSCS iteration converges. At the
same time, we observe that the shi�ed CSCS iteration reduces to the classical CSCS
iteration when α = 0, which is similar to the case where the SOR iteration reduces
to GS iteration when ω = 1. _at is to say that the parameter α in the shi�ed CSCS

https://doi.org/10.4153/CMB-2016-077-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-077-5


812 Z. Liu, X. Qin, N. Wu, and Y. Zhang

iteration plays the same role as ω in SOR iteration. _erefore, there does exist an
optimal parameter α∗ such that ρ((α∗I + Cβ)−1(α∗I + Sγ)) ≤ ρ(C−1

β Sγ). Hence,
we can expect that the shi�ed CSCS iteration has a better convergence rate than the
classical CSCS iteration when the splitting T = Cβ − Sγ is P-regular. _e numerical
experiments in next section verify the our guess.

3 Numerical Examples

All the numerical tests were done on a Founder desktop PC with Pentium dual-core
E6700 CPU 3.20 GHz with Matlab 7.4.0.287 (R2007a). To verify the eòectiveness of
our method, several kinds of generating functionswere tested and they are as follows.

Example 3.1 f = 1 + x2, b = (1, 1, . . . , 1)T and x(0) = (1, 1, . . . , 1)T .

Example 3.2 tk = (1 + ∣k∣)−p , b = (1, 1, . . . , 1)T and x(0) = (1, 0, ⋅ ⋅ ⋅ , 0)T .

Example 3.3 f = 0.1 + ∣x∣, b = (1, 1, . . . , 1)T and x(0) = (1, 0, . . . , 0)T .

Example 3.4 f = 1.1 + cosx, b = (1, 1, . . . , 1)T and x(0) = (1, 0, . . . , 0)T .

By _eorem 2.3, we know that the Gauss–Seidel iteration of an hermitian positive
deûnitematrix is always convergent. For comparison, we therefore test GS iteration.
In all tests, the scalars β = t0 and γ = 0 in the CSCS (1.3), and the stopping criteria is

є = ∥r(k)∥2

∥r(0)∥2
≤ 10−6 ,

where r(k) is the residual vector at the k-th iteration. In all tables, N , n, GS, CS, and
CS(α) mean the number of iteration, the order of the matrix T , the Gauss–Seidel
iteration, the classical CSCS iteration, and the shi�ed CSCS iteration with the shi� α,
respectively.

_e CSCS of T in Example 3.1 is P-regular. So the classical CSCS iteration is con-
vergent. _e number of iterations required for convergence is illustrated in Table 1
in which we can see that our method converges slightly faster than the GS iterative
method.

Table 1: CS vs GS for Example 3.1

N
n 64 128 256 512 1024

GS 23 23 23 23 23
CS 21 21 21 21 21

For Example 3.2, we compute the smallest eigenvalues of thematrices T̂ = C∗ + S
which are listed inTable 2. It indicates that all the splittings of T in the cases of p = 0.8,
p = 1.0, p = 1.2, and p = 1.4 are not P-regular.
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Table 2: _e smallest eigenvalues of T̂ for Example 3.2

p
n 128 256 512 1024

0.8 -1.2074 -1.6996 -2.2389 -2.8321
1.0 -0.4726 -0.6476 -0.8020 -0.9371
1.2 -0.0117 -0.0659 -0.1023 -0.1256

We select a small perturbation α of −[λ1(Cβ) + λ1(Sγ)]/2 (i.e., 0 < −λ1(T̃)/2 <
α ≤ −[λ1(Cβ) + λ1(Sγ)]/2) such that the shi�ed CSCS is P-regular. _e numbers of
iterations required for convergence are illustrated in Tables 3-6. It is clear that the
shi�ed CSCS iterative methods converge much faster than the GS iterative methods
for larger n.

Table 3: CS(α) vs GS for Example 3.2 with p = 0.8

N
n 64 128 256 512 1024

GS 34 43 54 66 82
CS(α) 34(0.795) 40(1.03) 46 (1.32) 52 (1.658) 58 (2.05)

Table 4: CS(α) vs GS for Example 3.2 with p = 1.0

N
n 64 128 256 512 1024

GS 26 32 39 45 53
CS(α) 24(0.61) 26(0.730) 28(0.855) 30(0.95) 31(1.03)

Table 5: CS(α) vs GS for Example 3.2 with p = 1.2

N
n 64 128 256 512 1024

GS 22 25 29 33 37
CS(α) 18(0.46) 19(0.48) 19(0.55) 19 (0.63) 19 (0.65)

All CSCSs of T in Example 3.3–3.4 are P-regular. So the classical CSCS iterations
are naturally convergent. However, a�er introducing a parameter α (here, the α is
taken to be a small perturbation of −[λ1(Cβ) + λ1(Sγ)]/2), speciûcally, −λ1(T̃)/2 <
α ≤ −[λ1(Cβ) + λ1(Sγ)]/2, such that the shi�ed CSCSs are also P-regular, we ûnd
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Table 6: CS(α) vs GS for Example 3.2 with p = 1.4

N
n 64 128 256 512 1024

GS 18 21 23 25 27
CS(α) 14(0.34) 14(0.35) 14 (0.4) 15 (0.43) 15 (0.445)

that the shi�ed CSCS iterations work better than the classical CSCS iterations. _e
numbers of iterations required for convergence are illustrated in Tables 7 and 8, re-
spectively.

Table 7: CS(α) vs GS for Example 3.3

N
n 64 128 256 512 1024

GS 83 96 105 109 112
CS(0) 83 96 104 109 112
CS(α) 43(-0.391) 48(-0.418) 52(-0.42) 53(-0.43) 54(-0.435)

Table 8: CS(α) vs GS for Example 3.4

N
n 64 128 256 512 1024

GS 40 38 36 34 32
CS(0) 37 35 33 33 30
CS(α) 26(-0.155) 25(-0.165) 24(-0.166) 24 (-0.17) 24(-0.176)

4 Conclusion

In this paper, we consider the classical iterative solver of the hermitian positive def-
inite Toeplitz linear system of equations Tx = b. A shi�ed CSCS iterative method
is proposed, and its convergence is also discussed. We have shown that there always
exists a constant α such that the shi�ed CSCS is P-regular, even if the classical CSCS
is not P-regular. Moreover, if the classical CSCS is P-regular, we can choose a α such
that the si�ed CSCS iteration has a better convergence rate than the classical CSCS
iteration. Numerical experiments show that the si�ed and unshi�ed CSCS iterations
have better convergence behaviors than the classical GS iterations.

We remark here that the si�ed classical CSCS iterativemethod considered in this
paper is only for hermitian positive deûnite Toeplitz linear systems, but this method
can be generalized to general hermitian positive deûnite linear systems.
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It is an important and diõcult task to ûnd the optimal α that strongly depends on
the concrete structures and properties of the coeõcient matrix T and needs further
in-depth study from the viewpoint of both theory and computations.
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