
BULL. AUSTRAL. MATH. SOC. M 0 S 46L20' 2 0 M 2 0

VOL. 4 (1971), 201-203.

On the semigroup of all continuous
linear mappings on a Banach space

Sadayuki Yamamuro

It is well-known that every ring automorphism of the ring of all

linear transformations of a real vector space into itself is

inner. We shall show that, if this ring is regarded as a

semigroup with respect to composition and the dimension of the

vector space is not less than 2 , every semigroup automorphism

is inner.

Let E be a real Banach space and L(E) be the set of all

continuous linear mappings of &' into itself. With pointwise addition

and composition, L{E) is a ring, and, with the usual upper bound norm,

it is a Banach algebra. In the sequel, we assume that the dimension of E

is not 1 .

M. Eidel he it [7] has shown that every algebraic automorphism of this

ring is inner; in other words, if <j> is a one-to-one mapping of L(E)

onto itself such that

(1) <f>(/+0) = <t>(f) + <Ks) for all /, g € L{E)

and

(2) ${fg) = <j>(/)-<K<?) for all /, g € L{E) ,

then there exists an invertible h € L{E) such that

(3) Hf) = hfh'1 for every / i L(S) .

Eidelheit also proved in the same paper that, if L(B) is regarded

as a semigroup with respect to the composition, then every continuous

semigroup automorphism is inner. He has done so by showing that the

continuity and the condition (2) imply (l).
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In this note, we shall show that the continuity is not necessary,

that is, every semigroup automorphism of L(E) is a ring automorphism.

THEOREM. Every automorphism of the semigroup L(E) is inner.

Proof. Ei del he it proved that, if <j> is a semigroup automorphism,

there exists a one-to-one mapping h of E onto itself such that the

condition (3) is satisfied and, moreover,

(U) h(£x) = \i(E,)h(x) for any x £ E and real number £ ,

where u is a one-to-one mapping of if (the set of all real numbers) onto

R such that u(l) = 1 and u(£n) = u(£)-u(n) for any £, n d R , and

(5) h(x+y) = h(x) + h(y) if x and y are linearly independent.

(Then he used the continuity of <}> to show that h is homogeneous and

hence h $ L(E) .)

Now, we shall show that from (3), (k) and (5) it follows that h is

additive.

Let x be an arbitrary non-zero element and take another element y

such that x and y are linearly independent. For arbitrary £, n € R ,

there exist continuous linear functionals x and y such that

<x, x) = E, , <y, y) = n , <j/, a;> = 0 and <x, y) = 0 ,

where, for instance, <x, x> denotes the value of x at x . Then, put

/ = x ® x + x ®y~ ,

where, for instance, x ® x is a one-dimensional mapping defined by

( = <2, x>x for every z € E .

Then, / t L(E) , f(x) = & and f{y) = TTX . Now, since <)>(/)

it follows from (5) that

On t h e o ther hand, i t fol lows from (3) t h a t <\>(f)h = hf . There fore ,

h((C+n)xj = fc/(x+y) = &/(*) + hf{y) =

and, by (U), we have

u(n) ,
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which, together with (k), implies that u(£) = E, for every E, d R .

Therefore, h is homogeneous.

Now, for arbitrary a; and y , if these are linearly dependent,

y = ax for some a , and hence

h{x+y) = h[(l+a)x) = (l+a)h(x) = h(x) + ah(x)

= h(x) + h(y) .

This fact and (5) imply that h is additive. Therefore, from (3) it

follows that .<() is a ring automorphism.

REMARK I. As Eidel he it mentioned, the theorem is not true for

one-dimensional spaces. For instance, <(>(5) = £3 is a semigroup

automorphism of R which is not inner.

REMARK 2. As is easily seen, the same theorem holds for the

multiplicative semigroup of all linear mappings of a real vector space

whose dimension is not less than 2 .
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