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A NOTE ON H1 MULTIPLIERS FOR LOCALLY COMPACT
VILENKIN GROUPS

JAMES E. DALY AND KEITH L. PHILLIPS

ABSTRACT. Kitada and then Onneweer and Quek have investigated multiplier op-
erators on Hardy spaces over locally compact Vilenkin groups. In this note, we provide
an improvement to their results for the Hardy space H1 and provide examples showing
that our result applies to a significantly larger group of multipliers.

In this note, G denotes a locally compact Abelian group containing a decreasing
sequence of open compact subgroups (Gn)1n=�1 such that

(i)
S1
�1 Gn = G and

T1
�1 Gn = f0g, and

(ii) supnforder(GnÛGn+1)g Ú 1.
In the case where G is compact, we use the convention that Gn = G if n � 0 Examples
of these groups are the dyadic group on [0Ò 1), the p-adic numbers, and more generally,
the additive and multiplicative groups of a local field.

Let Γ denote the dual group of G and Γn = fç 2 Γ : ç(x) = 1 for all x 2 Gng.
The Haar measures ñ on G and ï on Γ are chosen so that ñ(G0) = ï(Γ0) = 1 and

consequently, ñ(Gn) =
�
ï(Γn)

��1
:= (mn)�1 for each n 2 Z. There is a norm on G

defined by jxj = (mn)�1 if x 2 Gn n Gn+1. The Fourier transform and inverse Fourier
transform respectively are denoted by ^ and _, and satisfy

(òGn)
^ =

�
ï(Γn)

��1
òΓn and (òΓn )_ =

�
ï(Gn)

��1
òGn Ò

where òA denotes the characteristic function of a set A. The structure of (atomic) Hardy
spaces on G has been well studied. See Kitada [4] or Chao-Janson [1] for complete
details. A function a: G ! C is a 1-atom, if for some n 2 Z and x 2 G,

(i) support (a) ² In := x + Gn,

(ii) kak1 �
�
ñ(In)

��1
, and

(iii)
R

G a(x) dx = 0.
A function f 2 L1(G) belongs to H1(G) if f can be represented as f =

P1
i=1 ïiai, where

each ai is a 1-atom, and
P1

i=1 jïij Ú 1. The H1 norm is k fkH1 = inf(
P1

i=1 jïij) with the
infimum taken over all such atomic decompositions of f . For a distribution f we define
the maximal function of f by

Mf (x) = sup
n

þþþ f Ł �ñ(Gn)
��1

òGn(x)
þþþ
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The maximal function characterizes H1(G); that is, f 2 H1(G) if and only if Mf 2 L1(G)
with k fkH1 ¾ kMfkL1 . A function û 2 L1(Γ) is a (Fourier) multiplier for H1 if there
exists a constant C Ù 0 so that for all f 2 H1 \ L2,

k(ûf^)_kH1 � Ck fkH1 

The corresponding multiplier operator is T, defined on L2 by Tf = (ûf^)_, and the set
of such multipliers is denoted by Á(H1). For û 2 L1(Γ) and j 2 Z, set ûj = ûòΓj and
∆j(û) = ûj+1 � ûj. Note that û =

P∆j(û) distributionally.

1. Multiplier theorems. In 1989 Onneweer and Quek [5] discussed the sharpness
of Kitada’s 1987 [4] multiplier theorem for H1:

THEOREM 1. If û 2 L1(Γ) and

1X
j=�1

�∆j(û)
�_

L1 Ú 1Ò

then û 2 Á(H1).

We prove an improvement of this result, but we will first need the following lemma.

LEMMA 2. Let T denote the multiplier operator with multiplier û and a be a 1-atom.
Then T(a) Ł òGn = ñ(Gn)

þþþPn�1
j=�1

�
∆j(û)

�_
Ł a

þþþ.
PROOF. The computations to prove this result are straightforward:

T(a) Ł òGn = (û_) Ł a Ł òGn

=
� 1X

j=�1

�
∆j(û)

�_
Ł òGn

�
Ł a

For the terms of the sum,
�
∆j(û)

�_
Ł òGn = û_ Ł

�
ï(Γj+1)òGj+1 � ï(Γj)òGj

�
Ł òGn

= û_ Ł
�
ï(Γj+1)òGj+1 Ł òGn � ï(Γj)òGj Ł òGn

�


Using the fact òGk Ł òGm = ñ(Gm)òGk for k Ú m

�
∆j(û)

�_
Ł òGn =

8<
:

0 if n � j

ñ(Gn)
�
∆j(û)

�_
if n Ù j.

Substituting this into the sum, we obtain the desired result.

THEOREM 3. If û 2 L1(Γ) and

sup
N

� 1X
j=N+1

Z
(GN)c

þþþ�∆j(û)
�_

(x)
þþþ dx

�
Ú 1Ò

then û 2 Á(H1).
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PROOF. Let a be a 1-atom and T denote the multiplier operator with multiplier û. For
T to be bounded on H1 it is sufficient to show that there exists a constant B such that

Z
G
jMT(a)(x)j dx � B Ú 1

for all 1-atoms a.
Due to the translation invariance of the multiplier operator T, we may assume that the

support of a is GN for some N 2 Z. We have

Z
G
jMT(a)(x)j dx =

Z
GN

jMT(a)(x)j dx +
Z

(GN)c
jMT(a)(x)j dx

= (1) + (2)

For integral (1), we use the usual L2 argument:

Z
GN

jMT(a)(x)j dx =
Z

GN

jMT(a)(x)jòGN (x) dx

� kMT(a)kL2kòGNkL2

� CkT(a)kL2kòGNkL2

� Ckûk1kakL2

�
ñ(GN)

�1Û2

� Ckûk1
�
ñ(GN)

��1Û2�
ñ(GN)

�1Û2

= Ckûk1

For integral (2), using Lemma 2

Z
(GN)c

jMT(a)(x)j dx =
Z

(GN)c
sup

n

þþþT(a) Ł
�
ñ(Gn)

��1
òGn(x)

þþþ dx

=
Z

(GN)c
sup

n

þþþ n�1X
j=�1

�
∆j(û)

�_
Ł a(x)

þþþ dx

=
Z

(GN)c
sup

n

þþþ n�1X
j=N+1

�
∆j(û)

�_
Ł a(x)

þþþ dx

with the last equality following from the fact that
�
∆j(û)

�_
Ł a(x) = 0 for j � N as the

support of a is contained in GN. Continuing,

�
Z

(GN)c

1X
j=N+1

þþþ�∆j(û)
�_
Ł a(x)

þþþ dx

=
Z

(GN)c

1X
j=N+1

þþþZ
G

�
∆j(û)

�_
(t)a(x � t) dt

þþþ dx

�
1X

j=N+1

Z
G

þþþ�∆j(û)
�_

(t)
þþþ Z

(GN)c
ja(x � t)j dx dt

Each of the integrals over G is split into one over GN and the other over (GN)c. For the
integrals over GN, t 2 GN and x 2 (GN)c imply x � t 2 (GN)c and a(x � t) = 0. Thus
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1X
j=N+1

Z
G

þþþ�∆j(û)
�_

(t)
þþþ Z

(GN)c
ja(x � t)j dx dt =

1X
j=N+1

Z
(GN)c

þþþ�∆j(û)
�_

(t)
þþþ Z

(GN)c
ja(x � t)j dx dt

�
1X

j=N+1

Z
(GN)c

þþþ�∆j(û)
�_

(t)
þþþ dtÒ

the last inequality follows as kakL1 � 1. Combining these estimates, we obtain

Z
G
jMT(a)(x)j dx =

Z
GN

jMT(a)(x)j dx +
Z

(GN)c
jMT(a)(x)j dx

� Ckûk1 +
1X

j=N+1

Z
(GN)c

þþþ�∆j(û)
�_

(t)
þþþ dt

This is the desired result.

2. Comparison of multiplier theorems. The sufficient condition of Theorem 3
appears in Kitada [4] in one of the computations, but not as a sufficient condition for a
multiplier û. Onneweer and Quek in [5] also noted this sufficient condition in one of their

proofs, but made use of the stronger condition
P1

j=�1

�∆j(û)
�_

L1 Ú 1. For boundedû,
this condition implies that û satisfies the sufficiency condition of Theorem 3 as is easily
seen by the following:

1X
j=N+1

Z
(GN)c

þþþ�∆j(û)
�_

(x)
þþþ dx �

1X
j=N+1

Z
G

þþþ�∆j(û)
�_

(x)
þþþ dx

�
1X

j=�1

Z
G

þþþ�∆j(û)
�_

(x)
þþþ dx

=
1X

j=�1

�∆j(û)
�_

L1 

To see that Theorem 3 is strictly better, consider the dyadic group D on [0Ò 1).
For n Ù 0 Gn corresponds to [0Ò 2�n), Γ is the Walsh functions f°kg1k=0, and Γ�j =
f°k : 0 � k Ú 2jg. Let fbjg be a bounded sequence and define û by

û(n) = bj for 2j�1 � n Ú 2j

(that is, °n 2 Γ�j+1 nΓ�j). The multiplying sequence fû(n)g is constant on dyadic rings.
For j ½ 1,

�
∆�j(û)

�_
(x) =

2j�1X
n=2j�1

û(n)wn(x) = bj

2j�1X
n=2j�1

wn(x)

It is well known that
P2j�1

n=2j�1 wn(x) = 2j�1fò[0Ò2�j)(x) � ò[2�j Ò2�j+1)(x)g � hj. A calculation
gives khjkL1 = 1 for all j. Thus

1X
j=0

�∆�j(û)
�_

L1
=

1X
j=1

�∆�j(û)
�_

L1
=

1X
j=1
jbjj khjkL1 =

1X
j=1
jbjj
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So the multiplying sequence fû(n)g must be in l1 for the Onneweer-Quek condition to
be satisfied. However this multiplying sequence fû(n)g does satisfy the conditions of
Theorem 3:

1X
j=N+1

Z
(GN)c

þþþ�∆j(û)
�_

(t)
þþþ dt =

1X
j=N+1

bj

Z
(GN)c

jhj(t)j dt = 0

as hj is supported on GN = [0Ò 2�N) for j Ù N. Thus T is bounded on H1 and its operator
norm depends only on kûk1.

It is well known and is easily seen independently of Theorem 3 that multipliers
constant on dyadic blocks are bounded on H1. Using the Littlewood-Paley square function
characterization of H1, we verify again the boundednessof T on H1 with norm dependent
upon only kûk1 as follows:

kT( f )kH1 =
Z 1

0

�1X
j=1

þþþ 2j�1X
n=2j�1

û(n)h f Òwniwn(x)
þþþ2
�1Û2

dx

�
Z 1

0

�1X
j=1
jbjj

� 2j�1X
n=2j�1

h f Òwniwn(x)
�2
�1Û2

dx

� kbjk1
Z 1

0

�1X
j=1

� 2j�1X
n=2j�1

h f Òwniwn(x)
�2
�1Û2

dx

= Ckûk1k fkH1

In [2] we use a dyadic version of Theorem 3 to prove a conjecture of Simon [6]
concerning the characterization of H1 on the dyadic group [0Ò 1) by certain square
functions. Let Wj( f ) and õj( f ) denote the j-th partial sum and Cesaro sum of the Walsh
series of f , respectively. Verification that the square function

S( f ) =
�1X

n=1

þþþW2n( f ) � õ2n ( f )
þþþ2
�1Û2

gives an equivalent norm on H1
�
k fkH1 ¾ kS( f )kL1

�
is equivalent to the verification of

the boundedness on H1 of the multiplier operators corresponding to the sequencesû and
û�1 where

û(n) = nÛ2j for 2j�1 � n Ú 2j

These two sequences are shown to satisfy the conditions of Theorem 3 while they do
not satisfy the conditions of Theorem 1. Our attempt to settle the Simon conjecture and
related square function issues led us to improve multiplier theorems of this type.

There is an important subclass of multipliersû for which the conditions similar to those
discussed here have been explored in depth. These are the homogeneous multipliers that
extend the concept of a Calderon-Zygmund singular integral operator from the Euclidean
setting to the 0-dimensional one. For a p-adic field or p-series field, the multiplier û is
said to be homogeneous of degree 0 if û(px) = û(x). Due to the homogeneity of û we
need only verify the condition of Theorem 3 for N = 0. Without loss of generality,
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assume that û satisfies
R
jtj=1 û(t) dt = 0. The smoothness condition of Theorem 3 for û is

then the finiteness of
1X
j=1

Z
jtjÙ1

þþþ�∆j(û)
�_

(t)
þþþ dtÒ

and this is equivalent to the smoothness condition of Theorem 6.4 for p = 1 of our work
in [3]. In fact the condition stated above appears in this form in the final lines of the
proof of 6.4 of [3]. In the notation of [3] the space LA+

1 is exactly those homogeneous
multipliers for which this expression is finite. Thus for the Hardy space H1, Theorem 3
generalizes this multiplier result for homogeneous degree zero multipliers on local fields
to arbitrary multipliers for a general locally compact Vilenkin group.

In [7] W. S. Young obtains a Marcinkiewicz Multiplier Theorem for Lr, 1 Ú r Ú 1,
for Vilenkin groups with bounded order. Hardy spaces are not considered there. An
interesting part of the Young construction is that the differences considered for the
Marcinkiewicz type result are over dyadic blocks, even though the Vilenkin group has
no algebraic dyadic structure. For example, for the 3-adic field it follows that control
over differences jû(k +1)�û(k)j summed over the dyadic blocks gives a good multiplier
theorem even though the underlying algebraic structure suggests using the 3-adic blocks.
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