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Summary

Knowledge of the genetic relatedness among individuals is essential in diverse research areas such as
behavioural ecology, conservation biology, quantitative genetics and forensics. How to estimate
relatedness accurately from genetic marker information has been explored recently by many
methodological studies. In this investigation I propose a new likelihood method that uses the
genotypes of a triad of individuals in estimating pairwise relatedness (r). The idea is to use a third
individual as a control (reference) in estimating the r between two other individuals, thus reducing
the chance of genes identical in state being mistakenly inferred as identical by descent. The new
method allows for inbreeding and accounts for genotype errors in data. Analyses of both simulated
and human microsatellite and SNP datasets show that the quality of r estimates (measured by the
root mean squared error, RMSE) is generally improved substantially by the new triadic likelihood
method (TL) over the dyadic likelihood method and five moment estimators. Simulations also show
that genotyping errors/mutations, when ignored, result in underestimates of r for related dyads, and
that incorporating a model of typing errors in the TL method improves r estimates for highly related
dyads but impairs those for loosely related or unrelated dyads. The effects of inbreeding were also
investigated through simulations. It is concluded that, because most dyads in a natural population
are unrelated or only loosely related, the overall performance of the new triadic likelihood method is
the best, offering r estimates with a RMSE that is substantially smaller than the five commonly used
moment estimators and the dyadic likelihood method.

1. Introduction

A number of estimators have been developed to use
genetic marker data in estimating pairwise relatedness
(r) between individuals (e.g. Lynch, 1988; Queller &
Goodnight, 1989; Li et al., 1993; Ritland, 1996;
Lynch & Ritland, 1999; Wang, 2002; Milligan, 2003;
Thomas, 2005; Oliehoek et al., 2006), and have been
applied to diverse research areas such as behavioural
ecology, conservation biology, quantitative genetics
and forensics (reviewed by Blouin, 2003). The stat-
istical properties and performances of these esti-
mators were recently investigated by several studies
using both simulated and empirical datasets (e.g.
Lynch & Ritland, 1999; Van de Casteele et al., 2001;
Wang, 2002; Milligan, 2003; Csilléry et al., 2006).
Conclusions drawn from these studies are, however,

somewhat disappointing. First, no single estimator is
universally superior to the others in terms of per-
formance evaluated by estimation bias and variance
(Van de Casteele et al., 2001; Wang, 2002; Milligan,
2003). The performance rank order of the estimators
depends, in particular, on the true relatedness value
being estimated, the informativeness of markers
(number of loci, number and frequencies of the alleles
at each locus) utilized in an analysis, and the size of
the sample in estimating allele frequencies. Although
data can be examined regarding marker informative-
ness and sample size, an investigator generally has
no idea of the true relatedness among the sampled
individuals and thus the selection of the best estimator
is virtually impossible in practice. Second, with the
amount of marker information typically available in
practice, the sampling variance of these estimators
is high. For full-sibs (r=0.5) as an example, the stan-
dard deviation of different estimators varies from 0.14
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to 0.22 when 10 markers, each having 10 alleles with
known frequencies in a uniform distribution, are used
in the estimation (Lynch & Ritland, 1999; Wang,
2002). The high coefficient of variance (standard
deviation/mean) of the estimators, 28–45%, is partly
caused by the large inherent variance in IBD (ident-
ical by descent) among loci due to Mendelian in-
heritance (Wang, 2006). Third, moment estimators
may yield relatedness estimates outside the legitimate
range of [0,1], leading to difficulties in interpreting the
estimates and in utilizing the estimates in certain
subsequent analyses. One may ask, for example,
whether or not a dyad with r̂=x10 is less related
than a dyad with r̂=x5; and, if the answer is yes,
how much less related for the first dyad than the
second.

Ritland (1996), Lynch & Ritland (1999) and Wang
(2002), in developing their moment estimators, all
tried likelihood methods for estimating relatedness
from marker data. These likelihood estimators
showed poor performance and became equivalent to
or superior to moment estimators only when a very
large number of loci (say, >70) were used in the esti-
mation. As a result, these authors dismissed the utility
of likelihood methods for pairwise relatedness in
practice. In contrast, Milligan (2003) showed by
simulations that in the majority of cases the likelihood
estimator has the lowest root mean squared error
(RMSE), a measurement of accuracy incorporating
both estimation bias and sampling variance. The ap-
parently conflicting results arise mainly because esti-
mates were constrained to the biologically meaningful
parameter space in Milligan’s likelihood estimator
but not in the others. From both biological and stat-
istical points of view, it seems more plausible to
restrict the parameters to their legitimate range of
values. However, Milligan’s (2003) likelihood esti-
mator overestimates relatedness slightly, especially
when marker information is scarce and true related-
ness is close to 0. Partly as a result of this over-
estimation, the RMSE of his likelihood estimator is
not always smaller than the moment estimators.
Increasing the number of loci can reduce the bias
when alleles at each locus have an even frequency
distribution. It becomes ineffective, however, with
uneven allele frequency distributions such as when all
alleles except one at a locus are rare (Milligan, 2003).

In this paper, I propose a new likelihood estimator
of pairwise relatedness based on the estimation of
IBD coefficients among a triad of individuals. By
using trios rather than pairs of individuals, this triadic
likelihood estimator controls for the background
similarity in genotypes of a dyad introduced by spor-
adic identity-in-state (IIS) rather than IBD. It can
therefore reduce the overestimation of IBD (and thus
relatedness) characterized by the dyadic likelihood
estimator. I also fitted a genotype-error model into

the new triadic likelihood estimator to cope with
genotyping errors and mutations of data, and incor-
porated inbreeding into the estimator to deal with
inbred populations. The performance of the new
likelihood estimator is compared with that of the dy-
adic likelihood method and five moment estimators
using both simulations and two large human datasets.

2. Methods

(i) Dyadic IBD coefficients and relatedness

Homologous genes are identical by descent (IBD) if
they are copies descended from the same gene of an
ancestor (Malécot, 1948). Inbreeding coefficient can
thus be defined as the probability that the two hom-
ologous genes within an individual are IBD (Malécot,
1948), while relatedness (r) or coancestry coefficient
(h) between two individuals can be characterized by
the possibility of finding such identical genes in their
genotypes (Harris, 1964; Jacquard, 1972). Estimating
the relatedness (rXY) or coancestry (hXY) coefficient
between individuals X and Y is solved, therefore, by
finding the IBD coefficients between genes from X and
genes from Y, as implemented in several moment (e.g.
Lynch & Ritland, 1999; Wang, 2002) and likelihood
estimators (Milligan, 2003).

Among the two genes from X and two genes from
Y, there exist 15 mutually exclusive and exhaustive
IBD states (Jacquard, 1972; Weir, 1996). When
paternal and maternal genes are not distinguished, the
15 IBD states reduce to nine condensed identity states
(Harris, 1964; Jacquard, 1972; Lynch &Walsh, 1998)
as defined in Table 1. The symbols for the prob-
abilities of the nine identity states are also listed in the
table. Note that in general it is impossible to deter-
mine whether two genes are IBD or not, even if the
pedigree of the two individuals from whom the two
genes come are known. Only under certain special

Table 1. Dyadic ( four-gene) IBD states and their
probabilities

IBD state Genes IBD Pr(Si)

S1 (abcd) D1

S2 (ab,cd) D2

S3 (abc), (abd) D3

S4 (ab) D4

S5 (acd), (bcd) D5

S6 (cd) D6

S7 (ac,bd), (ad,bc) D7

S8 (ac), (ad), (bc), (bd) D8

S9 None D9

Homologous genes a and b are in individual X, and genes
c and d are in individual Y. Genes not specified are not IBD
with any of those listed in column 2. Alternative identity
configurations for a given IBD state are listed in separate
sets of parentheses.
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circumstances do we know the IBD states of two or
more genes. For example, a parent with genotype
A1A2 and a child with genotype A1A3 have their A1

genes IBD and all other pairs of genes non-IBD.
However, if both the parent and child have genotype
A1A2, we cannot ascertain the IBD states between the
two A1 or A2 genes in the two individuals. We can,
though, always determine the probability of genes
that are IBD or non-IBD (or more generally the nine
IBD coefficients in Table 1), with or without pedigree
information. The likelihood estimator of relatedness
is actually based on the estimation of IBD coefficients
(probabilities) from genetic marker data of individ-
uals without pedigree (see below).

Knowing the nine IBD coefficients, it is easy to
obtain the inbreeding coefficients (F ) of, and coan-
cestry (h) and relatedness (r) coefficients between
individuals X and Y. By definition, we have from
Table 1 that (Jacquard, 1972; Lynch & Walsh, 1998;
Milligan, 2003)

FX=D1+D2+D3+D4,

FY=D1+D2+D5+D6,

hXY=D1+1
2
(D3+D5+D7)+1

4
D8,

rXY=2hXY: (1)

It should be noted that while F is a sufficient statistic
describing the IBD status between genes within an
individual, neither h nor r is a sufficient statistic for
the relationship between genes from two individuals.
By transforming the complete set of nine D par-
ameters into h or r, some information is lost so that,
for example, the probability of the joint genotypes of

individuals X and Y or the probability of the genotype
of X given that of Y cannot be derived using either h
or r. These summary statistics are nevertheless useful
in quantifying the overall similarity in gene descent
between individuals and find wide applications in
areas such as quantitative genetics (Lynch & Walsh,
1998) and behaviour ecology (Hamilton, 1964). I will
therefore concentrate on the estimation of r rather
than the nine IBD coefficients throughout this inves-
tigation.

The nine gene IBD states for individuals X and Y
cannot be observed, but their probabilities (Table 1)
can be inferred from the genotypes of X and Y at a
number of marker loci. The probability of the joint
genotypes of X and Y conditional on the nine IBD
coefficients and allele frequencies was derived by
Harris (1964) and was given in a more convenient
form by Milligan (2003). One can obtain estimates of
the nine IBD coefficients by maximizing the prob-
ability of the joint genotypes given allele frequencies,
and then using (1) one gets maximum likelihood
estimates of h or r. Following previous moment esti-
mators of relatedness, Milligan (2003) assumed non-
inbred individuals so that Diw0 for i=1y6 and he
estimated D7, D8 and D9 only. The full dyadic like-
lihood method estimating the nine IBD coefficients
jointly can be implemented similarly to estimate r
between inbred individuals.

(ii) Triadic IBD coefficients

Among the six genes at an autosomal diploid locus
of individuals X, Y and Z, there are 203 mutually
exclusive and exhaustive IBD states, which reduce to

Table 2. Triadic (six-gene) IBD states and their probabilities

IBD
state Genes IBD Pr(si)

s1 (ace, bdf), (acf, bde), (ade, bcf ), (adf, bce) d1

s2 (ac,be,df ), (ac,bf,de), (ad,be,cf ), (ad,bf,ce), (ae,bc,df ), (af,bc,de), (ae,bd,cf ), (af,bd,ce) d2

s3 (ace,bd), (acf,bd), (ade,bc), (adf,bc), (bce,ad), (bcf,ad), (bde,ac), (bdf,ac) d3

s4 (ace,bf ), (ade,bf), (acf,be), (adf,be), (bce,af ), (bde,af ), (bcf,ae), (bdf,ae) d4

s5 (ace,df ), (bce,df ), (acf,de), (bcf,de), (ade,cf ), (bde,cf ), (adf,ce), (bdf,ce) d5

s6 (ac,bd), (ad,bc) d6

s7 (ae,bf ), (af,be) d7

s8 (ce,df ), (cf,de) d8

s9 (ac,be), (ac,bf ), (ad,be), (ad,bf), (bc,ae), (bc,af ), (bd,ae), (bd,af ) d9

s10 (ac,de), (ac,df ), (bc,de), (bc,df ), (ad,ce), (ad,cf ), (bd,ce), (bd,cf ) d10

s11 (ae,cf ), (ae,df ), (be,cf ), (be,df ), (af,ce), (af,de), (bf,ce), (bf,de) d11

s12 (ace), (acf ), (ade), (adf ), (bce), (bcf ), (bde), (bdf ) d12

s13 (ac), (ad), (bc), (bd) d13

s14 (ae), (af ), (be), (bf ) d14

s15 (ce), (cf ), (de), (df ) d15

s16 None d16

I assume individuals X, Y and Z are all non-inbred so that only 16 of the 66 possible IBD states are necessary. Homologous
genes a and b are in individual X, genes c and d are in individual Y, and genes e and f are in individual Z. Genes not specified
are not IBD with any of those listed in the ‘Genes IBD’ column. Alternative identity configurations for a given IBD state are
listed in separate sets of parentheses.
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66 condensed IBD states when maternal and paternal
genes are not distinguished (Thompson, 1974). For
the purpose of estimating relatedness between non-
inbred individuals, only 16 of the 66 condensed IBD
states are necessary. Table 2 lists these 16 IBD states
and symbols for their corresponding probabilities.

From the 16 six-gene IBD coefficients d, one can
easily calculate the four-gene IBD coefficients Di for
i=7,8,9, and thus the coancestry (h) and relatedness
(r) coefficients between any two of the three in-
dividuals. Without loss of generality, I assume the
first two individuals, X and Y, constitute our focal
dyad and the third individual, Z, serves as a reference.
The coefficients D7 and D8 (D9w1xD7xD8) of the
focal dyad are

D7=d1+d3+d6,

D8=d2+d4+d5+d9+d10+d12+d13 (2)

and the coancestry (h) and relatedness (r) coefficients
are then calculated as h=1

2
D7+1

4
D8 and r=2h, re-

spectively.
To obtain likelihood estimates of d from genotype

data, we need the probability of triadic genotypes
given allele frequencies and d. Thompson (1974)
derived a general formula for this probability, but its
calculation is quite complicated. Here I give an ex-
plicit expression for the probability of a trio of geno-
types. Assuming X, Y and Z are random members of
the subpopulation composed of trios of individuals
having the same IBD coefficients (di, i=1, 2, …, 16),
the genotypic array of such trios is

where i, j, k, l, m, n index the alleles of a locus, pi is the
frequency of allele Ai, and a trio of genotypes such as
{AiAj, AiAk, AiAl} refers to a trio of individuals {X,Y,
Z}. A few examples help in understanding (3). If the
two non-IBD genes of X are IBD with those of Y and
Z (i.e. IBD state s1 in Table 2), then the triad will have
the same genotype AiAj with frequency pipj (first

term). If X, Y and Z have one gene IBD and further-
more X and Y have another gene IBD (i.e. IBD state
s3), then the first trio of genes will be Ai with fre-
quency pi, the second pair of genes will be Aj with
frequency pj, and the other gene (in Z) will be Ak with
frequency pk, resulting in a frequency of pi pj pk of the
trio of genotypes {AiAj, AiAj, AiAk} (third term).

To obtain the probability of a specific trio of
genotypes for {X, Y, Z}, one needs to collect the
appropriate frequencies from the various terms in (3).
For the genotype trio {AiAj, AiAk, AiAl} as an ex-
ample, where i, j, k, l index four different alleles in this
particular case, the probability can be found to be pi pj
pk pl (d12+2(d13+d14+d15)pi+8d16p

2
i ).For a locus with

six or more co-dominant alleles, there are 66 distinct
patterns of IIS for the six genes in a trio of individuals,
which correspond to the 66 condensed IBD states.
The probabilities of the 66 patterns of IIS (available
upon request) as a function of d and allele frequencies
are derived from (3) and are used in the likelihood
estimation of the 16 six-gene IBD coefficients in
Table 2 and thus of relatedness as described below.

For simplicity in describing the methodology and in
accordance with previous moment and likelihood
estimators, I have assumed non-inbred individuals so
that only 16 of the 66 condensed IBD states are
required in the triadic likelihood estimation of r. If
desirable, however, inbreeding can be incorporated in
the triadic likelihood method to allow for the simul-
taneous estimation of inbreeding coefficients of each
individual and more importantly for the more accu-
rate estimation of r between inbred individuals. An

equation similar to (3) but in terms of the prob-
abilities of the 66 condensed IBD states can be derived
(available upon request). A likelihood function can
then be constructed from the equation, which is used
in the estimation of the 66 IBD coefficients and thus
of F and r. Because previous r estimators assume
non-inbred individuals, I will concentrate on the

d1 g
i, j

pipj{AiAj,AiAj,AiAj}+d2 g
i, j, k

pipjpk{AiAj,AjAk,AiAk}

+d3 g
i, j, k

pipjpk{AiAj,AiAj,AiAk}+d4 g
i, j, k

pipjpk{AiAj,AiAk,AiAj}

+d5 g
i, j, k

pipjpk{AiAk,AiAj,AiAj}+d6 g
i, j, k, l

pipjpkpl{AiAj,AiAj,AkAl}

+d7 g
i, j, k, l

pipjpkpl{AiAj,AkAl,AiAj}+d8 g
i, j, k, l

pipjpkpl{AkAl,AiAj,AiAj}

+d9 g
i, j, k, l

pipjpkpl{AiAj,AiAk,AjAl}+d10 g
i, j, k, l

pipjpkpl{AiAk,AiAj,AjAl}

+d11 g
i, j, k, l

pipjpkpl{AiAk,AjAl,AiAj}+d12 g
i, j, k, l

pipjpkpl{AiAj,AiAk,AiAl}

+d13 g
i, j, k, l,m

pipjpkplpm{AiAj,AiAk,AlAm}+d14 g
i, j, k, l,m

pipjpkplpm{AiAj,AlAm,AiAk}

+d15 g
i, j, k, l,m

pipjpkplpm{AlAm,AiAj,AiAk}+d16 g
i, j, k, l,m, n

pipjpkplpmpn{AiAj,AkAl,AmAn} (3)
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simple 16-IBD-state version of the triadic likelihood
estimator throughout this manuscript, except when I
explicitly investigate the effect of inbreeding.

(iii) Triadic likelihood estimation of relatedness

Suppose that a sample of individuals is drawn from a
population. Each individual is examined at some
marker loci, and we are interested in knowing how
pairs of individuals are genetically related based solely
on the marker data. I assume that inbreeding is neg-
ligible in the population so that only the set of IBD
coefficients, d={d1, d2, …, d16}, is relevant in describ-
ing the relationship for a trio of individuals. This
assumption of non-inbreeding is followed implicitly
or explicitly by all previous relatedness estimators.
I also assume that the markers are in linkage equilib-
rium and are unlinked so that the overall likelihood is
simply the product of the likelihoods across loci.

For a trio of individuals {X, Y, Z}, the probability
(obtained above) of observing their genotypes at a
locus given d and allele frequencies is the likelihood of
d. By maximizing the product of the likelihoods
across loci over the legitimate parameter space
(i.e. dio0 for i=1, 2, …, 16, subject to constraint
g16

i=1di � 1), one obtains the maximum likelihood
estimates (MLEs) of d. In general, an analytical
solution is impossible for the maximum likelihood
estimation, and a numerical approach has to be
adopted. I choose to use Powell’s quadratically con-
vergent method (Press et al., 1996) with slight modi-
fications to solve this 16-dimentional constrained
optimization problem. Tests using numerous simu-
lated and empirical datasets with a large number of
initial points (a point specifies the 16 parameter values
of d) indicate that the method is fast and converges
reliably. Therefore, in the analyses shown below, a
single randomly chosen starting point is used for each
triad to initiate the search for the MLEs of d.

For a given dyad of X and Y, I simulate a number
of M non-inbred individuals unrelated among them-
selves and unrelated to either X or Y, with their multi-
locus genotypes generated by simulations using the
allele frequencies of the dataset. Each of the M simu-
lated individuals serves as a reference to obtain the
triadic likelihood estimates of d and then of D and r
coefficients between X and Y. We therefore face the
problem of how to summarize these M estimates into
a single best estimate of rXY. In principle, one might
use one of many summary statistics, such as the
harmonic, arithmetic, geometric means or the median
or mode of the distribution of M estimates, as the
estimate of rXY. It turns out that the mode estimate
recovers the dyadic likelihood estimate (Milligan,
2003) in all cases (different degrees of true relatedness,
and different amounts of marker information) in-
vestigated (results not shown). Considering that

most dyads in natural populations are hardly related
(Ritland, 1996; Lynch & Ritland, 1999) and like-
lihood methods usually overestimate relatedness (e.g.
Milligan, 2003), I choose to use the harmonic mean
of the estimates in the first percentile of the M esti-
mates as the best estimate of rXY. Analyses using
simulated and empirical data show that this related-
ness estimator has generally smaller biases and stan-
dard deviations than the mean, mode or median
estimators for dyads related to different degrees and
for different allele frequency distributions. They also
show that estimates of r stabilize when M becomes
large (say, M>500; see results below). In the results
shown below, a value of M=500 is adopted.

Using the same algorithm but relaxing the as-
sumption of non-inbred individuals, I can implement
the full version of the triadic likelihood method
to estimate F and r coefficients from the 66 IBD
coefficients.

(iv) Accounting for genotype errors

Previous relatedness estimators invariably ignored
genotyping errors in data. This is plausible because
typing errors should have a small effect on relatedness
estimation except when the rate of errors is excep-
tionally high (say, 10%). Furthermore, accounting
for typing errors may incur a cost, lowering the power
of a relatedness analysis (Morrissey & Wilson, 2005).
However, in the case of a large number of markers, a
high genotyping error rate and highly related dyads,
typing errors could reduce the quality of relatedness
estimates substantially if they are not accounted for.
Fortunately, unlike moment estimators, it is relatively
easy to incorporate a model of genotyping errors into
the triadic likelihood estimator of relatedness.

I adopt a simple genotyping error model as detailed
in Wang (2006). The model assumes that all gene
copies at a locus are independently and equally likely
to be incorrectly observed, and that an allele, if in-
correctly genotyped, is observed to be any (including
itself) of the alleles at the locus with an equal prob-
ability. Using this error model, we can obtain
the probability of a trio of observed genotypes (or
phenotypes) given allele frequencies, the 16 triadic
IBD coefficients and the error rate of the locus, fol-
lowing the same approach as utilized by Wang (2006)
in the case of two individuals. Maximizing this prob-
ability yields MLEs of the 16 triadic IBD coefficients
and thus the pairwise relatedness.

(v) Comparison with previous relatedness estimators

As mentioned in Section 1, although a number of re-
latedness estimators have been developed and used in
practice (Blouin, 2003), none of them is clearly sup-
erior in performance to the others in all circumstances.
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Any new estimator must be carefully examined for its
performance and statistical properties in comparison
with previous estimators under various situations
before it is released for applications.

Six estimators are chosen to compare with the
current triadic likelihood estimator, denoted as TL
hereafter. These six estimators are described by
Queller & Goodnight (1989; denoted by QG), Ritland
(1996; denoted by R), Lynch & Ritland (1999;
denoted by LR), Lynch (1988) and Li et al. (1993;
denoted by LL), Wang (2002; denoted by W) and
Milligan (2003; denoted by M), and have been
compared by several authors recently (e.g. Lynch &
Ritland, 1999; Van de Casteele et al., 2001; Wang,
2002; Milligan, 2003; Csilléry et al., 2006). Because
several variants of some estimators exist in the litera-
ture, I describe each estimator briefly to avoid con-
fusion. For a dyad with genotypes {AiAj} and {AkAl}
at a locus, the QG estimator is calculated by (Sik+
Sil+Sjk+SjlxH)/(2+Sij+SklxH), where Sac=1 if
a=c and Sac=0 if otherwise (a,c=i, j,k, l ), H=pi+
pj+pk+pl. With multiple loci, the sums of the
denominator and numerator over loci are obtained
and the division of the sums gives the multi-locus
estimate. The LL and R estimators are obtained by
averaging (across loci) r̂XY calculated by equations
(8–9) in Lynch & Ritland (1999). LR and W esti-
mators are implemented as described in the original
papers (Lynch & Ritland, 1999; Wang, 2002). The M
estimator is implemented following Milligan (2003),
except that the algorithm used is Powell’s quad-
ratically convergent method (Press et al., 1996), which
is more powerful than the simplex method used by
Milligan (2003).

(vi) Simulations and measurements of performance

To evaluate and compare the performances of differ-
ent estimators, one has to apply them to simulated
or empirical datasets, because it is mathematically
intractable to investigate the statistical properties of
several estimators analytically. Following previous
studies, I simulate data in a range of sampling con-
ditions that it is hoped are typical of or embrace
practical applications in relatedness estimation.

Four different allele frequency distributions are
used in the simulations: one in which all alleles have
an equal frequency (EF), one in which a single allele
occurs with a frequency of 0.8 and the remaining
alleles are equally frequent (common allele frequency
distribution, CF), one in which allele i (=1, 2, …, k)
at a k-allele locus has a frequency of i/(k(k+1)/2)
(triangular frequency distribution, TF) and one in
which allele frequencies are drawn independently
from the same Dirichlet distribution with all par-
ameters set to 1 (uniform allele frequency distribution,
UF). Five representative genetic relationships found

in natural populations were considered: parent–
offspring (PO), full-sibs (FS), half-sibs (HS), first
cousins (FC) and unrelated individuals (UR). These
relationships vary in the extent and pattern of
relatedness and have different inherent (Mendelian
inheritance) variances of r among loci (Wang, 2006).

To investigate the robustness to inbreeding of the
estimators, dyads with a certain inbreeding coefficient
(F ) and genetic relationship were also simulated and
their relatedness estimated by these estimators. In
comparison, the same data were also analysed by the
full versions of the dyadic and triadic likelihood
methods that account for inbreeding. For a PO dyad,
the genotype of the parent (X ) in the dyad is gener-
ated with F (F<1/3), and the genotype of the other
parent (S) is generated by sampling at random one
gene from the population and the other gene from the
population and from X with probabilities 1x4F/
(1+F ) and 4F/(1+F ), respectively. The offspring in
the dyad (Y) is then generated from those of the
parents following Mendelian segregation. It can be
shown that, with this simulation procedure, the nine
IBD coefficients for the PO dyad X and Y are
D1=2F 2/(1+F ), Di=(1xF ) F/(1+F ) for i=3,5,7,
Di=0 for i=2,4,6,9, and D8=(1xF )2/(1+F ). The
inbreeding coefficient of both X and Y is F, and the
actual relatedness of the dyad is 1

2 (1+3F ). For a FS
dyad, genotypes are simulated independently from
those of their parents between whom the IBD coeffi-
cients are D8=4F (F<1/4) and D9=1–4F, respect-
ively. The inbreeding coefficients of and relatedness
between the FS individuals thus generated are F and
1
2+F, respectively. For a FC dyad, two FS individuals,
S and T, can be generated from non-inbred and un-
related parents. An individual, U, related to S with
IBD coefficients D8=4F (F<1/4) and D9=1–4F is
generated and an offspring (X ) is generated from S
and U as parents. Similarly, an offspring (Y ) is
generated from T and V as parents, where individual
V is related to T with IBD coefficients D8=4F and
D9=1–4F. FC dyads thus simulated have inbreeding
coefficient F and relatedness 1

8
(1+2F )2. For a UR

dyad, the genotype of an individual is generated in-
dependently from that of the other individual with a
probability of F that the two genes at a locus are IBD.
Therefore, individuals in a UR dyad have inbreeding
coefficient F and relatedness 0.

To investigate the effect of data quality, genotyping
errors are introduced at a given rate into the geno-
types of the individuals. The data are then analysed by
different estimators to investigate the impact of typing
errors on relatedness estimates, and the robustness of
the estimators to typing errors.

The quality of an estimator is evaluated by its bias
and the root mean squared errors, calculated as

RMSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R
gR

i=1( r̂ ixr)2
q

, where r̂i is the relatedness
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estimate of the ith dyad (i=1, 2, …, R) by a given es-
timator and r is the parameter value of relatedness
used in generating the R simulated dyads. RMSE
captures an estimator’s bias (measured by B= r̄xr,
where r̄=1

R
gR

i=1 r̂ i) and precision (measured by vari-

ance V=1
R
gR

i=1( r̂ ix r̄)2), because obviously RMSE 2=
B2+V. For any parameter combination, a number of

R=10 000 replicate dyads with a given relationship

are simulated and analysed by each estimator.

Because the likelihood estimators are constrained to

the parameter range of [0,1] while all moment esti-

mators are not, the latter are disadvantaged in com-

paring sampling variance or RMSE with likelihood

methods. It is well known that moment estimators,

especially those of Ritland (1996) and Lynch &

Ritland (1999), have rather skewed distributions with

extreme values far outside of the range [0,1]. To be

fair, therefore, all moment estimators are truncated to

the range [0,1] before being used in calculating their

biases and RMSEs.

(vii) A human dataset

The performances of the seven estimators were also
compared by analysing a human dataset, CEPH
(Centre d’Etude du Polymorphisme Humain), main-
tained by the Fundation Jean Dausset laboratory.
The dataset, in its current version V10 available
online (http://www.cephb.fr/cephdb/php/), contains
genotypes of individuals from 65 families at 32 356
genetic marker loci. These include 9900 microsatellite
markers and 21 480 bi-allelic markers, of which 17 512
are SNPs. Within each family, genotypes are available
for the father, mother and a variable number of
full-sib children. Some families also have a variable
number of grandparents (1–4) genotyped as well.
For this dataset, therefore, we have up to four

known dyadic relationships: parent–offspring, full-
sib, grandparent–grandchild (GG) and unrelated in-
dividuals. The pairwise relatedness among individuals
within each family was analysed using a variable
number of microsatellites or SNPs with known allele
frequencies provided by the CEPH dataset.

3. Results

(i) Number of reference individuals in the triadic
likelihood estimator

As described in Section 2, the triadic likelihood
method uses a number (M) of reference individuals in
estimating the relatedness of a focal dyad. The triadic
likelihood estimates quickly stabilize with an increas-
ing M. Some numerical examples are shown in
Table 3, where correlation coefficients and root mean
squared differences (RMSDs) are calculated between
r estimates using M=200, 400 or 600 and those using
M=800. Estimates were made for PO, FS, FC and
UR dyads using 10 loci, each having eight alleles with
frequencies in one of three distributions: equal fre-
quency (EF), uniform Dirichlet (UF), and one com-
mon with the remaining rare (CF). It is clear from the
table that, for all relationships and allele frequency
distributions, r estimates using M=400 or 600 are
very close to those using M=800, with correlation
coefficients usually larger than 0.99 and RMSDs
usually smaller than 0.01. Similar results are obtained
using other numbers of loci, and other numbers of
alleles per locus. Based on these results, M=500
seems to be sufficient, and is adopted in all the
analyses shown below.

(ii) Effects of marker information

Although all relatedness estimators generally improve
with an increasing amount of marker information,

Table 3. Effect of the number of reference individuals on the triadic likelihood estimator

Frequency
distribution Dyads

M=200 M=400 M=600

Correlation RMSD Correlation RMSD Correlation RMSD

EF PO 0.9581 0.0108 0.9849 0.0061 0.9933 0.0039
FS 0.9977 0.0095 0.9991 0.0058 0.9997 0.0031
FC 0.9984 0.0068 0.9992 0.0045 0.9997 0.0028
UR 0.9977 0.0052 0.9989 0.0034 0.9996 0.0019

UF PO 0.9700 0.0156 0.9892 0.0093 0.9958 0.0057
FS 0.9967 0.0126 0.9988 0.0075 0.9996 0.0042
FC 0.9970 0.0092 0.9988 0.0057 0.9996 0.0031
UR 0.9964 0.0068 0.9978 0.0052 0.9991 0.0032

CF PO 0.9891 0.0306 0.9963 0.0172 0.9989 0.0092
FS 0.9912 0.0304 0.9953 0.0213 0.9984 0.0095
FC 0.9915 0.0194 0.9949 0.0143 0.9986 0.0073
UR 0.9957 0.0082 0.9980 0.0055 0.9988 0.0043

Correlation coefficients and RMSDs are calculated between estimates using M=200, 400, 600 and estimates using M=800.
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determined mainly by the number of loci and number
and frequencies of alleles per locus, the relative
performance of the estimators changes with both the
amount and the pattern of marker information
(Wang, 2002). Fig. 1 compares the biases and RMSEs
of the seven estimators for parent–offspring, full-sib,
first cousin and unrelated individuals as a function of
the number of loci. Each locus is assumed to have
eight alleles with frequencies in one of three distri-
butions : equal frequency (EF), uniform Dirichlet
(UF) and one common with the remaining rare (CF).

In the case of EF, all estimators are little biased
for PO, FS, HS (not shown) and FC relationships,
but overestimate r substantially for unrelated dyads
(Fig. 1B). The overestimation diminishes with an in-
creasing number of loci, but is still about 0.02 even
when 100 loci are used. The dyadic likelihood yields
the highest overestimation across the range of loci. All
moment estimators are unbiased when they are not
truncated to the value range of [0,1], in agreement
with previous work (e.g. Lynch & Ritland, 1999;
Wang, 2002; Milligan, 2003), but overestimate r to
the same degree as the triadic likelihood method when
they are truncated. In terms of RMSE, which takes
both bias and sampling variance into account
(Fig. 1A), the triadic likelihood method is the best,
giving the lowest RMSE values across the four
relationships and for different numbers of loci. The
dyadic likelihood outperforms moment estimators
when the actual relatedness is high, but becomes less
accurate than the moment estimators when the actual
relatedness is zero or close to zero. Except for
PO dyads, however, the magnitude of differences in
RMSE among the seven estimators is general small.

Similar to the case of EF, the UF distribution
of allele frequencies leads to essentially the same pat-
terns of biases and RMSEs of the seven estimators.
Allowing allele frequencies to vary within and be-
tween loci, however, further differentiates the esti-
mators for all relationships considered (Fig. 1). This is
because different moment estimators weigh differently
the information from different alleles within a locus
and from different loci. Furthermore, under the UF
distribution, some alleles may have very low fre-
quencies, causing some estimators (e.g. the Ritland
estimator) to yield extreme values. For unrelated
dyads, the QG, W and LL estimators (indistinguish-
able in Fig. 1B) give slightly more overestimation than
the dyadic likelihood method, while the R, LR and

TL estimators (indistinguishable) give the smallest
overestimation. For highly related dyads (FS, PO),
the R estimator underestimates r because it returns
estimates larger than 1 which are truncated to 1.
Relative to the true relatedness value, biases are more
severe with unrelated dyads for all seven estimators.
In terms of RMSE, the triadic likelihood method
outperforms other estimators across the four re-
lationships and the range of the number of markers.
The R and LR estimators have the highest RMSEs for
related dyads (PO, FS, FC) but the second-lowest
RMSEs for unrelated dyads. Except for PO dyads, the
RMSEs of W, LL and QG estimators are almost
indistinguishable.

In the case of one common allele per locus, the
triadic likelihood method severely underestimates r
for highly related dyads (PO, FS) while the QG, W
and LL estimators severely overestimate r for un-
related dyads. The biases decline rapidly, however,
with an increasing number of loci. Milligan (2003)
compared his dyadic likelihood estimator with five
moment estimators in the case of a variable number of
loci each having one common allele (with frequency
0.8) and four equally rare alleles (frequency 0.05).
Unfortunately, because the moment estimators are
not constrained to the same range as the likelihood
estimator, the biases and RMSEs are hardly compar-
able among estimators. He found the dyadic likeli-
hood estimator overestimates r by about 0.10 and
0.14 for FC and UR dyads, respectively, and the
overestimation does not decrease with an increasing
number of loci. The result is at variance with Fig. 1B,
which shows both a smaller and a decreasing
(with loci) overestimation of r for the dyadic likeli-
hood estimator. It is unclear what causes the differ-
ences. However, the dyadic likelihood is a consistent
estimator and is thus expected to show a decreasing
bias with an increasing amount of information (here
number of loci). In terms of RMSE, the dyadic like-
lihood performs best for highly related dyads (PO, FS)
while the triadic likelihood outperforms others for
loosely related (FC) or unrelated (UR) dyads.

It should be noted that the two allele frequency
distributions, equal allele frequency and one allele
common with the remaining rare, represent the ex-
tremely informative and uninformative marker cases
which are unlikely to be encountered in practice.
With one allele at a frequency of 0.8, the expected
heterozygosity (h) is always less than 0.36 no matter

Fig. 1. Comparison of seven relatedness estimators using simulated data with different numbers of loci. The root mean
squared errors (y-axis, on a logarithmic scale ; A) and biases (B) are plotted as a function of the number of loci (x-axis)
for four relationships (indicated by column heads) and three allele frequency distributions (indicated by row heads on the
right). Each locus is assumed to have eight alleles with known frequencies in an EF, UF or CF distribution. The seven
estimators indicated by different lines are the new triadic likelihood (TL), Wang’s (2002) estimator (W), Lynch (1988) and
Li et al.’s (1993) estimator (LL), Lynch and Ritland’s (1999) estimator (LR), Ritland’s (1996) estimator (R), Queller and
Goodnight’s (1989) estimator (QG) and Milligan’s dyadic likelihood estimator (M).
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how many alleles are present at a locus. A survey of
microsatellites in vertebrates and insects shows that
only about 8% of the loci display hf0.36 (Aparicio
et al., 2006). Among the 10 875 markers with more
than two alleles in the CEPH dataset, only 190
markers (1.7%) have hf0.36. Even among the 21 148
biallelic markers in the CEPH dataset, less than
40% have hf0.36. It is understandable that, with
extremely uninformative markers, the rank order of
estimators in terms of RMSE (or bias) changes de-
pending on true relatedness values. One can imagine
the extreme case where each locus has one allele
with a frequency close to 1 (i.e. almost fixed). All
individuals, irrespective of their relationships, are
therefore homozygous for common alleles at all loci.
Intuitively, the markers are uninformative about re-
latedness and any r estimate value in the range [0,1]
should be equally probable. It turns out that in such a
case the TL, M, W, LL, LR, R, and QG estimators
are 1, 1, 1, 1, 1, 0, 0, respectively. The likelihood
methods give, however, an almost flat likelihood
curve, implying that all linear combinations of D7, D8

and D9 (and thus any value of r between 0 and 1) is
equally plausible given the genotype data.

More realistically, with a mixture of allele fre-
quency distributions at different loci, the RMSE
and bias patterns become intermediate among those
shown in Fig. 1 (data not shown). It is worth noting
that the triadic likelihood method yields the lowest
RMSEs for loosely related (FC) to unrelated dyads
irrespective of the allele frequency distribution. In a
real population, most dyads are expected to be either

unrelated or only loosed related (Csilléry et al., 2006).
This is effectively true even with a small population
closed to immigration for many generations, con-
sidering that allele frequencies are usually estimated
from a sample of individuals taken from the current
generation or only a few generations ago and thus the
reference population in which the average r value is
expected to be zero (Ritland, 1996) refers to either the
current or a recent generation.

Fig. 2 compares the seven estimators applied to data
simulated using a fixed number of 30 loci and a varying
number of alleles per locus. The allele frequencies are
drawn from a UF distribution. Relatively, the highest
biases occur with unrelated dyads for all estimators.
The biases, however, decline rapidly with an increas-
ing number of alleles per locus. Similar to the
Dirichlet frequency distribution case in Fig. 1, the TL,
R, and LR estimators are indistinguishable in bias
and are less biased than the other four estimators. The
R and LR estimators show the highest RMSEs for
related dyads (FC, FS, PO) but the second-lowest
RMSEs for unrelated dyads. Overall, the triadic
likelihood method is the most accurate, yielding
RMSE values which are either the smallest or close to
the smallest among those of the seven estimators for
different relationships and different numbers of alleles
per locus.

(iii) Inbreeding

Previous estimators assume non-inbred individuals
(i.e. the homologous genes at a locus within any
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individual are always non-IBD). In small populations,
however, some individuals are inevitably inbred to
varying degrees. To investigate how robust different
relatedness estimators are to the violation of no in-
breeding, and how much improvement can be gained
by incorporating inbreeding into the likelihood esti-
mator, I simulated PO, FS, FC and UR dyads with
each individual in a dyad having the same inbreeding
coefficient F. Each individual is genotyped at 15 loci,
each having eight alleles in a triangular frequency
distribution. The results are summarized in Fig. 3A,
obtained by applying the estimators to the simulated
data and assuming known allele frequencies. In com-
parison, the same data are also analysed by the dyadic
(9-dimensional) and triadic (66-dimensional) likeli-
hood methods that account for inbreeding.

For related dyads (PO, FS, FC), all estimators, ex-
cept for the two likelihood methods that explicitly
take inbreeding into account and the R estimator,
tend to underestimate relatedness with an increasing
F. As a result, the RMSEs of these estimators increase
with an increasing F. It is interesting to note that
among the seven estimators ignoring inbreeding, the
R estimator is the least biased with inbreeding. It,
however, has a high sampling variance and thus is the
least accurate estimator. The likelihood methods seem
to be more susceptible to inbreeding than moment
estimators, especially with highly related (PO, FS)
dyads. They are the most accurate estimators in the
absence of inbreeding but quickly become the least
accurate estimators when F>0.1.

For unrelated dyads, the actual relatedness value is
0, irrespective of the value of F. Both biases and
RMSEs of all estimators assuming non-inbreeding are
not affected by the level of inbreeding. The two like-
lihood methods that account for inbreeding display,
however, an increasing bias and RMSE with an
increasing F.

Accounting for inbreeding in the likelihood
methods does not necessarily lead to a better per-
formance. As can be seen from Fig. 3A, estimators
accounting for inbreeding result in reduced biases and
RMSEs only when F is high (0.15) in closely related
dyads (FS, PO), but increased biases and RMSEs
when the dyads are loosely related or unrelated or
when F is small. Allowing for inbreeding dramatically
increases the number of parameters to be estimated
in, and thus decreases the precision of, the likelihood
estimators. Estimating more parameters jointly
requires more data. Fig. 3B compares the biases and
RMSEs of the nine estimators as a function of the
number of markers. Each marker has eight alleles in a
triangular frequency distribution. Each individual in a
dyad is inbred with F=0.16, so that the actual re-
latedness is 0.7400, 0.6600, 0.2178 and 0 for PO, FS,
FC and UR dyads, respectively. At this high level
of inbreeding, the triadic and dyadic likelihood

estimators that account for inbreeding are hardly
distinguishable in performance. For highly related
dyads (PO, FS), the likelihood estimators that in-
corporate inbreeding have both biases and RMSEs
declining rapidly with an increasing number of loci,
and become increasingly superior to estimators which
assume no inbreeding. In contrast, for unrelated
dyads, accounting for inbreeding in the likelihood
estimators results in a consistent reduction in accu-
racy, no matter how many loci are used in the esti-
mation. Similar to Fig. 3A, Fig. 3B also shows that
the R estimator is little biased for all relationships and
numbers of loci. Its overestimation for the relatedness
of UR dyads is caused by truncation. When the
number of loci is large and the actual relatedness is
high (PO, FS), the R estimator becomes the most
accurate (measured by biases and RMSEs) while the
two likelihood methods become the least accurate
among the seven estimators ignoring inbreeding.

Summarizing the results shown in Fig. 3A and B, it
seems unjustified to take inbreeding into account in
the likelihood methods for estimating relatedness,
except when a large proportion of dyads in a sample
are highly inbred and closely related, and when there is
ample marker information (e.g. hundreds of micro-
satellites).

(iv) Genotyping errors

Just like any other type of data, genotype data are
usually not perfect and free of errors. Mutations and
genotyping errors seem to be inevitable in genotype
data (e.g. Bonin et al., 2004; Pompanon et al., 2005),
especially when DNA quantity and quality are limited
so that repeated genotyping is either impossible or
unhelpful for eliminating typing errors. Although
genotyping errors are shown to have dramatic effects
on relationship inference (e.g. Wang, 2004a), they are
perceived as unimportant in relatedness estimation
and are thus ignored in all previous estimators.
Furthermore, incorporating genotyping errors into
the inference may incur a cost, lowering the power
of analyses (e.g. Morrissey & Wilson, 2005). It is,
however, desirable to understand how much effect
genotyping errors have on relatedness estimation,
and whether (and when) it is justified to account for
genotyping errors in relatedness estimators.

Fig. 4 plots the biases and RMSEs as a function of
the actual rate (e) of typing errors at a marker locus
used in simulations. Relatedness for PO, FS, FC and
UR dyads is estimated by the triadic likelihood esti-
mator assuming an error rate of ê=0, ê=e, ê=0.8e
and ê=1.2e. In comparison with the case of ê=e, the
case of ê=0 shows the consequence of ignoring
errors, while the cases of ê=0.8e and ê=1.2e show
the effects of sampling errors of e on the estimator’s
performance. Twenty loci, each having eight alleles in
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a uniform Dirichlet (UF) frequency distribution, are
genotyped for each individual. The genotype at each
locus of an individual is changed in simulations ac-
cording to the error rate and error model described
above. As can be seen from Fig. 4, the impact of
genotyping errors increases with an increasing
error rate. For related dyads, typing errors result in

multi-locus genotypes that are less similar than they
should be, leading to downward biased and less
precise estimates of relatedness, and thus an elevated
RMSE. Accounting for typing errors in the estimator
improves the estimates (i.e. reducing underestimation
and RMSEs) for closely related dyads (e.g. PO, FS),
but impairs the estimates for unrelated dyads. This is
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understandable because typing errors have little effect
on the similarity between the multi-locus genotypes
of unrelated individuals in expectation. Therefore
accounting for typing errors in the data merely
reduces the information of the marker data, which
adversely affects the quality of the estimates of un-
related dyads. For loosely related dyads (e.g. FC),
accounting for typing errors reduces the downward
biases but increases the sampling errors of r̂, leading
to an increased RMSE.

Another conclusion that can be drawn from Fig. 4
is that the estimator is relatively robust to the sam-
pling effect of e. Estimates obtained by assuming ê=e,
ê=0.8e and ê=1.2e have similar biases and RMSEs,
especially when the true relatedness is not small. An
overestimated typing error rate (ê=1.2e) results in a
smaller bias and RMSE for closely related dyads but a
larger bias and RMSE for unrelated dyads than an
underestimated typing error rate (ê=0.8e). Note that
for unrelated dyads, the bias and RMSE decrease
with an increasing typing error rate used in simulating
the data. This is an artefact due to the particular
combination of allele frequency distribution and error
model adopted in the simulations. With a UF distri-
bution of allele frequencies, it is possible that some
unrelated dyads display multi-locus genotypes of
high similarity, leading to overestimated relatedness.
However, typing errors as modelled in the simulation
could destroy the similarity and thus reduce the
overestimation.

Due to the mixed effects of accounting for typing
errors on the biases and RMSEs of closely and loosely
related dyads, it is unclear whether or not it is desir-
able to build a typing error model into relatedness
estimator. It depends on the marker data quality (e),
the actual proportions of closely and loosely related
dyads in a sample, and the particular purpose of
the data analysis. When e is substantial for a large
number of loci, a two-step procedure might be used to
improve relatedness analyses. First, r̂ is estimated for
each dyad assuming e=0. Second, for those dyads
with high r̂ values obtained in the first step (say,
r̂>0.1), refined estimates can be obtained by account
for genotyping errors. Further studies are required
to investigate the performance of the two-step pro-
cedure.

(v) Analysis of the CEPH dataset

Two subsets of the CEPH data were analysed by the
seven estimators for pairwise relatedness between
individuals within each of 65 families. For the

microsatellite subset, a number between five and 160
of the most informative (Wang, 2006) microsatellites
are chosen and individuals that are genotyped at
o90% of the chosen loci are included for relatedness
analyses. For the SNP subset, the most informative
markers whose minor allele frequencies aref0.48 are
chosen, while individuals are screened using the same
criteria as the microsatellite subset. SNPs with allele
frequencies of 0.5 are the most informative, but are
excluded from the subset because they cause the
Lynch and Ritland estimator to be undefined.

Fig. 5 plots the RMSEs of relatedness estimates for
PO, FS, GG, and UR dyads across families as a
function of the number of microsatellites (Fig. 5A) or
SNPs (Fig. 5B) used in the estimation. For micro-
satellites, the RMSEs of W, LL and QG are hardly
distinguishable for all four relationships and different
numbers of loci. Compared with the other five esti-
mators, the R and LR estimators have quite poor
performance, even for unrelated dyads when the
number of loci is larger than 20. The poor perform-
ance of the two estimators arises perhaps because a
large number of highly polymorphic microsatellites
(some having more than 40 alleles) are used in the
estimation, and some alleles have very small fre-
quencies which cause extreme values (truncated to
the range [0, 1]) of the two estimators. Overall, the
new triadic likelihood estimator is the best with the
smallest RMSEs. It gives much smaller RMSEs than
the other estimators for PO and UR dyads, while it
gives RMSEs almost indistinguishable from those of
the best estimator for FS and GG dyads.

For the SNP subset (Fig. 5B), the LL and W
estimators are the same while the LR and QG esti-
mators always have indistinguishable RMSEs for all
the four relationships. For clarity, only one estimator
in each pair is plotted in Fig. 5B. Because of the
absence of rare alleles, the R and LR estimators now
become better than LL and W estimators for un-
related dyads. They are still the worst estimators,
however, for highly related dyads (PO, FS).
Evaluated across relationships and numbers of loci,
the new triadic likelihood estimator has the best
overall performance.

FS and PO relationships have the same expected
value of relatedness (r=0.5), but different expected
values of D7 and D8. Some relatedness estimators (e.g.
LR, W, likelihood) allow the joint estimates of D7 and
D8 and thus can be used to differentiate the relation-
ships. However, the statistical power of such analyses
is generally low, because D8 is difficult to estimate
accurately (e.g. Lynch & Ritland, 1999). Only when

Fig. 5. RMSEs of relatedness estimators as a function of the number of microsatellite (A) or SNP (B) loci used in the
CEPH dataset. The RMSE of an estimator is calculated for each type and number of markers, and for each of the four
relationships (parent–offspring, PO; full-sibs, FS; grandparent–grandoffspring, GG; unrelated, UR). Note that for the
case of SNPs, estimators W and LL are the same while LR and QG have indistinguishable RMSEs.
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many polymorphic markers are available can re-
lationships be accurately inferred from the estimates
of IBD coefficients. For the CEPH dataset, the D7 and
D8 estimates for PO, FS, GG, and UR dyads are
shown in Fig. 6. The estimates are obtained from the
triadic likelihood method using 100 microsatellites,
assuming non-inbreeding. As can be seen, the four
relationships are well differentiated. IBD coefficients
are accurately estimated for PO and UR dyads, but
less so for GG and FS dyads. Estimates of D8 are
especially variable for FS dyads, because the FS
relationship has the maximal inherent between-locus
variance of D8, which is 1

4
(Wang, 2006).

4. Discussion

Compared with moment estimators of relatedness, the
likelihood methods enjoy several attractive features
(Milligan, 2003). First, estimates of IBD coefficients
and relatedness are naturally constrained to their
biologically meaningful ranges [0,1], making the
interpretation and application in subsequent analyses
(e.g. estimating heritability : Ritland, 2000; Thomas
et al., 2000) of the results straightforward. One can
truncate moment estimates of relatedness to force
them to fall in the legitimate range of [0,1], as has been
done by the present study. Such truncated estimators
have a reduced standard deviation, but are upwardly
biased with RMSEs still larger than likelihood esti-
mators in most cases (Milligan, 2003; present study).
Second, likelihood methods automatically weigh

information among alleles and among loci optimally.
The amount of information about pairwise related-
ness provided by a locus varies greatly, depending on
the number and frequencies of alleles at the locus
(Wang, 2006). Microsatellites are generally much
more useful than SNPs, for example. More informa-
tive markers allow more accurate (reliable) estimates
of relatedness, and thus should logically be given
more weight in a multi-locus estimator. Unfortu-
nately, however, the informativeness (thus weight) of
a marker is also dependent on the true but unknown
relatedness of the dyad under consideration. As a
result, moment estimators have either to ignore the
difference in informativeness among loci by applying
an equal weight (e.g. Queller & Goodnight, 1989;
Li et al., 1993) or to use approximate weights derived
assuming an unrelated dyad (e.g. Ritland, 1996;
Lynch & Ritland, 1999; Wang, 2002). In general,
estimators using equal weights tend to give better
estimates for highly related dyads (e.g. FS, PO) and
worse estimates for unrelated dyads than estimators
using unequal weights (Wang, 2002). Because of the
large number of weights that are based on r=0, some
estimators (Ritland, 1996; Lynch & Ritland, 1999)
show the bizarre behaviour that their sampling vari-
ance does not decrease or even increases with an in-
creasing number of alleles per locus for highly related
dyads (Wang, 2002; Figs. 2 and 5A). Third, likelihood
methods are more general and flexible than moment
estimators in allowing for different kinds of markers,
inbreeding and genotyping errors. Some moment

PO
FS
GG
UR

UR(∆9=1)

PO(∆8=1) TW(∆7=1)

Fig. 6. Triangular plot of IBD coefficients for PO, FS, GG and UR dyads in the CEPH dataset. The numbers of dyads
shown in the plot are 795, 1304, 970, and 311 for PO, FS, GG and UR relationships, respectively. Estimates of Di (i=7,
8, 9) for each dyad are obtained from the triadic likelihood method using 100 microsatellites with known allele frequencies.
The top, left and right points of the triangle have IBD coefficients {D7, D8, D9}={0,0,1}, {0,1,0} and {1,0,0}, respectively,
representing UR, PO and identical twin relationships, respectively.
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estimators (Lynch & Ritland, 1999; Queller &
Goodnight, 1989) have limited use for biallelic
markers such as SNPs, because they are undefined
(denominator equal 0) under some circumstances. No
single moment estimator available can be applied
to both dominant (e.g. Ritland, 2005; Wang, 2004b)
and co-dominant markers. In contrast, likelihood
methods apply to markers with any number and
frequency distribution of alleles, and can easily be
adapted for dominant markers. Similarly, all moment
estimators assume the absence of inbreeding and
genotyping errors, while likelihood methods can ac-
count for inbreeding (Weir et al., 2006; present study)
and typing errors (present study).

In spite of the above advantages of the likelihood
methods, they tend to overestimate relatedness,
especially for loosely related or unrelated dyads
(Milligan, 2003). As a result, their overall quality of
estimates measured by RMSE is not always higher
than that of moment estimators. Considering that
most dyads in a natural population are probably
unrelated (e.g. Csilléry et al., 2006), the overall per-
formance of likelihood methods evaluated across all
possible dyads in a sample of individuals might be
inferior to that of Lynch & Ritland (1999) or Ritland
(1996) in some cases. In this investigation, I have
shown that the triadic likelihood method can reduce
the overestimation and RMSE of relatedness for un-
related or loosely related dyads substantially, com-
pared with the dyadic likelihood method. Effectively,
the triadic method uses a third individual as a control
in estimating the relatedness of a dyad. Both simu-
lated and empirical data show that the triadic esti-
mator yields relatedness estimates with RMSEs that
are the lowest for loosely related dyads and PO dyads,
and are close to the lowest for other relationships.
Because usually unrelated dyads dominate a random
sample of individuals from a natural population, the
triadic likelihood estimator offers the best estimates
overall.

IBD coefficients and relatedness are all relative
measurements with an implicit reference population
in which all homologous genes are assumed non-
identical by descent (Ritland, 1996). The reference
population is defined as specific in both time and
space. For a given sample of individuals from a finite
population, relatedness of all possible dyads would be
increased (decreased) by a similar amount when one
moves the reference time point backward (forward),
or when one moves the reference space from a sub-
population to a metapopulation (a line within the
subpopulation). In practical applications, the refer-
ence population is the one whose allele frequencies are
used in estimating relatedness. For an unbiased esti-
mator, therefore, the average relatedness estimates
across all possible dyads in a sample would be close to
zero if allele frequencies were estimated from the same

sample, irrespective of the actual relationships among
the sampled individuals. This argument is, however,
only partially true, because relatedness estimates de-
pend also on the estimators. As an example, I simu-
lated a sample of 50 individuals that were exclusively
full-sibs or half-sibs. Each individual was genotyped
at 10 loci, with each locus having 10 alleles in a uni-
form Dirichlet frequency distribution. Estimates from
moment estimators were not truncated to the range
of [0,1]. Using allele frequencies estimated from the
same sample without accounting for relationships, the
W, LL, LR, R, QG, TL and M estimators yielded
average (among 1225 dyads within a sample, over
1000 replicate samples) estimates of relatedness of
0.17, 0.18, x0.01, x0.01, x0.05, 0.14, and 0.12 for
the FS sample, 0.06, 0.05,x0.01,x0.01,x0.01, 0.04,
and 0.02 for the HS sample. While the LR, R and QG
estimates are close to the expectation of zero, the W,
LL, and likelihood methods (TL and M) give higher
than expected estimates. In contrast, the average
estimates from all estimators are close to 0.5 and 0.25
for FS and HS samples, respectively, when allele
frequencies are assumed known or estimated from
another sample containing unrelated individuals.
Similarly, relatedness estimates are affected by popu-
lation structures, and by how samples are taken from
a structured population and combined in estimating
allele frequencies (Oliehoek et al., 2006). Although all
relatedness estimators are based on a reference
population, it seems that the W, LL, TL and M esti-
mators are less sensitive to the reference than the
other estimators.

It is shown that relatedness is underestimated when
inbreeding is present but ignored by an estimator.
Likelihood methods can be made to account for the
inbreeding of individuals in estimating their related-
ness. However, due to the dramatic increase in the
number of parameters to be estimated, incorporating
inbreeding into the likelihood methods incurs a
cost, resulting in a possible decrease in performance
as measured by RMSE over all dyads in a sample.
Except for the scenario of highly inbred and
closely related individuals and a large number of loci
available, the likelihood methods assuming non-
inbreeding are recommended.

Genotyping errors have been speculated to have a
minor role in relatedness estimation. This study is the
first to develop an estimator that allows for geno-
typing errors and to investigate the impact of data
quality through simulations. My simulations suggest
that typing errors result in underestimation of
relatedness for highly related dyads. Accounting for
typing errors improves estimates for closely related
dyads but impairs those for loosely related or un-
related dyads. Because most dyads in a sample are
unrelated (Ritland, 1996; Csilléry et al., 2006), taking
typing errors into account in an estimator may well
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incur a net cost. However, when one is more con-
cerned with identifying highly related dyads and many
markers are available, it is justified to use an estimator
that is robust to typing errors.

Following previous estimators, the current triadic
likelihood method is developed for unlinked markers.
With a large number of markers, however, some of
them are inevitably linked. Linkage causes the infor-
mation from different loci to be correlated, resulting
in over-confidence in relatedness estimates obtained
assuming independent markers. It should not, how-
ever, affect the degree of bias of relatedness estimates.
Note that the influence of linkage on the precision
of relatedness estimates decreases with a decreasing
degree of true relatedness. Linkage is expected to have
little effect on the precision and confidence intervals of
relatedness estimates for unrelated or loosely related
dyads. This is because there are so many generations
linking two loosely related individuals and their
common ancestors that even tightly linked markers
already have recombined. Because most dyads are
unrelated, estimators assuming unlinked markers
should apply approximately to linked markers. More
work is needed to investigate how linkage with and
without linkage disequilibrium influences the pre-
cision of relatedness estimates.

In this study, relatedness estimators were compared
using a limited number of simple relationships (PO,
FS, HS, FC, GG, UR) in simulated and empirical
datasets. In agreement with previous work (e.g. Lynch
& Ritland, 1999; Wang, 2002; Milligan, 2003), I have
shown that the rank order of the estimators changes
with the true relatedness being estimated. This may
raise some doubts that the performance rank of
different estimators evaluated using a few simple
relationships may not apply to real populations in
which numerous complex relationships are present
(e.g. Csilléry et al., 2006). However, I believe the
evaluation procedure adopted in the study is appro-
priate and the conclusion reached is generally valid
for real populations. First, although a real population
usually contains myriads of relationships, one has to
be satisfied with using just a few representative ones in
comparing estimators. Considering all possible kinds
and proportions of relationships in a population is
impossible even in simulation studies. Second, it is
fortunately unnecessary to consider many different
relationships in evaluating the estimators. For ex-
ample, one can compare estimators using UR (D7=
D8=0) and HS (D7=0, D8=0.5) relationships. The
results obtained should apply roughly to any re-
lationship that lies between UR and HS, with D7=0
and 0fD8f0.5. The relationships (PO, FS, HS, GG,
FC, UR) adopted in the study in comparing estima-
tors are reasonably representative of the common
ones found in real populations and cover a wide range
of degrees and patterns of IBD (D7=0y0.25,

D8=0y1, D9=0y1). It is also noticeable that in
most cases I compared the performances of esti-
mators for each individual relationship indepen-
dently. It is, however, simple to assess the overall
performance of an estimator by assembling the
quality measurements (such as RMSE) for separate
relationships, provided the proportions of these re-
lationships are known in a population. For the con-
venience of users in comparing the estimators using
their own marker data and specifically interested
relationships (with or without inbreeding), I am
developing Windows software that implements the
seven relatedness estimators and will post it on my
website for free downloading.

I thank Bill Hill and two anonymous reviewers for helpful
comments on an earlier version of this paper.
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