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Singular Integral Operators and Essential
Commutativity on the Sphere

Jingbo Xia

Abstract. Let T be the C∗-algebra generated by the Toeplitz operators {Tϕ : ϕ ∈ L∞(S, dσ)} on

the Hardy space H2(S) of the unit sphere in Cn. It is well known that T is contained in the essential

commutant of {Tϕ : ϕ ∈ VMO∩L∞(S, dσ)}. We show that the essential commutant of {Tϕ : ϕ ∈
VMO∩L∞(S, dσ)} is strictly larger than T.

1 Introduction

Let S denote the unit sphere {z ∈ Cn : |z| = 1} in Cn. Let σ be the positive, regular

Borel measure on S which is invariant under the orthogonal group O(2n), i.e., the

group of isometries on Cn ∼= R2n which fix 0. Furthermore we normalize σ such that

σ(S) = 1. The Cauchy projection P is defined by the integral formula

(P f )(z) =

∫

f (v)

(1 − 〈z, v〉)n
dσ(v), |z| < 1.

See [16, p. 39]. Recall that P is the orthogonal projection from L2(S, dσ) onto the

Hardy space H2(S). For each ϕ ∈ L∞(S, dσ), the Toeplitz operator Tϕ is the operator

on H2(S) defined by the formula Tϕg = Pϕg, g ∈ H2(S). We will write

T = the C∗-algebra generated by {Tϕ : ϕ ∈ L∞(S, dσ)}.

Recall that the formula

(1.1) d(u, v) = |1 − 〈u, v〉|1/2, u, v ∈ S,

defines a metric on S [16, p. 66]. Throughout the paper, B(u, a) denotes an open ball

with respect to the metric d given in (1.1). That is, for any u ∈ S and a > 0, we write

B(u, a) = {v ∈ S : |1 − 〈u, v〉|1/2 < a}.

A function f ∈ L1(S, dσ) is said to have bounded mean oscillation if

‖ f ‖BMO = sup
B

1

σ(B)

∫

B

| f − fB|dσ < ∞,
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where fB =
∫

B
f dσ/σ(B) and the supremum is taken over all B = B(u, a), u ∈ S and

a > 0. A function f ∈ L1(S, dσ) is said to have vanishing mean oscillation if

lim
δ↓0

sup
u∈S

0<a≤δ

1

σ(B(u, a))

∫

B(u,a)

| f − fB(u,a)|dσ = 0.

We denote the collection of functions of bounded mean oscillation on S by BMO.

Similarly, let VMO be the collection of functions of vanishing mean oscillation on S.

We define

VMObdd = VMO∩L∞(S, dσ)

and

T(VMObdd) = the C∗-algebra generated by {Tϕ : ϕ ∈ VMObdd}.
For any separable, infinite-dimensional Hilbert space H, let B(H) be the collec-

tion of bounded operators on H. The essential commutant of a subset G of B(H) is

defined to be

EssCom(G) = {X ∈ B(H) : [A, X] ∈ K(H) for every A ∈ G},

where K(H) denotes the collection of compact operators on H. Let π be the quotient

map from B(H) into the Calkin algebra Q = B(H)/K(H). Then π(EssCom(G)) is

the commutant of π(G) in Q. That is, {π(G)} ′
= π(EssCom(G)).

When n = 1, i.e., in the case of the unit circle, VMObdd is better known as QC and

has an alternate description [9, §IX.2]. A famous result due to Davidson [6] asserts

that T(QC) is the essential commutant of T. This result was later generalized to the

case n ≥ 2 by Ding, Guo and Sun [7, 10]. That is, for whatever complex dimension

n, T(VMObdd) is always the essential commutant of T. This naturally motivates the

question, what is the essential commutant of T(VMObdd)? In particular, does the

essential commutant of T(VMObdd) coincide with T? Given the results of [6, 7, 10],

this is equivalent to asking, does π(T) satisfy the double commutant relation in the

Calkin algebra Q?

In our previous investigation [21], we showed that in the case n = 1, the essential

commutant of T(QC) is strictly larger than T. In other words, in the unit circle case

π(T) does not satisfy the double commutant relation. The purpose of this paper is to

report that the same assertion holds true in all complex dimensions. That is, we will

prove the following.

Theorem 1.1 For every n ≥ 2 the essential commutant of T(VMObdd) is also strictly

larger than T.

As explained in [21], although the essential-commutant problem of T(VMObdd)

is motivated by C∗-algebraic considerations [11, 15, 18, 19], its solution relies heavily

on harmonic analysis. It is even more so in the case n ≥ 2, as we will see.

To prove Theorem 1.1, we obviously need to construct an operator that belongs

to EssCom(T(VMObdd)) and that does not belong to T. But if an operator essentially

commutes with T(VMObdd), how does one show that it does not belong to T?
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In the case n = 1, we used a criterion based on the canonical commutation rela-

tion, which we could take advantage of because the unit disc is conformally equiva-

lent to the upper half-plane.

Let D = −id/dx. Then χ(0,∞)(D) is the orthogonal projection from L2(R) to

the Hardy space H2(R) of the upper half-plane. For each λ ∈ R, define the unitary

operator (Vλg)(x) = eiλxg(x), g ∈ L2(R). Obviously, V ∗
λ DVλ = D + λ. Thus

V ∗
λ χ(0,∞)(D)Vλ = χ(0,∞)(D + λ) = χ(−λ,∞)(D).

Consequently, s-limλ→∞ V ∗
λχ(0,∞)(D)Vλ = 1. Let Ṽλ be the compression of Vλ to

the subspace H2(R). Then the above limit implies that the strong limit

s(A) = s-lim
λ→∞

Ṽ ∗
λ AṼλ

exists for every operator A in the Toeplitz algebra on H2(R). This was the member-

ship criterion for the Toeplitz algebra that we used in [21]. Obviously, this is not

something that we can hope to mimic in the case of a sphere with n ≥ 2.

What the above limit recovers is in fact the symbol of the operator A, as the nota-

tion s(A) indicates. In the case n ≥ 2, we will also use the fact that every operator in

T has a symbol, which is proved in Proposition 4.13 below. But the difference is that

here we recover the symbol through the normalized reproducing kernel for H2(S).

Note that the method of recovering symbols through the normalized reproducing

kernel was discovered by Engliš in the case of the unit circle [8].

Guided by Proposition 4.13, we construct an operator F̃ (see (4.3) and (4.2)

below) which essentially commutes with T(VMObdd) and which has no symbol.

The latter fact ensures, of course, that F̃ /∈ T. Although the proof that F̃ is in

EssCom(T(VMObdd)) uses techniques that are standard in the theory of Calderón–

Zygmund operators on Rk [2, 3, 17], there are no results in the literature for us to

cite directly to cover the case of the sphere S. This forces us to produce the necessary

details here.

This paper is organized as follows. Sections 2 and 3 deal with the singular integral

operators, culminating in Proposition 3.11, the main technical step. In Section 4 we

construct the operator F̃, which is quite involved and requires results from [12, 14].

For the rest of the paper, we will assume n ≥ 2. We conclude this section with

an inequality which will be used frequently. There is a constant A0 ∈ (2−n,∞) such

that

(1.2) 2−na2n ≤ σ(B(u, a)) ≤ A0a2n

for all u ∈ S and 0 < a ≤
√

2 [16, Proposition 5.1.4].

2 Singular Integrals on the Sphere

For the rest of the paper, let ω be a C1 function which maps (0,∞) into C. Let

K(u, v) =
ω(|1 − 〈u, v〉|)
(1 − 〈u, v〉)n

, u 6= v and u, v ∈ S.
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For f ∈ L1(S, dσ) and ǫ > 0, define

(Tǫ f )(u) =

∫

S\B(u,ǫ)

K(u, v) f (v) dσ(v), u ∈ S.

We assume that ω and Tǫ satisfy the following three conditions:

(i) ‖ω‖∞ = supt>0 |ω(t)| < ∞.

(ii) There is a constant C such that |ω ′(t)| ≤ C/t for 0 < t ≤ 3.

(iii) There exist a bounded operator T on L2(S, dσ) and a sequence of positive num-

bers {ǫk} with limk→∞ ǫk = 0 such that

(2.1) lim
k→∞

‖Tǫk
f − T f ‖2 = 0

for every f ∈ L2(S, dσ).

Recall that the Hardy–Littlewood maximal function is defined by the formula

(M f )(u) = sup
r>0

1

σ(B(u, r))

∫

B(u,r)

| f |dσ, u ∈ S.

Lemma 2.1 For all f ∈ L1(S, dσ), u ∈ S, α > 0, and ρ > 0, we have

∫

|1−〈u,v〉|≥ρ

ρα

|1 − 〈u, v〉|n+α
| f (v)|dσ(v) ≤ 2n+αA0

2α − 1
(M f )(u),

where A0 is the constant in (1.2).

Proof Given u ∈ S and ρ > 0, define Bk = {v ∈ S : |1 − 〈u, v〉| < 2kρ}, k =

0, 1, 2, . . . . For v ∈ Bk+1\Bk, we have (ρ/|1 − 〈u, v〉|)α ≤ 2−αk and |1 − 〈u, v〉|n ≥
(2kρ)n ≥ A−1

0 2−nσ(Bk+1), where the second ≥ follows from (1.2). Hence

ρα

|1 − 〈u, v〉|n+α
≤ 2nA0

∞
∑

k=0

1

2αkσ(Bk+1)
χBk+1\Bk

(v)

for v ∈ S\B0. The lemma follows from this inequality.

Lemma 2.2 There is a constant C2.2 such that for any u ∈ S and r > 0, if x, z ∈
B(u, r) and y ∈ S\B(u, 2r), then

|K(x, y) − K(z, y)| ≤ C2.2
|1 − 〈x, z〉|1/2

|1 − 〈x, y〉|n+(1/2)
.

Proof For x, z ∈ B(u, r) and y ∈ S\B(u, 2r), we have

(2.2) |K(x, y) − K(z, y)| ≤ |a(y; x, z)|
|1 − 〈x, y〉|n + ‖ω‖∞|b(y; x, z)|,
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where

a(y; x, z) = ω(|1 − 〈x, y〉|) − ω(|1 − 〈z, y〉|),

b(y; x, z) =
1

(1 − 〈x, y〉)n
− 1

(1 − 〈z, y〉)n
.

We will estimate the two terms in (2.2) separately.

To begin, we observe that the conditions x, z ∈ B(u, r) and y ∈ S\B(u, 2r) imply

(2.3) d(x, y) ≤ 3d(z, y).

Hence |1 − 〈z, y〉| ≥ |1 − 〈x, y〉|/9 and, by the fundamental theorem of calculus,

(2.4) |a(y; x, z)| =

∣

∣

∣

∫ |1−〈z,y〉|

|1−〈x,y〉|
ω ′(t)dt

∣

∣

∣
≤

∣

∣

∣

∫ |1−〈z,y〉|

|1−〈x,y〉|

C

t
dt

∣

∣

∣
≤ 9C|〈z − x, y〉|

|1 − 〈x, y〉| .

To estimate |〈z − x, y〉|, we write y = 〈y, x〉x + y⊥ and z = 〈z, x〉x + z⊥, where

〈y⊥, x〉 = 0 = 〈z⊥, x〉. Thus 〈z − x, y〉 = (〈z, x〉 − 1)〈x, y〉 + 〈z⊥, y⊥〉. Therefore

|〈z − x, y〉| ≤ |1 − 〈z, x〉| + |z⊥||y⊥|

= |1 − 〈z, x〉| + (1 − |〈z, x〉|2)1/2(1 − |〈y, x〉|2)1/2

≤ |1 − 〈z, x〉| + 2|1 − 〈z, x〉|1/2|1 − 〈y, x〉|1/2.

Since d(x, z) < 2r, whereas d(x, y) ≥ r, the above leads to the estimate

(2.5) |〈z − x, y〉| ≤ 4|1 − 〈z, x〉|1/2|1 − 〈y, x〉|1/2.

Substituting this into (2.4), we obtain

(2.6) |a(y; x, z)| ≤ 36C
|1 − 〈x, z〉|1/2

|1 − 〈x, y〉|1/2
.

To estimate |b(y; x, z)|, note that it follows from (2.5) and (2.3) that

∣

∣

∣

1

1 − 〈x, y〉 −
1

1 − 〈z, y〉
∣

∣

∣
=

|〈x − z, y〉|
|1 − 〈x, y〉||1 − 〈z, y〉| ≤ 36

|1 − 〈x, z〉|1/2

|1 − 〈x, y〉|3/2
.

By simple algebra and another application of (2.3), we have

|b(y; x, z)| ≤ n · 9n−1

|1 − 〈x, y〉|n−1
· 36

|1 − 〈x, z〉|1/2

|1 − 〈x, y〉|3/2
.

Combining this with (2.2) and (2.6), the lemma follows.
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Lemma 2.3 For each 1 < t ≤ 2, there is a constant C2.3(t) such that ‖T f ‖t ≤
C2.3(t)‖ f ‖t for every f ∈ L2(S, dσ). Therefore T uniquely extends to a bounded opera-

tor on Lt (S, dσ).

Proof As usual, we will establish the weak-type (1, 1) estimate

(2.7) σ({u ∈ S : |(T f )(u)| > λ}) ≤ (A/λ)‖ f ‖1.

The lemma will then follow from the L2-boundedness of T, (2.7), and the interpola-

tion theorem of Marcinkiewicz [9, p. 26].

To prove (2.7), we only need to consider the case where λ > ‖ f ‖1. We use the

Calderón–Zygmund decomposition of f . Let A4 = supr>0 σ(B(u, 4r))/σ(B(u, r)).

According to [16, Lemma 6.2.1], there exists a family of open d-balls {Bi} in S and a

family of pairwise disjoint Borel sets {Vi}, where Vi ⊂ Bi for every i, such that

(i) {u ∈ S : (M f )(u) > λ} ⊂ ⋃

i Bi =
⋃

Vi ;

(ii)
∑

i σ(Bi) ≤ (A4/λ)‖ f ‖1;

(iii)
∫

Vi
| f |dσ < A4λσ(Vi).

As in the proof of [16, Theorem 6.2.2], set ci =
∫

Vi
f dσ/σ(Vi) for each i and define

g = f χS\(
S

i Vi ) +
∑

i

ciχVi
and bi = ( f − ci)χVi

.

Then f = g + b, where b =
∑

i bi . Since the set of Lebesgue points for | f | has

measure 1 with respect to σ [16, Theorem 5.3.1], (i) implies that | f (u)| ≤ λ for σ-a.e.

u ∈ S\(
⋃

i Vi). Thus

∫

S\(
S

i Vi )

|g|2dσ =

∫

S\(
S

i Vi )

| f |2dσ ≤ λ

∫

S\(
S

i Vi )

| f |dσ ≤ λ‖ f ‖1.

On the other hand, it follows from (iii) and (ii) that
∫

S

i Vi

|g|2dσ =

∑

i

|ci |2σ(Vi) ≤ (A4λ)2
∑

i

σ(Vi)

≤ (A4λ)2(A4/λ)‖ f ‖1 = A3
4λ‖ f ‖1.

Hence ‖g‖2
2 ≤ (1 + A3

4)λ‖ f ‖1 and

σ({u ∈ S : |(Tg)(u)| > λ/2}) ≤ (2/λ)2‖Tg‖2
2 ≤ (2/λ)2‖T‖2‖g‖2

2

≤ (4/λ)‖T‖2(1 + A3
4)‖ f ‖1.

(2.8)

To estimate Tb, we switch to the argument given in [17, p. 21].

For each i, we suppose that Bi = B(vi , ri) and define B ′
i = B(vi , 2ri). Then S\B ′

i =

{y ∈ S : |1 − 〈y, vi〉| ≥ (2ri)
2}. It follows from Lemmas 2.2 and 2.1 that if v ∈ Bi ,

then

(2.9)

∫

S\B ′

i

|K(y, v) − K(y, vi)|dσ(y) ≤ C2.2 ·
2n+(1/2)A0√

2 − 1
= C̃.
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On the set S\(
⋃

j B ′
j), each Tbi can be represented by the obvious integral formula.

Thus for y ∈ S\(
⋃

j B ′
j) we have

|(Tb)(y)| ≤
∑

i

|(Tbi)(y)| =

∑

i

∣

∣

∣

∫

Vi

K(y, v)bi(v)dσ(v)
∣

∣

∣

=

∑

i

∣

∣

∣

∫

Vi

(K(y, v) − K(y, vi))bi(v)dσ(v)
∣

∣

∣
,

where the second = follows from the fact that
∫

Vi
bidσ = 0. Hence

∫

S\(
S

j B ′

j )

|Tb|dσ ≤
∑

i

∫

S\(
S

j B ′

j )

∣

∣

∣

∫

Vi

(K(y, v) − K(y, vi))bi(v)dσ(v)
∣

∣

∣
dσ(y)

≤
∑

i

∫

Vi

{

∫

S\B ′

i

|K(y, v) − K(y, vi)|dσ(y)
}

|bi(v)|dσ(v)

≤ C̃
∑

i

∫

Vi

|bi |dσ,

where the last ≤ follows from (2.9). But
∫

Vi
|bi |dσ ≤ 2

∫

Vi
| f |dσ and the Borel sets

{Vi} are pairwise disjoint. Therefore

∫

S\(
S

j B ′

j )

|Tb|dσ ≤ 2C̃‖ f ‖1,

which implies

(2.10) σ({u ∈ S : |(Tb)(u)| > λ/2}\{
⋃

j

B ′
j}) ≤ (4C̃/λ)‖ f ‖1.

On the other hand, by the definition of B ′
i and (ii), we have

σ(
⋃

j

B ′
j) ≤

∑

j

σ(B ′
j) ≤ A4

∑

j

σ(B j) ≤ (A2
4/λ)‖ f ‖1.

Combining this with (2.10) and (2.8), we obtain (2.7).

For each f ∈ L1(S, dσ), define (T∗ f )(u) = supǫ>0 |(Tǫ f )(u)|, u ∈ S.

Lemma 2.4 There exists a constant C2.4 such that the inequality

T∗ f ≤ C2.4{M(T f ) + M f }

holds on S for every f ∈ Lt (S, dσ), 1 < t ≤ 2.
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Proof We follow the proof in [17, p. 35], making the obvious modifications to suit

the present setting. Consider any u ∈ S and any ǫ > 0. We have f = f1 + f2, where

f1 = f χB(u,ǫ) and f2 = f χS\B(u,ǫ). For z ∈ B(u, ǫ/2) we have

(Tǫ f )(u) − (T f2)(z) =

∫

S\B(u,ǫ)

(K(u, y) − K(z, y)) f (y)dσ(y).

Thus it follows from Lemmas 2.2 and 2.1 that if z ∈ B(u, ǫ/2), then

|(Tǫ f )(u) − (T f2)(z)| ≤
∫

S\B(u,ǫ)

|K(u, y) − K(z, y)|| f (y)|dσ(y) ≤ C̃(M f )(u),

where C̃ = (
√

2 − 1)−12n+(1/2)A0C2.2. Since T f2 = T f − T f1, we conclude that

(2.11) |(Tǫ f )(u)| ≤ |(T f )(z)| + |(T f1)(z)| + C̃(M f )(u) for σ-a.e. z ∈ B(u, ǫ/2).

By (1.2), we have σ(B(v, r)) ≤ 23nA0σ(B(v, r/2)) for all v ∈ S and r > 0. Now set

λ0 = 4{(M(T f ))(u) + 23nA0A(M f )(u)}, where A is the constant in (2.7). Then

(2.12) σ({z ∈ B(u, ǫ/2) : |(T f )(z)| > λ0})

≤ 1

λ0

∫

B(u,ǫ/2)

|T f |dσ ≤ 1

λ0
(M(T f ))(u)σ(B(u, ǫ/2)) ≤ 1

4
σ(B(u, ǫ/2)).

By (2.7) and the definition of f1,

σ({z ∈ S : |(T f1)(z)| > λ0}) ≤ A

λ0
‖ f1‖1 ≤

A

λ0
(M f )(u)σ(B(u, ǫ))

≤ 1

4
σ(B(u, ǫ/2)).

(2.13)

It follows from (2.12) and (2.13) that

σ({z ∈ B(u, ǫ/2) : |(T f )(z)| ≤ λ0 and |(T f1)(z)| ≤ λ0}) ≥ 1

2
σ(B(u, ǫ/2)).

Recalling (2.11) and the definition of λ0, we now have

|(Tǫ f )(u)| ≤ 2λ0 + C̃(M f )(u) ≤ (8 + 23n+3A0A + C̃){(M(T f ))(u) + (M f )(u)}.

This completes the proof.

Corollary 2.5 For each 1 < t ≤ 2, there is a C2.5(t) such that ‖T∗ f ‖t ≤ C2.5(t)‖ f ‖t

for every f ∈ Lt (S, dσ).

Proof This follows from Lemmas 2.4 and 2.3, and the fact that if t > 1, then the

maximal operator is bounded on Lt (S, dσ).
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Lemma 2.6 There exists a constant C2.6 such that if f ∈ L1(S, dσ) and if the d-ball

B = {ζ ∈ S : |1−〈a, ζ〉| < ρ} contains η, v such that (M f )(η) ≤ λ and (T∗ f )(v) ≤ λ,

then we have (T∗χS\Q f )(u) ≤ C2.6λ for every u ∈ B, where Q = {ζ ∈ S : |1 −
〈a, ζ〉| < 25ρ}.

Proof Let ǫ ≥ 9ρ. Given a u ∈ B, define E = {y ∈ S : |1 − 〈u, y〉| ≥ ǫ and

|1 − 〈v, y〉| < ǫ}. If y ∈ E, then d(u, y) ≤ d(u, v) + d(v, y) < 2
√

ρ +
√

ǫ < 2
√

ǫ.

Since d(u, η) < 2
√

ρ <
√

ǫ, we have B(u, 2
√

ǫ) ⊂ B(η, 3
√

ǫ). Thus

∫

E

|K(u, y)|| f (y)|dσ(y) ≤ ‖ω‖∞
ǫn

∫

B(u,2
√

ǫ)

| f (y)|dσ(y) ≤ C1(M f )(η) ≤ C1λ.

Similarly, if we set F = {y ∈ S : |1 − 〈u, y〉| < ǫ and |1 − 〈v, y〉| ≥ ǫ}, then

∫

F

|K(v, y)|| f (y)|dσ(y) ≤ C1λ.

Let G = {y ∈ S : |1 − 〈u, y〉| ≥ ǫ and |1 − 〈v, y〉| ≥ ǫ}. Then by these estimates we

have

∣

∣

∣

∫

|1−〈u,y〉|≥ǫ

K(u, y)χS\Q(y) f (y)dσ(y)

−
∫

|1−〈v,y〉|≥ǫ

K(v, y)χS\Q(y) f (y)dσ(y)
∣

∣

∣
≤ J + 2C1λ,

where

J =

∣

∣

∣

∫

G\Q

(K(u, y) − K(v, y)) f (y)dσ(y)
∣

∣

∣

≤
∫

G\Q

|K(u, y) − K(η, y)|| f (y)|dσ(y) +

∫

G\Q

|K(v, y) − K(η, y)|| f (y)|dσ(y).

Since u, v ∈ B(η, 2
√

ρ) and Q ⊃ B(η, 4
√

ρ), it follows from Lemmas 2.2 and 2.1 that

J ≤ 2C̃(M f )(η) ≤ 2C̃λ. Hence

∣

∣

∣

∣

∫

|1−〈u,y〉|≥ǫ

K(u, y)χS\Q(y) f (y)dσ(y)

−
∫

|1−〈v,y〉|≥ǫ

K(v, y)χS\Q(y) f (y)dσ(y)

∣

∣

∣

∣

≤ C2λ

(2.14)

for all u ∈ B and ǫ ≥ 9ρ. Let W = {y ∈ Q : |1 − 〈v, y〉| ≥ ǫ}. Then

(2.15)

∫

|1−〈v,y〉|≥ǫ

K(v, y)χS\Q(y) f (y)dσ(y) = (T√
ǫ f )(v)−

∫

W

K(v, y) f (y)dσ(y).
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Because |K(v, y)| ≤ ‖ω‖∞ǫ−n for y ∈ W , ǫ ≥ 9ρ, and η ∈ Q, we have

(2.16)

∫

W

|K(v, y)|| f (y)|dσ(y) ≤ C3

σ(Q)

∫

Q

| f |dσ ≤ C4(M f )(η) ≤ C4λ.

Since |(T∗ f )(v)| ≤ λ, from (2.14), (2.15), and (2.16) we obtain

|(T√
ǫχS\Q f )(u)| =

∣

∣

∣

∫

|1−〈u,y〉|≥ǫ

K(u, y)χS\Q(y) f (y)dσ(y)
∣

∣

∣

≤ (C2 + 1 + C4)λ

(2.17)

for all u ∈ B and ǫ ≥ 9ρ.

On the other hand, if u ∈ B and 0 < ǫ < 9ρ, then {y ∈ S\Q : ǫ ≤ |1 − 〈u, y〉| <
9ρ} = ∅. Hence {y ∈ S\Q : |1 − 〈u, y〉| ≥ ǫ} = {y ∈ S\Q : |1 − 〈u, y〉| ≥ 9ρ}
if u ∈ B and 0 < ǫ < 9ρ. Thus (2.17) actually holds for all ǫ > 0. Consequently,

C2.6 = C2 + 1 + C4 will do.

For each 1 ≤ t < ∞, we define the maximal function

(Mt f )(u) = sup
r>0

( 1

σ(B(u, r))

∫

B(u,r)

| f |t dσ
) 1/t

, u ∈ S.

But we will continue to write M f for M1 f .

Proposition 2.7 For each 1 < t ≤ 2, there exists a constant C2.7(t) such that the

following estimate holds. Let f ∈ L1(S, dσ). If B = {ζ ∈ S : |1 − 〈a, ζ〉| < ρ} and

λ > 0 satisfy the condition B ∩ {v ∈ S : (T∗ f )(v) ≤ λ} 6= ∅, then

σ({u ∈ B : (T∗ f )(u) > (1 + C2.6)λ and (Mt f )(u) ≤ αλ}) ≤ αC2.7(t)σ(B)

for every 0 < α ≤ 1, where C2.6 is the constant in Lemma 2.6.

Proof If (Mt f )(u) > λ for every u ∈ B, then the conclusion is trivial. Thus we may

assume that there is an η ∈ B such that (Mt f )(η) ≤ λ. Then (M f )(η) ≤ λ. Define

Q = {ζ ∈ S : |1 − 〈a, ζ〉| < 25ρ} as in Lemma 2.6. Also define g = χQ f and

h = χS\Q f . Then f = g + h. Since {v ∈ B : (T∗ f )(v) ≤ λ} 6= ∅, Lemma 2.6 tells us

that (T∗h)(u) ≤ C2.6λ for every u ∈ B. By the subadditivity of T∗, this gives us

(2.18) {u ∈ B : (T∗ f )(u) > (1 + C2.6)λ} ⊂ {u ∈ B : (T∗g)(u) > λ}.

For a given 0 < α ≤ 1, let Y = {u ∈ B : (T∗g)(u) > α−1(Mt f )(u)}. Then by (2.18),

Y ⊃ {u ∈ B : (T∗ f )(u) > (1 + C2.6)λ and (Mt f )(u) ≤ αλ}.

Since ‖g‖t
t =

∫

Q
| f |t dσ and Q ⊃ B, there is a c > 0 such that c(‖g‖t

t/σ(Q))1/t ≤
(Mt f )(u) for every u ∈ B. Thus if we let

X = {u ∈ B : (T∗g)(u) > α−1c(‖g‖t
t/σ(Q))1/t},
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then X ⊃ Y . To prove the lemma, it suffices to estimate σ(X). We have

σ(X) ≤ αc−1(‖g‖t
t/σ(Q))−1/t‖χBT∗g‖1

≤ αc−1(‖g‖t
t/σ(Q))−1/t (σ(B))(t−1)/t‖T∗g‖t

≤ αc−1(‖g‖t
t/σ(Q))−1/t (σ(B))(t−1)/tC2.5(t)‖g‖t

= αc−1C2.5(t)(σ(Q))1/t (σ(B))(t−1)/t ≤ αc−1C2.5(t)C1σ(B),

where the second ≤ follows from Hölder’s inequality, the third ≤ is an application of

Corollary 2.5, and the last ≤ is due to (1.2). Thus C2.7(t) = c−1C2.5(t)C1 will do.

The final lemma of the section is the metric-space version of the Whitney decom-

position [17]. For more general forms of such decomposition, see [4].

Lemma 2.8 Let U be a non-empty open subset of S such that S\U is also non-empty.

Then there exists a family of open d-balls {B(ui , ri) : i ∈ I} with the following proper-

ties:

(i) B(ui , ri) ∩ B(u j , r j) = ∅ if i 6= j;

(ii)
⋃

i∈I B(ui , ri) ⊂ U ;

(iii) B(ui , 2ri) ∩ (S\U ) 6= ∅ for every i ∈ I;

(iv) U ⊂ ⋃

i∈I B(ui , 2ri).

Proof For integers k = −1, 0, 1, 2, . . . , let Ek = {u ∈ U : B(u, 2−k) ⊂ U}. Since

S\U 6= ∅, we have E−1 = ∅. We set F−1 = ∅. Suppose that k ≥ 0 and that

we have defined the subset F j of E j for −1 ≤ j ≤ k − 1. We let Fk be a subset of

Ek\{
⋃k−1

j=−1

⋃

u∈F j
B(u, 2− j+1)} which is maximal with respect to the property that

(2.19) B(u, 2−k) ∩ B(v, 2−k) = ∅ if u, v ∈ Fk and u 6= v.

The maximality of Fk implies that for every z ∈ Ek\{
⋃k−1

j=−1

⋃

u∈F j
B(u, 2− j+1)} there

is a u(z) ∈ Fk such that B(z, 2−k) ∩ B(u(z), 2−k) 6= ∅. Therefore

(2.20)
⋃

u∈Fk

B(u, 2−k+1) ⊃ Ek\{
k−1
⋃

j=−1

⋃

u∈F j

B(u, 2− j+1)}.

Since Fk ⊂ Ek, by the definition of Ek we have

(2.21) B(u, 2−k) ⊂ U if u ∈ Fk.

Thus we have inductively defined F−1, F0, F1, . . . , Fk . . . such that (2.19)–(2.21) hold

for every k. Let {B(ui , ri) : i ∈ I} be a re-enumeration of the balls in the families

{B(u, 2−k) : u ∈ Fk}, k ≥ 0. Then (ii) follows from (2.21).

If k < ℓ, u ∈ Fk and v ∈ Fℓ, then the definition of Fℓ ensures that v /∈ B(u, 2−k+1),

which implies d(u, v) ≥ 2−k+1 > 2−k + 2−ℓ. Therefore

(2.22) B(u, 2−k) ∩ B(v, 2−ℓ) = ∅ if u ∈ Fk, v ∈ Fℓ, and k < ℓ.
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Thus (i) follows from (2.19) and (2.22). Note that (2.20) implies

(2.23) Ek−1 ⊂
k−1
⋃

j=−1

⋃

u∈F j

B(u, 2− j+1).

Since Fk ⊂ Ek\{
⋃k−1

j=−1

⋃

u∈F j
B(u, 2− j+1)}, we have Fk ∩ Ek−1 = ∅ for all k ≥

0. By the definition of Ek−1, if u ∈ Fk, then U does not contain B(u, 2−(k−1)) =

B(u, 2−k+1), which proves (iii). Finally, (iv) follows from (2.23) and the fact that

U =
⋃∞

k=0 Ek.

3 Condition (Ap) and Commutators

The well-known (Ap)-condition, 1 < p < ∞, was introduced by Muckenhoupt [13]

for euclidian spaces and by Calderón [1] for metric spaces in general.

Definition 3.1 ([1]) A weight function w on S it is said to satisfy condition (Ap) if

sup
B

( 1

σ(B)

∫

B

wdσ
)( 1

σ(B)

∫

B

w−1/(p−1)dσ
) p−1

< ∞,

where the supremum is taken over all B = {u ∈ S : |1 − 〈u, a〉| < r}, a ∈ S, r > 0.

Moreover, specializing Calderón’s result to the sphere, we have the following.

Theorem 3.2 ([1]) Assume w satisfies condition (Ap) for some 1 < p < ∞.

(i) There is a p0 ∈ (1, p) such that w satisfies condition (Ar) for every p0 < r ≤ p.

(ii) The maximal operator is bounded on Lp(S, wdσ).

Corollary 3.3 Suppose that 1 < p < ∞. If w satisfies condition (Ap), then there

exists a t ∈ (1, 2] such that Mt is also bounded on Lp(S, wdσ).

Proof By Theorem 3.2(i), there is an r ∈ (max{1, p/2}, p) such that w satisfies

condition (Ar). Let t = p/r. Then 1 < t < 2. If f ∈ Lp(S, wdσ), then {Mt ( f )}p
=

{M(| f |t )}p/t
= {M(| f |t )}r. Applying Theorem 3.2(ii) to condition (Ar), we have

∫

{Mt ( f )}pwdσ =

∫

{M(| f |t )}rwdσ ≤ C

∫

| f |trwdσ = C

∫

| f |pwdσ,

which completes the proof.

Proposition 3.4 Suppose that w satisfies condition (Ap) for some 1 < p < ∞ and

let dµ = wdσ. Then there exist positive constants δ and C such that µ(E)/µ(B) ≤
C{σ(E)/σ(B)}δ for every open d-ball B in S and every Borel set E contained in B.

Proof Calderón [1, p. 298] showed that the metric-space version of (Ap) also implies

( 1

σ(B)

∫

B

w1+ǫdσ
) 1/(1+ǫ)

≤ C1
1

σ(B)

∫

B

wdσ.

Given this “reverse Hölder’s inequality”, the proposition follows from a standard ar-

gument. See, for example, [9, p. 264].
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Lemma 3.5 Suppose that w satisfies condition (Ap) for some 1 < p < ∞ and let

dµ = wdσ. Then there exists a positive constant C such that µ(B(u, 2r)) ≤ Cµ(B(u, r))

for all u ∈ S and r > 0.

Proof Define dν = w−1/(p−1)dσ. For any d-ball B and any Borel set E ⊂ B, it follows

from Hölder’s inequality that

σ(E)

σ(B)
≤

( µ(E)

σ(B)

) 1/p( ν(E)

σ(B)

) (p−1)/p

≤
( µ(E)

µ(B)

) 1/p{ µ(B)

σ(B)

( ν(B)

σ(B)

) p−1} 1/p

.

By the (Ap)-condition for w, the factor { · }1/p is dominated by a constant C1. Hence

σ(E)

σ(B)
≤ C1

( µ(E)

µ(B)

) 1/p

.

Letting B = B(u, 2r) and E = B(u, r), and applying (1.2), the lemma follows.

Lemma 3.6 Suppose that w satisfies condition (Ap) for some 1 < p < ∞ and define

dµ = wdσ. Let 1 < t ≤ 2 be given. Then there exist positive constants A and δ such

that

µ({u ∈ S : (T∗ f )(u) > (1 + C2.6)λ and (Mt f )(u) ≤ αλ})

≤ αδAµ({u ∈ S : (T∗ f )(u) > λ})

for all f ∈ L1(S, dσ), λ > infu∈S(T∗ f )(u), and 0 < α ≤ 1, where C2.6 is the constant

in Lemma 2.6.

Proof Let U = {u ∈ S : (T∗ f )(u) > λ}, which is an open set by the nature of T∗.

The condition λ > infu∈S(T∗ f )(u) ensures that S\U 6= ∅. Suppose that U 6= ∅. By

Lemma 2.8, there exists a family of open balls {B(ui , ri) : i ∈ I} such that

(a) B(ui , ri) ∩ B(u j , r j) = ∅ if i 6= j;

(b)
⋃

i∈I B(ui , ri) ⊂ U ;

(c) B(ui , 2ri) ∩ (S\U ) 6= ∅ for every i ∈ I;

(d) U ⊂ ⋃

i∈I B(ui , 2ri).

Denote Z = {u ∈ S : (T∗ f )(u) > (1 + C2.6)λ and (Mt f )(u) ≤ αλ}. For each

i ∈ I, write Bi = B(ui , 2ri). Condition (c) allows us to apply Proposition 2.7 to

obtain

σ(Z ∩ Bi) ≤ αC2.7(t)σ(Bi), i ∈ I.

By Proposition 3.4, there are positive constants δ and A ′ such that

µ(Z ∩ Bi)/µ(Bi) ≤ A ′{σ(Z ∩ Bi)/σ(Bi)}δ ≤ A ′(αC2.7(t))δ, i ∈ I.

Set A ′ ′
= Cδ

2.7(t)A ′. Then µ(Z ∩ Bi) ≤ αδA ′ ′µ(Bi). By (d) and the fact Z ⊂ U , we

have

µ(Z) ≤
∑

i∈I

µ(Z ∩ Bi) ≤ αδA ′ ′
∑

i∈I

µ(Bi).
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Lemma 3.5 provides a constant C such that µ(Bi) ≤ Cµ(B(ui , ri)). Hence

µ(Z) ≤ αδA ′ ′C
∑

i∈I

µ(B(ui , ri)) ≤ αδA ′ ′Cµ(U ),

where the second ≤ follows from (a) and (b).

Proposition 3.7 Let 1 < p < ∞ and suppose that w satisfies condition (Ap). Denote

dµ = wdσ. Let 1 < t ≤ 2 be given. Then there exists a constant C which depends on n,

ω, w, p, and t such that

(3.1)

∫

{T∗ f }pdµ ≤ C

∫

{Mt f }pdµ

for every f ∈ Lp(S, dµ).

Proof . We can decompose S as the union of disjoint hemispheres S+ and S−. Since

f = f χS+ + f χS− and since T∗ is subadditive, it suffices to prove (3.1) under the

additional assumption that f identically vanishes on either S+ or S−.

For such f we have infu∈S(T∗ f )(u) ≤ ‖ω‖∞‖ f ‖1. Set m = (1 + C2.6)‖ω‖∞‖ f ‖1.

If λ > m/(1+C2.6), then λ > infu∈S(T∗ f )(u). By Lemma 3.6, if λ > infu∈S(T∗ f )(u),

then

µ({T∗ f > (1 + C2.6)λ}) ≤ µ({Mt f > αλ}) + αδAµ({T∗ f > λ}),

0 < α ≤ 1. Therefore for all 0 < α ≤ 1 and m < L < ∞ we have

p

∫ L

m

xp−1µ({T∗ f > x})dx

= (1 + C2.6)p p

∫ L/(1+C2.6)

m/(1+C2.6)

λp−1µ({T∗ f > (1 + C2.6)λ})dλ

≤ (1 + C2.6)p p

∫ L/(1+C2.6)

m/(1+C2.6)

λp−1(µ({Mt f > αλ}) + αδAµ({T∗ f > λ}))dλ

≤ (1 + C2.6)pα−p

∫

(Mt f )pdµ + (1 + C2.6)pαδAp

∫ L

0

λp−1µ({T∗ f > λ})dλ.

Since δ > 0, we can set α to be such that (1 + C2.6)pαδA ≤ 1
2
. With such an α, after

the obvious cancellations we have

p

∫ L

m

xp−1µ({T∗ f > x})dx ≤ 2(1 + C2.6)pα−p

∫

(Mt f )pdµ + mpµ(S).

Therefore
∫

(T∗ f )pdµ = p

∫ ∞

0

xp−1µ({T∗ f > x})dx = p

∫ m

0

+ lim
L→∞

p

∫ L

m

≤ mpµ(S) + 2(1 + C2.6)pα−p

∫

(Mt f )pdµ + mpµ(S).
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Since m = (1 + C2.6)‖ω‖∞‖ f ‖1 and ‖ f ‖p
1µ(S) ≤

∫

(Mt f )pdµ, this completes the

proof.

Corollary 3.8 Suppose that w satisfies condition (Ap) for some 1 < p < ∞ and let

dµ = wdσ. Then T uniquely extends to a bounded operator on Lp(S, dµ).

Proof This follows immediately from Proposition 3.7 and Corollary 3.3.

As usual, we will write Mϕ for the operator of multiplication by the function ϕ.

Proposition 3.9 If ϕ ∈ BMO, then [Mϕ, T] is a bounded operator on L2(S, dσ).

Proof This follows from Corollary 3.8 and a standard argument, which we repro-

duce below. By the John–Nirenberg theorem, there are positive constants C1 and C2

such that

σ({u ∈ B : |ϕ(u) − ϕB| > λ}) ≤ C1 exp
( −C2λ

‖ϕ‖BMO

)

σ(B)

for all λ > 0 and open d-balls B in S. We only need to consider real-valued ϕ ∈ BMO.

For real-valued ϕ, if we set a = C2(2‖ϕ‖BMO)−1, then

1

σ(B)

∫

B

eaϕdσ
1

σ(B)

∫

B

e−aϕdσ ≤
( 1

σ(B)

∫

B

ea|ϕ−ϕB|dσ
) 2

≤ (1 + C1)2

for every open d-ball B in S. Hence the function w = eaϕ satisfies condition (A2).

By Corollary 3.8, T is bounded on L2(S, wdσ). This is equivalent to saying that the

operator Mw1/2 TMw−1/2 is bounded on L2(S, dσ). Because w−1 also satisfies condition

(A2), the operator Mw−1/2 TMw1/2 is also bounded on L2(S, dσ).

Now for each complex number z in the strip V = {z ∈ C : −1 ≤ Re(z) ≤ 1},

write

w1/2
z = exp(azϕ/2) and w−1/2

z = exp(−azϕ/2).

Obviously, ‖M
w

1/2
z

TM
w
−1/2
z

‖ = ‖Mw1/2 TMw−1/2‖ if Re(z) = 1 and ‖M
w

1/2
z

TM
w
−1/2
z

‖ =

‖Mw−1/2 TMw1/2‖ if Re(z) = −1. For the given ϕ, there is an obvious dense subset

D of L2(S, dσ) such that if f , g ∈ D, then the function z 7→ 〈M
w

1/2
z

TM
w
−1/2
z

f , g〉
is bounded on V . By a well-known result in complex analysis (see [5, Corol-

lary VI.3.9]), this implies that

‖M
w

1/2
z

TM
w
−1/2
z

‖ ≤ max{‖Mw1/2 TMw−1/2‖, ‖Mw−1/2 TMw1/2‖}, z ∈ V.

Therefore the operator

a

2
[Mϕ, T] =

d

dz
M

w
1/2
z

TM
w
−1/2
z

∣

∣

∣

z=0
=

1

2πi

∫

|z|=1

1

z2
M

w
1/2
z

TM
w
−1/2
z

dz

is bounded on L2(S, dσ).
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For our main application (Proposition 3.11), the result of Proposition 3.9 needs

to be strengthened to Proposition 3.10 below. Proposition 3.10 can be proved either

by a more careful tracking of all the constants in the results mentioned in this section

or by using Proposition 3.9 plus the closed graph theorem. We will take the latter

approach for expediency.

Proposition 3.10 There is a constant C3.10 such that

‖[Mϕ, T]g‖2 ≤ C3.10‖ϕ‖BMO‖g‖2

for all g ∈ L2(S, dσ) and ϕ ∈ BMO.

Proof Consider the linear map Y : ϕ 7→ [Mϕ, T], ϕ ∈ BMO. Proposition 3.9 tells

us that the range of Y is contained in the Banach space B(L2(S, dσ)). By the closed

graph theorem, to prove the proposition, it suffices to show that the graph of Y is

closed.

Let {ϕk} be a sequence in BMO such that limk→∞ ‖ϕk‖BMO = 0 and such that

lim
k→∞

‖[Mϕk
, T] − A‖ = 0

for some A ∈ B(L2(S, dσ)). For f , g ∈ L∞(S, dσ), using

lim
k→∞

‖ϕk‖BMO = 0

and the fact [Mϕk
, T] = [Mϕk−c, T] for any c ∈ C we have

lim
k→∞

〈[Mϕk
, T] f , g〉 = 0.

Thus 〈A f , g〉 = 0 for all f , g ∈ L∞(S, dσ). Since A ∈ B(L2(S, dσ)), this means

A = 0. This proves that the graph of Y is closed and completes the proof of the

proposition.

Proposition 3.11 If f ∈ VMO, then [M f , T] is a compact operator on L2(S, dσ).

Proof We first consider the case where f satisfies a Lipschitz condition | f (u) −
f (v)| ≤ L|u − v| on S. Let ǫ > 0. For such an f we can write [M f , T] = Aǫ + Bǫ,

where

(Aǫg)(u) =

∫

|1−〈u,v〉|<ǫ

J(u, v)g(v)dσ(v),

(Bǫg)(u) =

∫

|1−〈u,v〉|≥ǫ

J(u, v)g(v)dσ(v),

J(u, v) =
f (u) − f (v)

(1 − 〈u, v〉)n
ω(|1 − 〈u, v〉|).
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Since |u − v| ≤
√

2|1 − 〈u, v〉|1/2, we have | J(u, v)| ≤
√

2L‖ω‖∞|1 − 〈u, v〉|−n+(1/2).

Since
∫

1

|1 − 〈u, v〉|n−(1/2)
dσ(v) < ∞

[16, Proposition 1.4.10], by a well-known estimate we have limǫ↓0 ‖Aǫ‖ = 0. Obvi-

ously, Bǫ is compact. Therefore [M f , T] is compact if f ∈ Lip(S).

By the usual approximation, it follows from the preceding paragraph that [M f , T]

is also compact if f ∈ C(S). Finally, suppose that f ∈ VMO. Then there exists a

sequence { fk} in C(S) such that limk→∞ ‖ f − fk‖BMO = 0 [20, Proposition 4.1].

Since each [M fk
, T] is compact, it follows from Proposition 3.10 that [M f , T] is also

compact.

4 The Construction

We will now construct the operator promised in Section 1. The technical steps of

construction are presented in the form of the first ten lemmas of the section. In order

to better understand the construction, we suggest that the reader read the statements

of Lemmas 4.1–4.10 first and save the proofs for later.

Lemma 4.1 We have

lim
ǫ↓0

∫

|1−〈u,v〉|≥ǫ

1

(1 − 〈u, v〉)n
dσ(v) =

1

2

for every u ∈ S.

Proof This is very close to [12, Lemma 7.2]. However, since that lemma was proved

for the “gauge” γ(u, v) defined by [12, (7.1), p. 619], which is somewhat different

from the |1 − 〈u, v〉| used in this paper, we would like to verify the details.

Let dA denote the natural Lebesgue measure on C. In other words, the 1×1 square

has measure 1. By [16, 1.4.5(2), p. 15] we have

∫

|1−〈u,v〉|≥ǫ

1

(1 − 〈u, v〉)n
dσ(v) =

n − 1

π

∫

Dǫ

(1 − |z|2)n−2

(1 − z̄)n
dA(z),

where Dǫ = {z ∈ C : |z| < 1 and |1 − z| ≥ ǫ}. Performing the substitutions

ζ = ǫ/(1 − z) and w = ζ − (ǫ/2), we find that

∫

|1−〈u,v〉|≥ǫ

1

(1 − 〈u, v〉)n
dσ(v) =

n − 1

π

∫

Eǫ

{2 Re(ζ) − ǫ}n−2

ζn
dA(ζ)

=
2n−2(n − 1)

π

∫

Λǫ

{Re(w)}n−2

(w + (ǫ/2))n
dA(w),

where Eǫ = {ζ ∈ C : |ζ| ≤ 1 and Re(ζ) > ǫ/2} and Λǫ = {ζ − (ǫ/2) : ζ ∈ Eǫ}.

Denote D+ = {w ∈ C : |w| ≤ 1, Re(w) > 0}. It is easy to see that Λǫ ⊂ D+, that

https://doi.org/10.4153/CJM-2010-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-038-x


906 J. Xia

A(D+\Λǫ) ≤ 2(ǫ/2) = ǫ, and that if ǫ is sufficiently small, then |w + (ǫ/2)| ≥ 1
2

for

w ∈ D+\Λǫ. Hence

(4.1)

∫

|1−〈u,v〉|>ǫ

1

(1 − 〈u, v〉)n
dσ(v) =

2n−2(n − 1)

π

∫

D+

{Re(w)}n−2

(w + (ǫ/2))n
dA(w)+η(ǫ)

with η(ǫ) → 0 as ǫ ↓ 0. For 0 < δ < 1 we have

∫

D+

{Re(w)}n−2

(δ + w)n
dA(w) =

∫ π/2

−π/2

∫ 1

0

rn−2 cosn−2 θ

(δ + reiθ)n
rdrdθ

=

∫ π

0

∫ 1

0

sinn−2 t

r((δ/r) − ieit )n
drdt =

∫ π

0

∫ ∞

δ

sinn−2 t

x(x − ieit )n
dxdt,

where we made the substitutions t = θ + (π/2) and x = δ/r. By [12, Lemma 6.2]

lim
δ↓0

∫ π

0

∫ ∞

δ

sinn−2 t

x(x − ieit )n
dxdt =

π

2n−1(n − 1)
.

Combining this with (4.1), the lemma follows.

For each ǫ > 0, define the operator Hǫ on L2(S, dσ) by the formula

(Hǫ f )(u) =

∫

|1−〈u,v〉|≥ǫ

f (v)

(1 − 〈u, v〉)n
dσ(v).

We also define the maximal singular integral (H∗ f )(u) = supǫ>0 |(Hǫ f )(u)|.

Lemma 4.2 There are constants C1 and C2 which depend only on the complex di-

mension n such that the inequality H∗ f ≤ C1M f + C2M(P f ) holds on S for every

f ∈ L2(S, dσ).

Proof It is elementary that 2|1 − ρc| ≥ |1 − c| if |c| ≤ 1 and 0 ≤ ρ ≤ 1. Thus

∣

∣

∣

1

(1 − 〈u, v〉)n
− 1

(1 − 〈(1 − ǫ)u, v〉)n

∣

∣

∣

=

∣

∣

∣

n−1
∑

j=0

ǫ〈u, v〉
(1 − 〈u, v〉)n− j(1 − 〈(1 − ǫ)u, v〉) j+1

∣

∣

∣

≤ 2nnǫ

|1 − 〈u, v〉|n+1

for all 0 < ǫ ≤ 1 and u 6= v in S. It follows from Lemma 2.1 that

∣

∣

∣

∫

|1−〈u,v〉|≥ǫ

( f (v)

(1 − 〈u, v〉)n
− f (v)

(1 − 〈(1 − ǫ)u, v〉)n

)

dσ(v)
∣

∣

∣
≤ C(M f )(u)

https://doi.org/10.4153/CJM-2010-038-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-038-x


Singular Integral Operators and Essential Commutativity on the Sphere 907

for all 0 < ǫ ≤ 1 and u ∈ S. On the other hand, by (1.2),

∣

∣

∣

∫

|1−〈u,v〉|<ǫ

f (v)

(1 − 〈(1 − ǫ)u, v〉)n
dσ(v)

∣

∣

∣
≤ 1

ǫn

∫

|1−〈u,v〉|<ǫ

| f (v)|dσ(v)

≤ A0(M f )(u).

Hence, |(Hǫ f )(u) − (P f )((1 − ǫ)u)| ≤ (C + A0)(M f )(u). The lemma follows from

this inequality and the well-known fact that |(P f )((1 − ǫ)u)| ≤ C2(M(P f ))(u) [16,

p. 75].

Lemma 4.3 (i) supǫ>0 ‖Hǫ‖ < ∞.

(ii) The limit H = limǫ↓0 Hǫ exists in the strong operator topology.

(iii) H = P − 1
2
.

Proof (i) is an immediate consequence of Lemma 4.2.

(ii) For f ∈ L2(S, dσ),

f (u)Hǫ1 − (Hǫ f )(u) =

∫

|1−〈u,v〉|≥ǫ

f (u) − f (v)

(1 − 〈u, v〉)n
dσ(v).

If f is Lipschitz (with respect to the Euclidian metric) on S, then | f (u) − f (v)| ≤
L|u−v| ≤

√
2L|1−〈u, v〉|1/2. For each u ∈ S, the function Φu(v) = |1−〈u, v〉|−n+(1/2)

belongs to L1(S, dσ) [16, Proposition 1.4.10], and ‖Φu‖1 is independent of u ∈ S.

Applying the dominated convergence theorem twice, we see that if f ∈ Lip(S), then

the limit limǫ↓0( f Hǫ1 − Hǫ f ) exists in the norm topology of L2(S, dσ). Combining

this with Lemma 4.1, the limit limǫ↓0 Hǫ f exists in the norm topology of L2(S, dσ)

for every f ∈ Lip(S). By (i) and the fact that Lip(S) is dense in L2(S, dσ), the strong

limit H = limǫ↓0 Hǫ exists.

(iii) Again, this is just a slight variation of [12, Theorem 7.1]. Let ϕ be a polyno-

mial in z1, . . . , zn, z̄1, . . . , z̄n. Then it follows from the above argument and Lemma

4.1 that

1

2
ϕ(u) − (Hϕ)(u) = ϕ(u)H1 − (Hϕ)(u) =

∫

ϕ(u) − ϕ(v)

(1 − 〈u, v〉)n
dσ(v).

Recall that 2|1 − rc| ≥ |1 − c| if 0 < r < 1 and |c| ≤ 1. Thus it follows from the

dominated convergence theorem that

1

2
ϕ(u) − (Hϕ)(u) = lim

r↑1

∫

ϕ(u) − ϕ(v)

(1 − 〈ru, v〉)n
dσ(v) = lim

r↑1
(ϕ(u) − (Pϕ)(ru)).

Since such ϕ’s are dense in L2(S, dσ), this completes the proof.

For the rest of the paper, let ξ be a real-valued, non-decreasing, C∞ function on

(0,∞) satisfying the conditions ξ = 0 on (0, 1
2
] and ξ = 1 on [1,∞). The reason that

we require ξ to be non-decreasing will become clear in the proof of our next lemma.
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With this ξ given, for each a > 0 we defined the operator

(Ga f )(u) =

∫

ξ(a−1|1 − 〈u, v〉|)
(1 − 〈u, v〉)n

f (v)dσ(v)

on the Hilbert space L2(S, dσ). Obviously, each Ga is a compact, self-adjoint operator.

Lemma 4.4 (i) supa>0 ‖Ga‖ < ∞.

(ii) lima↓0 Ga = H in the strong operator topology.

(iii) lima↓0 ‖Gag − (g/2)‖2 = 0 for every g ∈ H2(S).

Proof For each a > 0 consider the function ξa(t) = ξ(t/a) on (0,∞). Because

ξa is non-decreasing and continuous, and because ξa = 0 on (0, a/2] and ξa = 1

on [a,∞), ξa can be uniformly approximated on (0,∞) by convex combinations of

functions in the family {χ[ǫ,∞) : a/2 ≤ ǫ ≤ a}. Hence Ga is in the operator-norm

closure of the convex hull of {Hǫ : a/2 ≤ ǫ ≤ a}. Thus this lemma follows from

Lemma 4.3.

As usual, we write kz for the normalized reproducing kernel function for H2(S).

That is, for each z ∈ Cn with |z| < 1, we write

kz(w) =
(1 − |z|2)n/2

(1 − 〈w, z〉)n
, |w| ≤ 1.

Lemma 4.5 For all a > 0, b > 0, and 0 < r < 1 the values of ‖Gakru‖2,

‖(Ga − Gb)kru‖2, and 〈Gakru, kru〉 are independent of u ∈ S.

Proof Let U : Cn → Cn be any unitary transformation. Then the formula

(UU f )(u) = f (U u)

defines a unitary operator on L2(S, dσ). Clearly, U∗
U = UU∗ . Hence U∗

U GaUU = Ga

for every a > 0. Also, UU kz = kU∗z. The lemma follows from these two facts.

Lemma 4.6 There exists a constant C4.6 such that for all u ∈ S, 0 < r < 1, and

b ≥ (1 − r)1/3 we have ‖Gbkru‖2 ≤ C4.6(1 − r)1/12.

Proof For b ≥ (1 − r)1/3, we have

|(Gbkru)(v)| ≤
( 2

b

) n
∫

|kru(ζ)|dσ(ζ) ≤ 23n/2

∫

(1 − r)(n/2)−(n/3)

|1 − r〈ζ, u〉|n dσ(ζ)

≤ 23n/2(1 − r)1/12

∫

1

|1 − r〈ζ, u〉|n−(1/12)
dσ(ζ)

for every v ∈ S. By [16, Proposition 1.4.10], there is a constant C such that

∫

1

|1 − r〈ζ, u〉|n−(1/12)
dσ(ζ) ≤ C

for all u ∈ S and 0 < r < 1.
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Lemma 4.7 There exist sequences {r( j)}, {a( j)}, and {b( j)} of positive numbers

which have the following properties:

(i) 0 < r( j) < 1 for every j ∈ N and lim j→∞ r( j) = 1;

(ii) 0 < a( j) < b( j) for every j ∈ N and lim j→∞ b( j) = 0;

(iii) b( j + 1) ≤ a( j)/8 for every j ∈ N;

(iv) 〈(Ga( j) − Gb( j))kr( j)u, kr( j)u〉 ≥ 1
3

for all j ≥ 2 and u ∈ S;

(v)
∑ j

i=1 ‖(Ga(i) − Gb(i))kr( j+1)u‖2 ≤ ( j + 1)−1 for all j ∈ N and u ∈ S;

(vi)
∑ j

i=1 ‖(Ga( j+1) − Gb( j+1))kr(i)u‖2 ≤ 2−( j+1) for all j ∈ N and u ∈ S.

Proof Let r0 ∈ (0, 1) be such that C4.6(1− r0)1/12 ≤ 1
12

. We will select r( j), b( j) and

a( j) inductively. We begin with arbitrary 0 < r(1) < 1 and 0 < a(1) < b(1) < ∞.

Suppose that j ≥ 1 and that we have selected r(i), b(i), and a(i) for 1 ≤ i ≤ j. By

Lemma 4.6 there is a ρ ∈ (0, 1) such that

j
∑

i=1

‖(Ga(i) − Gb(i))kru‖2 ≤
1

j + 1
for all ρ ≤ r < 1 and u ∈ S.

By Lemma 4.4(ii) and Lemma 4.5, there is a β > 0 such that

j
∑

i=1

‖(Ga − Gb)kr(i)u‖2 ≤ 2−( j+1) for all 0 < a < b ≤ β and u ∈ S.

We pick an r( j+1) such that max{1−2− j−1, r0, ρ} ≤ r( j+1) < 1 and (1−r( j+1))1/3

≤ min{a( j)/8, β}. Let b( j + 1) = (1 − r( j + 1))1/3. Then b( j + 1) ≤ a( j)/8,

j
∑

i=1

‖(Ga(i) − Gb(i))kr( j+1)u‖2 ≤
1

j + 1
, u ∈ S,

and

j
∑

i=1

‖(Ga − Gb( j+1))kr(i)u‖2 ≤ 2−( j+1) for all 0 < a < b( j + 1) and u ∈ S.

Since r( j + 1) ≥ r0 and C4.6(1− r0)1/12 ≤ 1
12

, by Lemma 4.6 we have ‖Gb( j+1)kr( j+1)u‖2

≤ 1
12

, u ∈ S. By Lemma 4.4(iii) and Lemma 4.5 we can pick an a( j +1) ∈ (0, b( j +1))

such that 〈Ga( j+1)kr( j+1)u, kr( j+1)u〉 ≥ 1
2
− 1

12
for all u ∈ S. Hence

〈(Ga( j+1) − Gb( j+1))kr( j+1)u, kr( j+1)u〉 ≥
1

2
− 1

12
− 1

12
=

1

3
.

This completes the inductive selection of the sequences {r( j)}, {a( j)} and {b( j)}.

Since r( j + 1) ≥ 1 − 2−( j+1), we have limk→∞ r( j) = 1. Note that the inequal-

ities b( j + 1) ≤ a( j)/8 and a( j) < b( j) imply b( j + 1) ≤ 8− jb(1). Therefore

lim j→∞ b( j) = 0.
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Let N1 be an infinite subset of N such that the set N2 = N\N1 is also infinite.

Lemma 4.8 There exists an infinite subset N of N1 such that the limit

(4.2) lim
m→∞

∑

j∈N∩{1,2,...,m}
(Ga( j) − Gb( j)) = F

exists in the strong operator topology.

Proof By Lemma 4.4(i), sup j≥1 ‖Ga( j) −Gb( j)‖ < ∞. By Lemma 4.7(ii) and Lemma

4.4(ii), we have the strong convergence lim j→∞(Ga( j) − Gb( j)) = 0. Each Ga( j) −
Gb( j) is compact and self-adjoint. Thus the desired conclusion follows from [14,

Lemma 2.1].

Lemma 4.9 If f ∈ VMO, then [M f , F] is a compact operator on L2(S, dσ).

Proof We will show that F is in fact an example of the operator T defined at the

beginning of Section 2. Then by Proposition 3.11 [M f , F] is compact for every f ∈
VMO.

For each a > 0 again consider the function ξa(t) = ξ(t/a), t > 0. Since ξ ′
a(t) =

a−1ξ ′(t/a) and ξ ′(t/a) 6= 0 only if t ∈ (a/2, a), we have 0 ≤ ξ ′
a(t) ≤ ‖ξ ′‖∞/t for

all t > 0.

For each j ∈ N, define the function ψ j(t) = ξ(a−1( j)t) − ξ(b−1( j)t), t ∈ (0,∞).

Then by the preceding paragraph |ψ ′
j (t)| ≤ ‖ξ ′‖∞/t for all t > 0. By the choice of

ξ, we have ψ j ∈ C∞(0,∞), ψ j = 0 on (0,∞)\(a( j)/2, b( j)) and 0 ≤ ψ j ≤ 1 on

(0,∞). Let

ψ(t) =

∑

j∈N

ψ j(t) =

∑

j∈N

{ξ(a−1( j)t) − ξ(b−1( j)t)}.

By the condition b( j +1) ≤ a( j)/8 (Lemma 4.7(iii)) and the above-mentioned prop-

erties of ψ j we have ψ ∈ C∞(0,∞), 0 ≤ ψ(t) ≤ 1, and |ψ ′(t)| ≤ ‖ξ ′‖∞/t for

all t > 0. That is, ψ satisfies conditions (i) and (ii) required of the function ω in

Section 2.

For each ǫ > 0, define the operator Fǫ by the formula

(Fǫ f )(u) =

∫

S\B(u,ǫ)

ψ(|1 − 〈u, v〉|)
(1 − 〈u, v〉)n

f (v)dσ(v).

For each m ∈ N set ǫm = (a(m)/2)1/2. Then ψ jχ[ǫ2
m,∞) = ψ j if j ≤ m and

ψ jχ[ǫ2
m,∞) = 0 if j > m. Thus by the definitions of ψ and Ga we have

Fǫm
=

∑

j∈N∩{1,2,...,m}
(Ga( j) − Gb( j)).

Comparing this with (4.2), we see that F also satisfies (2.1).

We now define F̃ to be the compression of F to the Hardy space H2(S). That is,

(4.3) F̃g = PFg, g ∈ H2(S),

where P is the orthogonal projection from L2(S, dσ) onto H2(S).
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Lemma 4.10 (i) Let i1 < i2 < · · · < iν < · · · be any ascending sequence of the

integers in the set N given by Lemma 4.8. Then for every u ∈ S we have

lim inf
ν→∞

〈F̃kr(iν )u, kr(iν )u〉 ≥
1

3
.

(ii) Let j1 < j2 < · · · < jν < · · · be any ascending sequence of the integers in N2.

Then for every u ∈ S we have limν→∞〈F̃kr( jν )u, kr( jν )u〉 = 0.

Proof For any given integer j > 2, it follows from (v) and (vi) in Lemma 4.7 that

∑

i 6= j

‖(Ga(i) − Gb(i))kr( j)u‖2 =

j−1
∑

i=1

‖(Ga(i) − Gb(i))kr( j)u‖2

+

∞
∑

i= j+1

‖(Ga(i) − Gb(i))kr( j)u‖2

≤ 1

j
+

∞
∑

i= j+1

2−i
=

1

j
+ 2− j .

(4.4)

Thus if j ∈ N2 and j > 2, since j /∈ N, we have

‖F̃kr( j)u‖2 ≤
∑

i∈N

‖(Ga(i) − Gb(i))kr( j)u‖2 ≤
1

j
+ 2− j ,

which proves (ii). To prove (i), we note that 〈F̃g, g〉 = 〈Fg, g〉 if g ∈ H2(S). Thus for

j ∈ N, it follows from (4.2) that

〈F̃kr( j)u, kr( j)u〉 = 〈Fkr( j)u, kr( j)u〉

≥ 〈(Ga( j) − Gb( j))kr( j)u, kr( j)u〉 −
∑

i 6= j

‖(Ga(i) − Gb(i))kr( j)u‖2.

Combining this inequality with Lemma 4.7(iv) and (4.4), (i) follows.

Lemma 4.11 For each f ∈ L2(S, dσ), there is a Borel set Λ in S with σ(Λ) = 0 such

that limr↑1 ‖( f − f (u))kru‖2 = 0 for every u ∈ S\Λ.

Proof For each ϕ ∈ L1(S, dσ), define the Poisson integral

ϕ(z) =

∫

P(z, ζ)ϕ(ζ)dσ(ζ), |z| < 1,

where the Poisson kernel is given by the formula

P(z, ζ) = |kz(ζ)|2, |ζ| = 1, |z| < 1.
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(See [16, pp. 40–41].) Let f ∈ L2(S, dσ) be given and define the function h = | f |2. By

[16, Theorem 5.3.1] there is a Borel set Λ in S with σ(Λ) = 0 such that each u ∈ S\Λ
is a Lebesgue point for both f and h. By [16, Theorem 5.4.8], for each u ∈ S\Λ we

have

(4.5) lim
r↑1

f (ru) = f (u) and lim
r↑1

h(ru) = h(u) = | f (u)|2.

But for every u ∈ S and every 0 < r < 1 we have

‖( f − f (u))kru‖2
2 = ‖ f kru‖2

2 − 2 Re〈 f kru, f (u)kru〉 + | f (u)|2‖kru‖2
2

= h(ru) − 2 Re{ f (ru) f (u)} + | f (u)|2.

Combining this with (4.5), the lemma follows.

Lemma 4.12 For any given ϕ1, . . . , ϕm ∈ L∞(S, dσ), there exists a Borel set Ω in S

with σ(Ω) = 0 such that if u ∈ S\Ω, then the limit limr↑1〈Tϕ1
· · ·Tϕm

kru, kru〉 exists

and equals ϕ1(u) · · ·ϕm(u).

Proof We use induction on m. The case m = 1 follows from Lemma 4.11. Suppose

that m ≥ 2 and that the desired assertion is true for Tϕ1
· · ·Tϕm−1

. Then

Tϕ1
· · ·Tϕm

kru = ϕm(u)Tϕ1
· · ·Tϕm−1

kru + Tϕ1
· · ·Tϕm−1

P(ϕm − ϕm(u))kru.

Thus the case for m follows from the induction hypothesis and another application

of Lemma 4.11.

Proposition 4.13 If X is an operator belonging to the Toeplitz algebra T, then there

exists a Borel subset E of S with σ(E) = 0 such that the limit limr↑1〈Xkru, kru〉 exists for

every u ∈ S\E.

Proof If X ∈ T, then there exists a sequence {X j}, where each X j is the sum of a

finite number of terms of the form Tϕ1
· · ·Tϕm

, m ∈ N and ϕ1, . . . , ϕm ∈ L∞(S, dσ),

such that lim j→∞ ‖X−X j‖ = 0. Thus this proposition is an immediate consequence

of Lemma 4.12.

Proof of Theorem 1.1 We want to show that the operator F̃ defined by (4.3) belongs

to the essential commutant of T(VMObdd) but does not belong to T.

It is well known that if f ∈ VMO, then [M f , P] is compact. Therefore it follows

from Lemma 4.9 that F̃ belongs to the essential commutant of T(VMObdd).

To show that F̃ /∈ T, recall from Lemma 4.7(i) that lim j→∞ r( j) = 1. Thus

Lemma 4.10 tells us that for no u ∈ S does the limit limr↑1〈F̃kru, kru〉 exist. By Propo-

sition 4.13, this means F̃ /∈ T.
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