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Singular Integral Operators and Essential
Commutativity on the Sphere

Jingbo Xia

Abstract. Let T be the C*-algebra generated by the Toeplitz operators {T, : ¢ € L°°(S,do)} on
the Hardy space H2(S) of the unit sphere in C". It is well known that T is contained in the essential
commutant of {T, : ¢ € VMO NL®(S, do)}. We show that the essential commutant of {T,, : ¢ €
VMO NL°(S, do)} is strictly larger than 7.

1 Introduction

Let S denote the unit sphere {z € C" : |z| = 1} in C". Let o be the positive, regular
Borel measure on S which is invariant under the orthogonal group O(2n), i.e., the
group of isometries on C" 2 R?" which fix 0. Furthermore we normalize o such that
0(S) = 1. The Cauchy projection P is defined by the integral formula

_ fv)
(PF)(2) = / T o), <1,

See [16, p. 39]. Recall that P is the orthogonal projection from L*(S, do) onto the
Hardy space H*(S). For each ¢ € L*°(S, do), the Toeplitz operator T, is the operator
on H*(S) defined by the formula T,g = Ppg, g € H*(S). We will write
T = the C™-algebra generated by {T,, : ¢ € L>°(S, do)}.
Recall that the formula

(1.1) d(u,v) = |1—<u,v>|1/27 u,v e s,

defines a metric on S [16, p. 66]. Throughout the paper, B(u, a) denotes an open ball
with respect to the metric d given in (LLI). That is, for any u € Sand a > 0, we write

B(u,a) = {ve S: |1 — (u,v)|'? < a}.

A function f € L'(S, do) is said to have bounded mean oscillation if

I lasio = sup —oc / If — foldo < oo,
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where fz = [, fdo/o(B) and the supremum is taken over all B = B(u,a), u € S and
a > 0. A function f € L'(S, do) is said to have vanishing mean oscillation if

1
lim sup — fBaua|do = 0.
010 Les O'(B(M,a)) B(“’a)|f f(ua)|
0<a<é

We denote the collection of functions of bounded mean oscillation on S by BMO.
Similarly, let VMO be the collection of functions of vanishing mean oscillation on S.
We define

VMOpqq = VMO NL™(S, do)

and
T(VMOpgq) = the C*-algebra generated by {T,, : ¢ € VMOpq}-

For any separable, infinite-dimensional Hilbert space I, let B(J{) be the collec-
tion of bounded operators on H. The essential commutant of a subset G of B(H) is
defined to be

EssCom(9) = {X € B(H) : [A,X] € K(K) for every A € G},

where K(JH) denotes the collection of compact operators on H. Let 7 be the quotient
map from B(H) into the Calkin algebra Q = B(H)/K(H). Then 7(EssCom(9)) is
the commutant of 7(§) in Q. That is, {7(G)}’ = 7(EssCom(9)).

When n = 1, i.e., in the case of the unit circle, VMOyqq is better known as QC and
has an alternate description [9, §IX.2]. A famous result due to Davidson [6] asserts
that T(QC) is the essential commutant of T. This result was later generalized to the
case n > 2 by Ding, Guo and Sun [7,10]. That is, for whatever complex dimension
n, T(VMOpqq) is always the essential commutant of T. This naturally motivates the
question, what is the essential commutant of T(VMOpg4q)? In particular, does the
essential commutant of T(VMOy4q) coincide with T2 Given the results of [6,7,10],
this is equivalent to asking, does 7(7) satisfy the double commutant relation in the
Calkin algebra Q2

In our previous investigation [21], we showed that in the case n = 1, the essential
commutant of T(QC) is strictly larger than T. In other words, in the unit circle case
m(T) does not satisfy the double commutant relation. The purpose of this paper is to
report that the same assertion holds true in all complex dimensions. That is, we will
prove the following.

Theorem 1.1 For every n > 2 the essential commutant of T(VMOvaq) is also strictly
larger than 7.

As explained in [21], although the essential-commutant problem of T(VMOpqq)
is motivated by C*-algebraic considerations [11,15,18, 19], its solution relies heavily
on harmonic analysis. It is even more so in the case n > 2, as we will see.

To prove Theorem [[.T} we obviously need to construct an operator that belongs
to EssCom(T(VMOyp4q)) and that does not belong to T. But if an operator essentially
commutes with T(VMOyq4q), how does one show that it does not belong to J?
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In the case n = 1, we used a criterion based on the canonical commutation rela-
tion, which we could take advantage of because the unit disc is conformally equiva-
lent to the upper half-plane.

Let D = —id/dx. Then X(9.c0)(D) is the orthogonal projection from L*(R) to
the Hardy space H*(R) of the upper half-plane. For each A € R, define the unitary
operator (V)g)(x) = e*¢(x), ¢ € L*(R). Obviously, ViDVy =D+ A Thus

ViX0,00) D)V = X(0,00) (D + A) = X(=x,00)(D)-

Consequently, s-limy_.oc V}X(0,00)(D)Vy = 1. Let V), be the compression of V), to
the subspace H*(R). Then the above limit implies that the strong limit

s(A) = s-lim VYAV,
A—o00

exists for every operator A in the Toeplitz algebra on H*(R). This was the member-
ship criterion for the Toeplitz algebra that we used in [21]. Obviously, this is not
something that we can hope to mimic in the case of a sphere with n > 2.

What the above limit recovers is in fact the symbol of the operator A, as the nota-
tion s(A) indicates. In the case n > 2, we will also use the fact that every operator in
T has a symbol, which is proved in Proposition .13 below. But the difference is that
here we recover the symbol through the normalized reproducing kernel for H*(S).
Note that the method of recovering symbols through the normalized reproducing
kernel was discovered by Englis in the case of the unit circle [8].

Guided by Proposition we construct an operator F (see (£3) and (£2)
below) which essentially commutes with T(VMOpaq) and which has no symbol.
The latter fact ensures, of course, that F ¢ T. Although the proof that F is in
EssCom(T(VMOyqq)) uses techniques that are standard in the theory of Calderén—
Zygmund operators on R¥ [2, 3, 17], there are no results in the literature for us to
cite directly to cover the case of the sphere S. This forces us to produce the necessary
details here.

This paper is organized as follows. Sections 2 and 3 deal with the singular integral
operators, culminating in Proposition B.11] the main technical step. In Section 4 we
construct the operator F, which is quite involved and requires results from [12,14].

For the rest of the paper, we will assume n > 2. We conclude this section with
an inequality which will be used frequently. There is a constant Ay € (27", 00) such
that

(1.2) 27a* < g(B(u,a)) < Aga"

forallu € Sand 0 < a < /2 [16, Proposition 5.1.4].

2 Singular Integrals on the Sphere

For the rest of the paper, let w be a C! function which maps (0, co) into C. Let

_ w(t = (w»))

K(u,v) = = () u#vandu,v €S.
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For f € L'(S,do) and € > 0, define
(Tef)(u) = / Ku,v)f(v)do(v), ue€S.
S\ B(u,€)

We assume that w and T, satisfy the following three conditions:

@) [wllee = sup,sq [w(t)| < 0.

(ii) There is a constant C such that |w’(¢)] < C/t for 0 <t < 3.

(iii) There exist a bounded operator T on L*(S, do) and a sequence of positive num-
bers {e;} with limy_, o € = 0 such that

(2.1) kli>nolo HTF,kf_ Tf||2 =0

for every f € L*(S, do).
Recall that the Hardy-Littlewood maximal function is defined by the formula

1
(Mf)(u) = sup m /B(u-r) |f|d0’7 u€es.

>0
Lemma 2.1 Forall f € L(S,do), u € S, o > 0, and p > 0, we have

p(¥ 217+CYAO
— do(v) < Mf)(u),
Awmyu—www“m““”w—l(”w

where Ay is the constant in (1.2).

Proof Given u € Sand p > 0, define By = {v € S: |1 — (u,v)| < 2kp}, k =
0,1,2,.... For v € By \Bi, we have (p/|1 — (u,v))* < 27 and |1 — (u,v)|" >
(2kp)" > Ao_lz_nO'(Bk+1), where the second > follows from (1.2]). Hence

(e%

P e 1
—— <2'A —
L=y =270 ,; 20 (B \Per\3 ()
for v € S\By. The lemma follows from this inequality. -

Lemma 2.2 There is a constant Cp, such that forany u € Sandr > 0, ifx,z €
B(u,r) and y € S\B(u, 2r), then

1 (x,2)]'2

|K(x,y) — K(z,y)| < CZIZW.

Proof Forx,z € B(u,r)and y € S\B(u, 2r), we have

(2.2) |MawKumns|“”*”+uumw%an

L= ()"
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where

a(y;x,2) = w(|1 = (x, )]) —w(|1 = (z,y)]),
1 B 1
Q=) A=z

b(y;x,z) =

We will estimate the two terms in (2.2)) separately.
To begin, we observe that the conditions x,z € B(u,r) and y € S\B(u, 2r) imply

(2.3) d(x, y) < 3d(z, y).

Hence |1 — (z,y)| > |1 — (x, ¥}|/9 and, by the fundamental theorem of calculus,

[1—(z,}| [1—=(z,y)|
2.4)  Jaly;x,2)| = ‘/ W' ()] < ‘/ C g < XClz—x I
)| [1—(x,)| f 1= (x, 9

To estimate |(z — x, y)|, we write y = (y,x)x + y= and z = (z,x)x + z*, where
{yt,x) = 0= (zt,x). Thus (z — x, y) = ({z,x) — 1){x, y) + (z*, y1). Therefore

(2 = x, )| < 1= (z,x)| + ]2y
= 1= (20| + (1= [{z,x) )21 = [(y,x)[)"/?
<= {z,0)] +2/1 = (2,221 = (7, %)]".

Since d(x, z) < 2r, whereas d(x, y) > r, the above leads to the estimate
(2.5) (2 =%, )| < 4[1 = (z,%)|"*[1 = (y,x)["/>.
Substituting this into (2.4), we obtain

1= (x,2)['?
2.6 ix,2)| < 36C T E
=0 e T S e

To estimate |b(y; x, z)|, note that it follows from ([2.3) and (23] that

R ) 1 (x.2)
T P Sl ey | [l ey e Y e Ty P Y T

By simple algebra and another application of (2.3]), we have

gn—1 |1—<x,z)|1/2
[b(y;x,2)| < n- — - 36 .
1=yt 7L = (x, ) P2
Combining this with (Z2)) and (2.6)), the lemma follows. [ |
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Lemma 2.3 Foreach 1 < t < 2, there is a constant C,3(t) such that | Tf|; <
Caos(®)|fls for every f € L*(S,do). Therefore T uniquely extends to a bounded opera-
tor on L'(S, do).

Proof As usual, we will establish the weak-type (1, 1) estimate

(2.7) o{u e S: [(THw)| > A} < A/N]|fll-

The lemma will then follow from the L?-boundedness of T, (2.7), and the interpola-
tion theorem of Marcinkiewicz [9, p. 26].

To prove (2.7), we only need to consider the case where A > || f|;. We use the
Calderén—Zygmund decomposition of f. Let Ay = sup,.,o(B(u,4r))/o(B(u,r)).
According to [16, Lemma 6.2.1], there exists a family of open d-balls {B;} in S and a
family of pairwise disjoint Borel sets {V;}, where V; C B; for every i, such that

(i) {ueS:MfHw) >y clU;Bi=UVs;
(i) >, 0(Bi) < (As/ N fllis
(iii) fV,- |fldo < Agha (V).

As in the proof of [16, Theorem 6.2.2], set ¢; = fo fdo /o(V;) for each i and define
g=fxs\u, v + ZCini and b; = (f —c)xv,.

Then f = g+ b, where b = . b;. Since the set of Lebesgue points for |f| has
measure 1 with respect to o [16, Theorem 5.3.1], (i) implies that | f(u)| < A for o-a.e.
u € S\(J; Vi). Thus

/ lgPdo = / |fPdo < A / |fldo < MIflh.
S\(U; Vi) S\(U; Vi) S\(U; Vi)

i

On the other hand, it follows from (iii) and (ii) that

/ gPdo = lal’o(Vi) < (AN D a(Vy)

i

< (AN A/ N fIly = AN f -

Hence [|g]|5 < (1+A})A[/f| and

o({ueS: [(T9)(w)] > N/2}) < 2/N?Tgl3 < @/MITIPlgl3

(2.8) o
< @/ TP+ A £l

To estimate Tb, we switch to the argument given in [17, p. 21].

For each i, we suppose that B; = B(v;, ;) and define B/ = B(v;, 2r;). Then S\B/ =
{y € S:]1— (y,v)| > (2r;)*}. It follows from Lemmas2.2land Z-T] that if v € B;,
then

2n+(1/2)A0

=C.
V2 -1

(2.9) / IK(y,v) — K(y,vp)|do(y) < Cas -
S\B!
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On the set S\(UJ; B;), each Tb; can be represented by the obvious integral formula.
Thus for y € S\(U; Bj) we have

< X1 = 3| [ Koo

)

- Z‘ /v (K(y,v) = K(y,vi))bi(v)do(v)

where the second = follows from the fact that fv b;do = 0. Hence

Thldo < /
/5\(Ufo>| o Z S\, B))
= K ’ -K s Vi d b,‘ d
_Zi:/%{/s\Biﬂ (7,v) = K(y,vi)| a(y)}| ()|do(v)
SCZ/ |bi|do,
i Vi

where the last < follows from (2.9]). But fv- |bildo < 2 fv | f|do and the Borel sets
{V;} are pairwise disjoint. Therefore

/ Thldo < 20 ]|,
S\(U; B))

[ &0 = Ko )] doty)
Vi

which implies

(2.10) o({u € $:[(Th)(w)| > A/21\{UBj}) < 4C/ V)| fr-
]

On the other hand, by the definition of B/ and (ii), we have

J

o(UB) <D o(B) <AY a(B) < (AN Sl
J j

Combining this with and (2.8)), we obtain ([2.7). [ |
For each f € L'(S, do), define (T, f)(u) = sup,. o [(Tcf)(1)|, u € S.

Lemma 2.4 There exists a constant C, 4 such that the inequality
Tof < CoafM(TFf) + Mf}

holds on S for every f € L'(S,do), 1 <t < 2.
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Proof We follow the proof in [17, p. 35], making the obvious modifications to suit
the present setting. Consider any u € S and any € > 0. We have f = f; + f,, where
fi = fXBuwe and fo = fXs\Bw,e- For z € B(u,€/2) we have

(T )W) — (THI() = / (K(u, ) — K(z, ) f()do(y).

S\ B(u,€)

Thus it follows from Lemmas[2.2land 2Tl that if z € B(u, €/2), then

I(Tef)(w) = (TH)(2)| < / K(u,y) = K(z )| f(n)do(y) < CMf)(w),

S\B(w,€)
where C = (v/2 — 1)~12" (/2 A(C,,. Since Tf, = Tf — Tfi, we conclude that
@11) [(T.HW] < [(THG|+ [(THI@)| + CMPw) for o-a.e. z € Blu, e/2).
By (L2), we have o(B(v, 1)) < 2*"Aqo(B(v,r/2)) for allv € Sand r > 0. Now set

Ao = 4{(M(Tf))(u) + 2>"AgA(M f)(u)}, where A is the constant in (2.7). Then

(2.12) o({z € B(u,e/2) : (T (2)] > Ao})

<o [ ITdo < ST (Bl ¢/2)) < J0(Blu /)
0 JB(u,e/2) 0

By (227) and the definition of f;,

o({z € S: [(THID)| > Ao}) < %nﬁnl < %(Mf)(wa(B(u, o)
(2.13) 0 0

< ia(B(u,e/Z)).
It follows from (Z12) and (ZI3) that

o({z € Bu,e/2) 1 |(T)(D)] < Ao and  [(TH)(D)] < Ao}) > §U<B<u, ¢/2).
Recalling (ZIT) and the definition of A, we now have

(T ) w)] < 2X0 +CMf)(u) < (8 + 27" AgA + O){(M(T ) (w) + (Mf)(u)}.

This completes the proof. ]

Corollary 2.5 Foreach1 <t <2, thereisa Cy5(t) such that || T« f|; < Cos®)|flls
for every f € L'(S, do).

Proof This follows from Lemmas 2.4] and and the fact that if t > 1, then the
maximal operator is bounded on L'(S, do). [ |
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Lemma 2.6 There exists a constant C ¢ such that if f € L'(S, do) and if the d-ball
B={(€S:|1-(a,()| < p} containsn, vsuch that (M f)(n) < Xand (T.f)(v) < A

then we have (Tixs\of)(4) < Cyg) for every u € B, where Q = {¢ € S : [1 —
(a, Q)| < 25p}.

Proof Lete > 9p. Givenau € B, defineE = {y € S: |1 — (u,y)] > €and
1 —(vy)| < €}. Ify € E,thend(u,y) < d(u,v) +d(v,y) < 2\/p+ /e < 2\/e.
Since d(u,n) < 2,/p < \/€, we have B(u, 2\/€) C B(1), 3\/€). Thus

/\K(u,y)\lf(y)\dO(y) < %/ [f()ldo(y) < CLMf)(n) < CiA.
E € B )

(u2ve

Similarly, if weset F = {y € S: |1 — (4, y)| < eand |1 — (v, y)| > €}, then

/IK(v, If()do(y) < CiA.
F

Let G={y €S:|1—(u,y)| > eand |l — (v, ¥)| > €}. Then by these estimates we
have

‘/ K(u, y)xs\o(0) f(y)do(y)
[1—(u,y)[>e
[1=(vy)|>€
where
T=| [ )~ K)oty
G\Q
< / IK(u, ) — K, )| f ) ldo(y) + / K, y) — K, IIf3)ldo(y).

G\Q G\Q

Since u, v € B(n,2,/p) and Q D B(n, 4,/p), it follows from Lemmas[2.2land 2.1] that
J < 2C(Mf)(n) < 2C\. Hence

‘ / K(u, )xs:00) F()do(y)
[1—(u,y)|>e
(2.14)

—/ K(V7Y)XS\Q(Y)f(y)d0(y)‘ <G
[1—(vy)|=e

forallu € Bande > 9p. Let W = {y € Q: |1 — (v, y)| > €}. Then

(2.15) K(v, y)xs\o) f(y)do(y) = (T\ﬁf)(V)_/ K(v,y)f(y)do(y).
w

1—{vy)|=ze
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Because |[K(v, y)| < ||w||co€e™ " for y € W, e > 9p, and n € Q, we have

C;
a(Q

Since |(T. f)(v)| < A, from 2.14), 213), and we obtain

(2.16) / K, )| f () ldo(y) < / |fldo < Ca(Mf)(n) < CaA.
w Q

Tl =| [ Kepxsan o)

(2.17) wy)|=e

< (CZ +1 +C4)>\

forallu € Band € > 9p.

On the other hand, if u € Band 0 < € < 9p, then {y € S\Q: e < |1 — (u,y)| <
9p} = @. Hence {y € S\Q: [l — (u,y)| = e} = {y € S\Q: |1 — (u,y)| = 9p}
ifu € Band 0 < ¢ < 9p. Thus (ZI7) actually holds for all ¢ > 0. Consequently,
C2A6 = C2 +1+ C4 will do. |

For each 1 < t < 0o, we define the maximal function

1 . 1/t
(M, f)(u) = Srlilg(m /B(W) |f] dU) , u€s.

But we will continue to write M f for M; f.

Proposition 2.7 Foreach 1 < t < 2, there exists a constant C, ;(t) such that the
following estimate holds. Let f € L'(S,do). IfB={¢ € S: |1 — (a,()| < p} and
A > 0 satisfy the condition BN {v € S: (T f)(v) < A} # @, then

o({u € B: (Tof)() > (1+Cag)X and (M, f)(u) < aA}) < aCs (1) (B)
forevery 0 < aw < 1, where C, 6 is the constant in Lemma 2.6

Proof If (M;f)(u) > A for every u € B, then the conclusion is trivial. Thus we may
assume that there is an 17 € B such that (M, f)(n) < A. Then (M f)(n) < A. Define
Q={Ce€S:|1—{(a()] < 250} as in Lemma[2.6l Also define g = xqf and
h = xs\of- Then f = g+ h. Since {v € B: (T, f)(v) < A\} # @, Lemmal[Z@tells us
that (T,.h)(1) < Cy6A for every u € B. By the subadditivity of T, this gives us
(2.18) {u€B: (Tuf)(u) > (1+Cr6)A\} C{u € B: (Tug)(u) > A}
Foragiven0 < a < 1,letY = {u € B: (T.g)(u) > o~ ' (M, f)(u)}. Then by @2.I8),
YD {ueB:(T.f)u) > (1+Crs)rand (M, f)(u) < aA}.

Since ||g]l} = [, |f|'do and Q D B, thereisac > 0 such that c(lgllt/o@)Vt <
(M; f)(u) for every u € B. Thus if we let

X ={ueB:(T.9)u) >a 'c|g|/c(Q)""},

https://doi.org/10.4153/CJM-2010-038-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2010-038-x

Singular Integral Operators and Essential Commutativity on the Sphere 899
then X D Y. To prove the lemma, it suffices to estimate o(X). We have

o(X) < ac'(lglli /o (@) IxsT-gl:
< ac” ' (|lglls /o Q) (a(B) V| Tug]s
< ac” ' (|lgll/o(Q) " (a(B) 'V Cos(t) gl
= ac”'Cos()(@(Q) (a(B)' ™V < ac™!Cy5(1)Ci0(B),

where the second < follows from Hoélder’s inequality, the third < is an application of
Corollary[Z.3] and the last < is due to (L2). Thus C,;(t) = ¢~!C,5(t)C, willdo. W

The final lemma of the section is the metric-space version of the Whitney decom-
position [17]. For more general forms of such decomposition, see [4].

Lemma 2.8 Let U be a non-empty open subset of S such that S\U is also non-empty.
Then there exists a family of open d-balls {B(u;,r;) : i € I} with the following proper-
ties:

(i)  B(uj,r)) N Bluj,rj) = D ifi # j;

(i) U, Blui,ri) C U;

(iil) B(u;, 2r;) N (S\U) # @ for everyi € I;

(iv) U C U,e; Buj, 2r7).

Proof For integers k = —1,0,1,2,...,let Ex = {u € U : B(u,27%) C U}. Since

S\U # &, wehave E_; = &. Weset F-; = &. Suppose that k > 0 and that
we have defined the subset F; of E; for —1 < j < k — 1. We let F; be a subset of

E\MUS! UMEFj B(u,2771)} which is maximal with respect to the property that

j=—1
(2.19) Bu,27NBw,27 " =2 ifu,ve Fiand u # .
The maximality of F; implies that for every z € Ek\{Ul;i1 uer, B, 277*1)} there

isa u(z) € Fi such that B(z,27%) N B(u(z),27%) # @. Therefore

(2.20) U B(u,27% 5 E\{ kL_Jl U B(u, 277"},

u€Fy j=—1u€F;
Since Fy C Ej, by the definition of E; we have
(2.21) Bu,2 "y cU ifuek.

Thus we have inductively defined F_;, F, Fy, . . ., Fx . . . such that ZI9)—-(2.21) hold
for every k. Let {B(u;,r;) : i € I} be a re-enumeration of the balls in the families
{B(1,27%) : u € F}, k > 0. Then (ii) follows from (Z.ZI).

If k < ¢, u € Fyand v € F, then the definition of Fy ensures that v ¢ B(u, 2kl
which implies d(u, v) > 2751 > 27k + 27!, Therefore

(2.22) Bu,2NBwv,27 =2 ifueF.veF,adk< /.
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Thus (i) follows from (2.19) and ([2.22). Note that ([2.20) implies
k—1

(2.23) Eenc U U B(u,277,
j=—1u€F;

Since F;, C Ek\{Ulj;il UueF,- B(u,27/t)}, we have F, N E,_; = @ for all k >

0. By the definition of Ex_,, if u € Fy, then U does not contain B(u,2~*=1D) =
B(u,27%1), which proves (iii). Finally, (iv) follows from (Z23) and the fact that
U = Uiy Ex- ]

3 Condition (A,) and Commutators

The well-known (A,)-condition, 1 < p < o0, was introduced by Muckenhoupt [13]
for euclidian spaces and by Calderén [1] for metric spaces in general.

Definition 3.1 ([1]) A weight function w on § it is said to satisfy condition (A,) if

sup(ﬁ/wdoﬁ <%/W‘l/("_“d0) - < o0,
B B B

where the supremum is taken overall B={u € S: |1 — (u,a)| <r},ac€ S,r > 0.

Moreover, specializing Calderén’s result to the sphere, we have the following.

Theorem 3.2 ([1]) Assume w satisfies condition (A,) for some 1 < p < oo.

(i)  Thereisa po € (1, p) such that w satisfies condition (A,) for every po < r < p.
(ii) The maximal operator is bounded on L? (S, wdo).

Corollary 3.3 Suppose that 1 < p < oco. If w satisfies condition (A,), then there
existsat € (1, 2] such that M, is also bounded on L? (S, wdo).

Proof By Theorem B.2(i), there is an r € (max{1, p/2}, p) such that w satisfies
condition (A,). Lett = p/r. Then 1 < t < 2. If f € LP(S, wdo), then {M, ()} =
{M(|f]) ¥/t = {M(|f|")}". Applying Theorem[3.2(ii) to condition (A,), we have

/{M,(f)}Pwda _ /{M(|f|’)}rwd0 < c/ | wdor = c/ |f|Pwdo,

which completes the proof. ]

Proposition 3.4 Suppose that w satisfies condition (A,) for some 1 < p < oo and
let dy = wdo. Then there exist positive constants § and C such that p(E)/u(B) <
C{c(E)/a(B)}° for every open d-ball B in S and every Borel set E contained in B.

Proof Calderén [1, p. 298] showed that the metric-space version of (A,) also implies

1 - 1/(1+¢) 1 /
— ‘d <C— [ wdo.
(O‘(B) /BW ") =Gom it

Given this “reverse Holder’s inequality”, the proposition follows from a standard ar-
gument. See, for example, [9, p. 264]. |
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Lemma 3.5 Suppose that w satisfies condition (A,) for some 1 < p < oo and let
dp = wdo. Then there exists a positive constant C such that 1(B(u, 2r)) < Cu(B(u, 1))
forallu € Sandr > 0.

Proof Define dv = w~'/?=Vdg. For any d-ball Band any Borel set E C B, it follows
from Holder’s inequality that

(E) (E)\ Ve v(E) (p=D/ (E)\ VP g pu(B) r v(B)\ P~y Y/
w ) Ga) <Um) Gate) 1

By the (A,)-condition for w, the factor { - }!/? is dominated by a constant C,. Hence

o(E) w(E)N /P
@ < C1(®) .

Letting B = B(u, 2r) and E = B(u, r), and applying (I.2), the lemma follows. [ ]

Lemma 3.6 Suppose that w satisfies condition (A,) for some 1 < p < oo and define
dp = wdo. Let 1 < t < 2 be given. Then there exist positive constants A and § such
that

p{u € S: (T f)(u) > (1+Ca) X and (M; f)(u) < a)})
< aPAp({u € S: (T f)(u) > A})

forall f € LY(S,do), X > inf,cs(Ts f)(u), and 0 < o < 1, where Cy.6 is the constant
in Lemma2.6

Proof LetU = {u € S: (T.f)(u) > A}, which is an open set by the nature of T,.
The condition A > inf,es(Ts f)(u) ensures that S\U # &. Suppose that U # @. By
Lemma 28] there exists a family of open balls {B(u;, ;) : i € I} such that
(@) B(ui,ri) N B(uj, rj) = Sifi # j;
() Ui Blui, 1) C Us
(c) B(u;,2r;) N(S\U) # & foreveryi € I;
(d) U C UieIB(u,',Zr,').

Denote Z = {u € S: (Tuf)(u) > (1 4+ Cy)A and (M, f)(u) < a\}. For each
i € I, write B; = B(u;,2r;). Condition (c) allows us to apply Proposition 27 to
obtain

oc(ZNB;) <aCy,(t)o(B;), i€l

By Proposition B4} there are positive constants 6 and A’ such that
w(ZNB)/u(B) < A'{a(ZNB;)/o(B)} < A'(aCy7(1))°, i€L

Set A’ = CJ,(t)A’. Then u(Z N B;) < a’A" u(B;). By (d) and the fact Z C U, we
have

w2) <Yy wzZnB) < oA"Y u(B).

iel i€l
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Lemma 3.5 provides a constant C such that u(B;) < Cu(B(u;,r;)). Hence

wZ) < a®A"C " u(B(ui, 1)) < a’A"Cp(U),
icl
where the second < follows from (a) and (b). [ |
Proposition 3.7 Let1 < p < oo and suppose that w satisfies condition (A,). Denote

dp = wdo. Let 1 <t < 2 be given. Then there exists a constant C which depends on n,
w, W, p, and t such that

G.) Jirspan<c [pagyra

forevery f € LP(S,dp).

Proof . We can decompose S as the union of disjoint hemispheres S* and S~. Since
f = fxs + fxs- and since T, is subadditive, it suffices to prove (3B.I) under the
additional assumption that f identically vanishes on either S* or S~.

For such f we have inf,,cs( T f)(4) < ||w|lool| f]l1- Set m = (1 + Ca6)||w||oo || fl|1-
IfXA > m/(1+Cy), then A > inf,cs(Ty f)(u). By LemmaB.6l if A > inf,cs( T f)(u),
then

P T f > (1 +Cae)AD) < p({M,f > ad}) + PAp({T.f > A}),

0 < a < 1. Therefore forall 0 < o« < 1and m < L < oo we have

L
p/ P ({Te f > x})dx

m
L/(1+Ca)

= (1 +C2,6)pp / )\pilu({T*f> (1+C26)A})d>\
m/(14Cy)

L/(1+Ca) .
< (A +Cr)Pp NN M f > ad}) + PAp({To f > A}))dA
m/(14+Cz6)

L
< (1+Cre)Pa? /(Mtf)l’d/,t +(1+ c2_6)Pa5Ap/ AN U({T, f > ADdA.
0

Since § > 0, we can set « to be such that (1 + C,6)Pa%A < % With such an «, after
the obvious cancellations we have

L
P / (T f > xP)dx < 21+ Cag)ar? / (M, )P dpa+ m ().

Therefore

e} m L
/(T*f)pdu:p/ xp_lu({T*f>x})dx:p/ +L1im p/
0 0 —

m

< mPu(S) +2(1 + Cye)Pa™? /(Mtf)Pdu + mP u(S).
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Since m = (1 + Cpg)||wloo| fll1 and || f]|71(S) < [(M,f)Pdp, this completes the
proof. ]

Corollary 3.8 Suppose that w satisfies condition (A,) for some 1 < p < oo and let
dp = wdo. Then T uniquely extends to a bounded operator on LP(S, du).

Proof This follows immediately from Proposition[3.7]and Corollary[3.3] ]
As usual, we will write M, for the operator of multiplication by the function ¢.
Proposition 3.9 If p € BMO, then [M,, T] is a bounded operator on L2(S, do).

Proof This follows from Corollary[3.8] and a standard argument, which we repro-
duce below. By the John—Nirenberg theorem, there are positive constants C; and C;
such that

o({u € B: |p(u) — pp| > A}) <C; exp( o(B)

—C;
lp \IBMo>

forall A > 0 and open d-balls Bin S. We only need to consider real-valued ¢ € BMO.
For real-valued ¢, if we set a = C,(2||¢||smo) !, then

/ aﬁdo.i —de < (L/eﬂl\?_(ﬁBldo—)z <(1+C))?
o(B) o(B) = \o(B) J; = :

for every open d-ball B in S. Hence the function w = ¢ satisfies condition (A;).
By CorollaryB.8] T is bounded on L*(S, wdc). This is equivalent to saying that the
operator M, .. TM,,—.» is bounded on L%(S, do). Because w™! also satisfies condition
(A,), the operator M,,—i>TM,,,. is also bounded on L(S, do).

Now for each complex number z in the strip V = {z € C: —1 < Re(z) < 1},
write
—1/2

Wi/z = exp(aZ@/Z) and w, == eXp(*aZ‘P/z)'

Obviously, [|M 2 TM, —ix|| = M2 TM,,-112| if Re(z) = 1 and [|M 1. TM, 12|| =
IM,,=12 TM, 12 ||Z if Re(,zz) = —1. For the given ¢, there is an obvious dense subset
D of L*(S,do) such that if f,g € D, then the function z +— (M2 TM, 112 f,g)
is bounded on V. By a well-known result in complex analysis Zsee [S,Z Corol-
lary V1.3.9]), this implies that

||M 1/2TM 71/2H < max{|| 1/2TM 1/2”, ||MW71/2TMW1/2||}, zeV.

Therefore the operator

1 1
= - 1/z ™ 71/de

a d
—[M. T = —M TM -
2[ @ ] dZ W;/Z w, 12 z=0 2'/Tl |z|=1 Zz e

is bounded on L%(S, do). [ |

https://doi.org/10.4153/CJM-2010-038-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2010-038-x

904 J. Xia

For our main application (Proposition B.I1)), the result of Proposition B.9] needs
to be strengthened to Proposition B-I0|below. Proposition can be proved either
by a more careful tracking of all the constants in the results mentioned in this section
or by using Proposition 3.9 plus the closed graph theorem. We will take the latter
approach for expediency.

Proposition 3.10 There is a constant Cs 1o such that

[[M,, Tlgll2 < Csaollellsmollgll2

forall g € L*(S,do) and ¢ € BMO.

Proof Consider the linear map Y: ¢ — [M,, T], ¢ € BMO. Proposition 3.9 tells
us that the range of Y is contained in the Banach space B(L*(S,do)). By the closed
graph theorem, to prove the proposition, it suffices to show that the graph of Y is
closed.

Let {¢} be a sequence in BMO such that limy_, o [|¢k|lsMo = 0 and such that

Jim (M, T) - Al =0
for some A € B(L?(S, do)). For f,g € L>°(S, do), using
lim [|¢k|[pmo = 0
k—o0
and the fact [M,,,, T] = [M,,—., T] for any ¢ € C we have
lim ([M,,,T1f,g) = 0.
k—o0

Thus (Af,g) = 0 forall f,g € L>°(S,do). Since A € B(L*(S,do)), this means
A = 0. This proves that the graph of Y is closed and completes the proof of the
proposition. [ ]

Proposition 3.11 If f € VMO, then [My, T] is a compact operator on L*(S, do).

Proof We first consider the case where f satisfies a Lipschitz condition |f(u) —
f)] < Llu—v|lonS. Let e > 0. For such an f we can write [My, T] = A, + B,,
where

(Acg)(u) = / J(u,v)g(v)do(v),
[1—(u,v)|<e

(B.g)(u) — / J(u, Vg(w)do (),
[1—(u,v)|>e

_ ) - fv)

](M,V) - (1 _ <M,V>)”

w(|1 = (u, v)|).
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Since [u — v| < V2|1 — (u, v)|'/2, we have | J(u, v)| < V2L||w||oo |1 — (u, v)|~"+1/2),

Since )
| T <

[16, Proposition 1.4.10], by a well-known estimate we have lim, | [|A¢|| = 0. Obvi-
ously, B, is compact. Therefore [My, T] is compact if f € Lip(S).

By the usual approximation, it follows from the preceding paragraph that [M, T]
is also compact if f € C(S). Finally, suppose that f € VMO. Then there exists a
sequence { fx} in C(S) such that limy_, ||f — fkllsmo = 0 [20, Proposition 4.1].
Since each [My,, T] is compact, it follows from Proposition 3. I0Ithat [M¢, T] is also
compact. |

4 The Construction

We will now construct the operator promised in Section 1. The technical steps of
construction are presented in the form of the first ten lemmas of the section. In order
to better understand the construction, we suggest that the reader read the statements
of Lemmas[4.IH4.T0] first and save the proofs for later.

Lemma 4.1 We have

1 1
lim ———do(v) = =
€l0 |17<u.v>|26 (1 — <M,V>)n 2

foreveryu € S.

Proof This is very close to [12, Lemma 7.2]. However, since that lemma was proved
for the “gauge” v(u,v) defined by [12, (7.1), p. 619], which is somewhat different
from the |1 — (u, v)| used in this paper, we would like to verify the details.

Let dA denote the natural Lebesgue measure on C. In other words, the 1 x 1 square
has measure 1. By [16, 1.4.5(2), p. 15] we have

1 n—1 [ (1—|z)"2
—————do(v) = dA
/1—<u,v)26 (1 _ <u’ V>)n J(V) p D, (1 o Z)n (Z)a

where D, = {z € C: |z] < land |l — 2| > €}. Performing the substitutions
¢ =¢€/(1 —2z)and w = ( — (¢/2), we find that

n—1 [ {2Re(() —e}"?
d
e

2" (n—1) {Re(w)}"?
- p L (W (e/z))ndA(W)’

1
—d
/“_MZF 0= (o

where E. = {¢ € C: |({| < land Re({) > ¢/2} and A, = {¢ — (¢/2) : ¢ € E.}.
Denote D, = {w € C: |w| < 1,Re(w) > 0}. It is easy to see that A, C D,, that
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A(Ds\A.) < 2(€/2) = ¢, and that if € is sufficiently small, then |w + (¢/2)] > % for
w € Dy \A,. Hence

1 ~2"2(n—1) [ {Re(w)}"?
(4.1) () e (1— <M7V>)nd0'(1/) = . /D+ (w+ (6/2))ndA(W)+77(€)

with n(e) — Oase | 0. For 0 < < 1 we have

{Re(w)}" 2 B /”/2 /1 =% cos" %0
. Grwr dA(w) = oy Gy rdrdf

s 1 Sinn—Z ¢ T 00 sin”_2 ¢
_/0 /0 Wdrdt_/o /5 o i et

where we made the substitutions t =  + (7/2) and x = §/r. By [12, Lemma 6.2]

s [e%s} s n—2

t
lim/ / L N S N—
510 Jo Js  x(x—iet)n 2n=(n—1)

Combining this with ([&J]), the lemma follows. [ ]

For each € > 0, define the operator H, on L*(S, do) by the formula

f)
H, = — .
(He ) (w) /1 o T )
We also define the maximal singular integral (H, f)(u) = sup,. |(Hcf)(u)].

Lemma 4.2 There are constants Cy and C, which depend only on the complex di-
mension n such that the inequality H, f < C\Mf + C;M(Pf) holds on S for every
f € L*(S, do).

Proof Itis elementary that 2|1 — pc| > |1 — ¢ if |c| < 1and 0 < p < 1. Thus

1 B 1
(1= (u,v)*  (1—(1—eu,v)"

il e{u,v)
- ‘; (1 — {u,v)"—i(1 — {(1 — €)u, v))it!

< 2"ne
= (u )

forall0 < ¢ < 1and u # vin S. It follows from Lemma[2.T] that

‘/|1—<u7v>|zf( [ /) )do)| < coun

(1= ()" (1= {(1 - e)u,v))"
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forall0 < e < 1andu € S. On the other hand, by (I.2),

f) 1 /
d < — d
‘/|1('4-,V>|<6 (1 =(1 = eu, )" U(V)’ T = ()| <e FWldo(v)

< Ag(MS)(u).

Hence, |(H.f)(1) — (Pf)((1 — €)u)| < (C + Ag)(M[)(u). The lemma follows from
this inequality and the well-known fact that |[(Pf)((1 — €)u)| < Co(M(Pf))(u) [16,
p- 75]. ]

Lemma 4.3 (i) sup,,|[H|| < occ.
(ii) The limit H = lim, o H, exists in the strong operator topology.
(iii) H=P— 3.

Proof (i) is an immediate consequence of Lemma[4.2]
(ii) For f € L*(S, do),

f(w)H.1 — (H.f)(u) = / Mda(w).

= (uwy|ze (1= (u,9))"

If f is Lipschitz (with respect to the Euclidian metric) on S, then |f(u) — f(v)] <
Llu—v| < V2L|1—{(u,v)|'/?. For each u € S, the function ®,(v) = |1—(u,v)| ="/
belongs to L'(S, do) [16, Proposition 1.4.10], and ||®,,|; is independent of u € S.
Applying the dominated convergence theorem twice, we see that if f € Lip(S), then
the limit lim.|o(fH.1 — H, f) exists in the norm topology of L*(S, do’). Combining
this with Lemma 1] the limit lim, o H, f exists in the norm topology of L*(S, do)
for every f € Lip(S). By (i) and the fact that Lip(S) is dense in L*(S, do), the strong
limit H = lim, o H, exists.

(iii) Again, this is just a slight variation of [12, Theorem 7.1]. Let ¢ be a polyno-

mial in zy,...,2,,21,...,2Z,. Then it follows from the above argument and Lemma
ATl that

1 (1) — p(v)

~p(u) = (Hp)(w) = pH1 — (Hp) () = | S22 ().

2 (1= (u,v))"

Recall that 2|1 — r¢c| > |1 — ¢| if 0 < r < 1 and |¢| < 1. Thus it follows from the
dominated convergence theorem that

1 _
3900 = () = lim [ EE—Ed00) ~ lim( ) = (o) ).

Since such ’s are dense in L*(S, do ), this completes the proof. ]

For the rest of the paper, let £ be a real-valued, non-decreasing, C*> function on
(0, 00) satisfying the conditions £ = 0 on (0, %] and £ = 1 on [1, 00). The reason that
we require & to be non-decreasing will become clear in the proof of our next lemma.
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With this & given, for each a > 0 we defined the operator

a1 — (u,v)])
(1_< u, >

on the Hilbert space L*(S, do). Obviously, each G, is a compact, self-adjoint operator.

(Gaf)(u) = f)do(v)

Lemma 4.4 (i) sup, | Gal < oc.
(ii) lim,jo G, = H in the strong operator topology.
(iii) limgyo ||Gag — (g/2)|l2 = 0 for every g € H*(S).

Proof For each a > 0 consider the function &,(t) = £(¢/a) on (0,00). Because
&, is non-decreasing and continuous, and because £, = 0 on (0,a/2] and £, = 1
on [a, 00), &, can be uniformly approximated on (0, c0) by convex combinations of
functions in the family {x|c.o0) : /2 < € < a}. Hence G, is in the operator-norm
closure of the convex hull of {H, : a/2 < e < a}. Thus this lemma follows from
Lemmal4.3] ]

As usual, we write k, for the normalized reproducing kernel function for H*(S).
That is, for each z € C" with |z| < 1, we write
(1-— |Z| n/z

(1= (w,z))"’

Lemma 4.5 Foralla > 0,b > 0, and 0 < r < 1 the values of ||Gaknl|2,
I(Gs — Gp)kyyl2> and (Gakyy, ky) are independent of u € S.

ko(w) =

|w| < 1.

Proof LetU: C" — C" be any unitary transformation. Then the formula

(Uv )(u) = f(Uu)

defines a unitary operator on L*(S, do). Clearly, U, = Uy~. Hence U};G,Uy = G
for every a > 0. Also, Uyk, = ky~,. The lemma follows from these two facts. [ |

Lemma 4.6 There exists a constant Cy 6 such that forallu € S, 0 < r < 1, and
b > (1 — 1" wehave ||Gyky, ||, < Cyg(1 —1r)V/12,

Proof Forb > (1 —r)'/3, we have

n/2 (n/3)
Gk < (3)" [ WaOldo© <22 [ (1|1r<>d”(o

3n/2 1/12
<221 — )V /“r = o ()

for every v € S. By [16, Proposition 1.4.10], there is a constant C such that

1
/|1—7‘< u)|n=(1/12) dJ(OSC

forallu € Sand0 < r < 1. [ |
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Lemma 4.7 There exist sequences {r(j)}, {a(j)}, and {b(j)} of positive numbers
which have the following properties:

(i) 0<r(j) <1foreveryj€ Nandlim;_ o r(j)=1;

(ii) 0 < a(j) < b(j) forevery j € Nandlim;_, b(j) = 0;

(iii) b(j+1) <a(j)/8 forevery j € N;

(lV) <(G.a(j) — Gb(j))kr(j)uakr(j)u> Z %for all] Z 2 andu S S;

(v) 21{:1 ||(Ga(,') — Gb(i))kr(j+l)uH2 < (] + 1)71f01‘ all] €Nandu € S;

i) SoL, 1(Gagjsty — Gojsr)kiiyull2 < 27U%Y forall j € Nand u € S.

Proof Letry € (0,1) be such that Cyg(1 — r9)1/12 < +. We will select r(j), b(j) and
a(j) inductively. We begin with arbitrary 0 < (1) < 1and 0 < a(1) < b(1) < oo.

Suppose that j > 1 and that we have selected r(), b(i), and a(i) for 1 < i < j. By
Lemmal4.6lthere isa p € (0, 1) such that

j
1
Z 1(Gaiiy — Goiy)krull2 < m forallp<r<landue€S.
i=1
By Lemma[4.4(ii) and Lemma[4.5] there is a 5 > 0 such that

]
D 1(Ga = Gpkripulla < 279 forall0 <a<b< Bandu€S.

i=1

We pick an r(j+1) such that max{1—2"7"1 5, p} < r(j+1) < Land (1—r(j+1))'/?
< min{a(j)/8,0}. Letb(j+1) =1 —r(j + 1))'/3. Then b(j + 1) < a(4)/8,

J
1
> Gy = Gui)kejsnulla € ——, u€S,
p j+1

and
j .
> 1(Ga = Gogjer)ksipulla < 279 forall0 < a < b(j+1)andu € S.
i=1

Since r(j+1) > rpand Cy (1 —rp)/12 < &, by Lemma.8we have ||Gy(j1)kr(js1)u 2
< ﬁ, u € S. By Lemmal4.4(iii) and Lemma[.5we can pickan a(j+1) € (0,b(j+1))
such that (Ga(jv v ke(js1)us ke(janyu) = % — % forall u € S. Hence

((Gagi+1y = Ge(jr) ke kray) = 5 — —= — — =

This completes the inductive selection of the sequences {r(j)}, {a(j)} and {b(j)}.
Since r(j + 1) > 1 — 270D, we have limy_,o, r(j) = 1. Note that the inequal-
ities b(j + 1) < a(j)/8 and a(j) < b(j) imply b(j + 1) < 8 /b(1). Therefore
lim o0 b(j) = 0. n
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Let N; be an infinite subset of N such that the set N, = N\ N is also infinite.

Lemma 4.8 There exists an infinite subset N of Ny such that the limit

(4.2) lim Y (Gay— Guj)) =F

jENN{1.2,..,m}
exists in the strong operator topology.

Proof ByLemma[.4(i), sup s, [|Ga(j) — Gu(j|| < oo. By Lemma[d.7(ii) and Lemma
[4.4(ii), we have the strong convergence lim;_.(Gu(jy — Gp(j)) = 0. Each Gu(j) —
Gy(j) is compact and self-adjoint. Thus the desired conclusion follows from [14,
Lemma 2.1]. [ |

Lemma 4.9 If f € VMO, then [My, F) is a compact operator on L*(S, do).

Proof We will show that F is in fact an example of the operator T defined at the
beginning of Section 2. Then by Proposition 3.11] [My, F] is compact for every f €
VMO.

For each a > 0 again consider the function &,(t) = £(¢/a), t > 0. Since £/(¢) =
a='¢'(t/a) and £'(t/a) # O only if t € (a/2,a), we have 0 < £/(t) < ||€/|| oo/t for
allt > 0.

For each j € N, define the function ¢;(t) = £(a™'(j)t) — £(b~'(j)1), t € (0, 00).
Then by the preceding paragraph [¢(t)| < [|{’||/t for all # > 0. By the choice of
&, we have 1); € C*°(0,00), ¢; = 0 on (0,00)\(a(j)/2,b(j)) and 0 < ¢); < 1 on
(0,00). Let

D) =Y i) = {&@ () — b (Hnt.
jeEN jeN
By the condition b(j+1) < a(j)/8 (LemmadZ(iii)) and the above-mentioned prop-
erties of ¢; we have ¢ € C*(0,00), 0 < #(r) < 1, and [¢'(1)] < [|€’ |00/t for
all t > 0. That is, ¢ satisfies conditions (i) and (ii) required of the function w in
Section 2.
For each € > 0, define the operator F, by the formula

(Ff)(u) = / S = (w,v))

S\Bwe (1= (u,v))" fw)do(v).

For each m € N set €, = (a(m)/2)"/%. Then VYiX(e 00) = j if j < m and
YiX(e,00) = 0if j > m. Thus by the definitions of 1) and G, we have

Fo,= > (Gaj)— Guy)-

JENN{1,2,...m}
Comparing this with (2]), we see that F also satisfies (Z.1). [ |
We now define F to be the compression of F to the Hardy space H*(S). That is,

(4.3) Fg = PFg, g€ H(S),

where P is the orthogonal projection from L*(S, do) onto H?(S).
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Lemma 4.10 (i) Leti; < i, < --- < i, < --- beany ascending sequence of the
integers in the set N given by Lemmald8| Then for every u € S we have

. . ™ 1
Lim inf(Fky i, s k(i yu) > -
V—00 3

(ii) Let j; < jo < -+ < j, < --- be any ascending sequence of the integers in N,.
Then for every u € S we have lim,, _ oo (Fke(j, yu, kr(j,ju) = O.

Proof For any given integer j > 2, it follows from (v) and (vi) in Lemma[£.7] that

j—1
> N(Gatiy = Goiykrijpullz = D 1(Gatiy = Goi)erijull2
i=1

i
oo
(4.4) + > Gatiy = Goi)kajyull2
i=j+l
1 oo
< -+ 27! +27/
J i=j+1

Thus if j € N; and j > 2, since j ¢ N, we have

~ 1.
1Fkjyull <D 1(Gatiy = GoyYkrjpulla < it 277,

ieEN

which proves (ii). To prove (i), we note that (Fg,g) = (Fg,g) if g € H*(S). Thus for
j € N, it follows from (4.2)) that

(Fkr(iyus kriiyu) = (Fhr(iyus Ke(jyu)

> ((Ga(j) = Go())kr(jyus kr(jyu) — Z 1(Gatiy — Goti))kr(jyull2-
i#j

Combining this inequality with Lemma[d.7(iv) and (@4), (i) follows. [ |

Lemma 4.11 For each f € L*(S,do), there is a Borel set A in S with o(A) = 0 such
that limq; |(f — f(4)ksy|l2 = O for every u € S\A.

Proof For each ¢ € L'(S, do), define the Poisson integral

o2 = [ PE 0RO, <1,
where the Poisson kernel is given by the formula

P(z,{) = [k(OP, [¢|=1] <L
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(See [16, pp. 40-41].) Let f € L*(S, do) be given and define the function h = | f|*. By
[16, Theorem 5.3.1] there is a Borel set A in S with o(A) = 0 such that each u € S\A
is a Lebesgue point for both f and h. By [16, Theorem 5.4.8], for each u € S\A we
have

(4.5) li%rll f(ru) = f(u) and ligl h(ru) = h(u) = | f(u)|*.

But for every u € Sand every 0 < r < 1 we have

|(f = f(u))ka% = ||fkm||§ — 2Re(fkru, f(w)kp) + ‘f(”)|2||km||§
= h(ru) — 2Re{f(ru) f(u)} + | f(u)|*.

Combining this with (£3]), the lemma follows. [ ]

Lemma 4.12 For any given @, ..., om € L°(S,do), there exists a Borel set Q2 in S
with o(Q2) = 0 such that if u € S\, then the limit lim,1 (T, - - - Ty, kyu, kru) exists
and equals @1 (u) - - - @, (1).

Proof We use induction on m. The case m = 1 follows from Lemma 11l Suppose
that m > 2 and that the desired assertion is true for T, --- T,, . Then
T<,91 A Tkpmkm = SOM(M)TL,M - T¢m71k,u + T991 A T\,pmilP(gpm — gpm(u))km.

Thus the case for m follows from the induction hypothesis and another application
of Lemma[d.1T] [ |

Proposition 4.13 If X is an operator belonging to the Toeplitz algebra T, then there
exists a Borel subset E of S with o(E) = 0 such that the limit lim,1 (Xky,, k) exists for
every u € S\E.

Proof If X € T, then there exists a sequence {X;}, where each X; is the sum of a
finite number of terms of the form T, --- T, ,m € Nand ¢y, ..., ¢, € L%(S, do),

such that lim;_,, ||X —Xj|| = 0. Thus this proposition is an immediate consequence
of Lemma @.17] [ |

Proof of Theorem[I.1] We want to show that the operator F defined by (@3] belongs
to the essential commutant of T(VMOpqq) but does not belong to 7.

It is well known that if f € VMO, then [My, P] is compact. Therefore it follows
from Lemma[£9 that F belongs to the essential commutant of T(VMOpgq).

To show that F ¢ T, recall from Lemma [£7(i) that limj_,o r(j) = 1. Thus
LemmalLI0 tells us that for no u € S does the limit lim,; (Fk,,, k) exist. By Propo-
sition .13} this means F ¢ 7. [
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