
Forum of Mathematics, Sigma (2021), 9:e44 1–21

doi:10.1017/fms.2021.38

RESEARCH ARTICLE

Equipartition principle for Wigner matrices

Zhigang Bao1, László Erdős2 and Kevin Schnelli3

1Hong Kong University of Science and Technology, Hong Kong, China; E-mail: mazgbao@ust.hk.
2IST Austria, Klosterneuburg, Austria; E-mail: lerdos@ist.ac.at.
3KTH Royal Institute of Technology, Stockholm, Sweden; E-mail: schnelli@kth.se.

Received: 16 August 2020; Accepted: 11 April 2021

2020 Mathematics Subject Classification: Primary – 60B20; Secondary – 82B10

Abstract

We prove that the energy of any eigenvector of a sum of several independent large Wigner matrices is equally

distributed among these matrices with very high precision. This shows a particularly strong microcanonical form

of the equipartition principle for quantum systems whose components are modelled by Wigner matrices.

1. Introduction

Equipartition of energy is a general principle in classical statistical physics stating that in an ergodic

system at equilibrium, the total energy is shared equally among the elementary degrees of freedom. In

quantum systems, equipartition breaks down at very low temperatures. Even at higher temperatures there

is no general quantum counterpart of this principle, apart from the standard quantum virial theorem,

which only relates the total kinetic energy to a certain derivative of the potential. Nevertheless, in some

special cases this principle could be verified; see [4] and references therein for an extensive physics

literature on the popular model of a single quantum particle in contact with a quantum heat bath consisting

of infinitely many harmonic oscillators. In this paper we show that for Wigner random matrices – that

is, for a mean-field quantum system with random quantum transition rates – a particularly strong

microcanonical form of the quantum equipartition holds: it is valid separately for every eigenvector.

More precisely, suppose that the total Hamiltonian of a quantum system is represented by a sum of

independent #×# Wigner matrices � = �1+�2+· · ·+�: , where each � ] represents the Hamiltonian of

a subsystem. Let F = (F(1), . . . , F(#))⊤ ∈ C# be an ℓ2-normalised eigenvector of � with eigenvalue

_ – that is, �F = _F. The eigenvalue _ is the total energy of F:

_ = � (F) := (F, �F) =
:∑

]=1

(F, � ]F).

The energy of the ]th subsystem � ] in the state given by F is � ] (F) := (F, � ]F). Our main result,

formulated precisely in Theorem 3.4, asserts that

� ] (F) ≈
� (F)
:

, ∀] = 1, 2, . . . :, (1.1)

with very high precision and very high probability. In other words, the total energy is equally distributed

among the : subsystems.
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Fine properties of eigenvectors of large Wigner matrices have been extensively studied in recent years.

They are delocalised – that is, max8 |F(8) | ≤ #−1/2+n for any fixed n > 0, with very high probability

as # tends to infinity. Delocalisation follows directly from the optimal local law (see, e.g., [8], and [2]

for an optimal rate). Moreover, the eigenvectors are asymptotically normal, in the sense that for any

fixed deterministic vector @ ∈ C# , the moments of
√
# | (@, F) | coincide with those of the modulus

of a standard Gaussian [5, 14, 17]. A multivariate extension involving the joint moments of several

eigenvectors also holds [5]. Furthermore, quantum unique ergodicity is also valid, stating that

∑

8∈�
|F(8) |2 ≈ |� |

#
(1.2)

for any deterministic subset � ⊂ {1, 2, . . . , #} [1, 5, 16]. More recently, quantum unique ergodicity

with an optimal #−1/2+n speed of convergence was proven in [6] for any quadratic forms (F, �F) with

a general deterministic matrix �:

����(F, �F) −
1

#
Tr �

���� ≤ #−1/2+n (1.3)

with very high probability. Gaussian fluctuations around this quantum unique ergodicity limit,

√
#

[
(F, �F) − 1

#
Tr �

]
=⇒ Normal, (1.4)

have also been shown in [7] for general � with full rank; see also [3] for Gaussianity around the limit

in formula (1.2) for mesoscopic subsets, # n ≤ |� | ≤ #1−n . The key difficulty in all these latter results

was to prove them microcanonically – that is, for each eigenvector; this required the sophisticated

equilibration mechanism of Dyson Brownian motion. In contrast, the local law (see Theorem 4.1)

directly implies the analogous results for a spectral projection on mesoscopic scale – for example,

1

2# n

∑

|U−U0 | ≤# n

∑

8∈�
|FU (8) |2 ≈ |� |

#
, (1.5)

instead of formula (1.2) – involving an average over many eigenvectors FU with eigenvalues _U near

_U0
with a fixed U0. Here the eigenvalues _U are indexed in an increasing order, _1 ≤ _2 ≤ · · · ≤ _# .

In all these previous results the eigenvector was tested against a specific deterministic observable;

but in the equipartition relation (1.1) we consider the quadratic form of F with a random � ] that is far

from being independent of F. Given the complicated dependence between F and � ], it is somewhat

surprising that the proof of formula (1.1) is simpler than those of formulas (1.2) and (1.3). In fact,

despite this dependence, we can still directly handle (F, � ]F) for an individual eigenvector – that is,

we do not need to first establish a spectrally local-averaged version of formula (1.1) in the form

1

2# n

∑

|U−U0 | ≤# n

(FU, � ]FU) ≈
_U0

:

and then prove that (FU, � ]FU) does not change much if the eigenvalue _U remains close to a fixed

energy.

The main reason for the simple proof is algebraic. Consider : = 2 for simplicity. It turns out that

the quadratic forms of H := �1 − �2 are especially small due to a strong algebraic cancellation

in the cumulant expansion. Once the smallness of (F,HF) = (F, �1F) − (F, �2F) is established,

formula (1.1) follows from _ = (F, �1F) + (F, �2F).
We remark that this algebraic cancellation holds only if both �1 and �2 are Wigner matrices.

Equipartition analogous to formula (1.1) is also expected to hold for deformed Wigner matrices (i.e.,
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when E� ] ≠ 0), for Wigner-type matrices (when the matrix elements of � ] are still independent but

not identically distributed) and even for Hermitian random matrices with some nontrivial correlation

among their matrix elements; however, the proof of these generalisations will be more complicated.

Furthermore, Gaussian fluctuation around formula (1.1) in the spirit of formula (1.4) is also expected,

but the proof would require a detailed analysis of Dyson Brownian motion as in [7].

To demonstrate the central simplifying role of H, in the next section we first give the proof of

formula (1.1) for : = 2 in the Gaussian case, where the mechanism is especially elementary. In this case

we can even prove the Gaussian fluctuation of (F, �1F) in the spirit of formula (1.4) in an elementary

way. Then we introduce the general model and properly state our main result, Theorem 3.4, in section 3.

After collecting some preliminaries from earlier papers in section 4, we will prove our main theorem

starting in section 5 for the complex Hermitian case under the additional condition Eℎ2
],8 9 = 0 on the

entries of each matrix � ]. This condition is removed in section 9. The necessary modifications for the

real symmetric case are presented in section 8.

2. A simple proof of formula (1.1) for the Gaussian case and k = 2

Assume we are given two independent Gaussian random matrices �1 and �2 of size # × # – that is,

their entries are two sets of independent complex centered Gaussian random variables of variance 1
2#

subject to the symmetry constraint �1 = �∗
1

and �2 = �∗
2
. Then clearly the sum

� := �1 + �2 (2.1)

also belongs to the standard Gaussian unitary ensemble. Denote by (_U)U the eigenvalues in ascending

order of � and let (FU)U be an associated normalised eigenbasis – that is, we have
(
FU, �FV

)
= XUV_U,

for any choice of indices U and V.

Consider now the random variables

(
FU, �1FV

)
− XUV

2
_U .

We claim that for any # , these random variables are Gaussian.

Lemma 2.1. For any choice of index U, the random variable

(FU, �1FU) −
1

2
_U (2.2)

is a centered real Gaussian random variable with variance 1
4#

, for any # . Moreover, for any choice of

indices U and V, with U ≠ V, the random variable

(
FU, �1FV

)
(2.3)

is a centered complex Gaussian random variable of variance 1
4#

, for any # .

Proof. Introduce the auxiliary matrix

H := �1 − �2, (2.4)

whose entries are also independent centered Gaussian random variables, up to the symmetry constraint,

with variance E
��H8 9

��2 =
1
#

. A simple calculation then shows that E
[
�8 9H01

]
= 0, for all 8, 9 , 0, 1 ∈

È1, #É, and hence the matrices � and H are independent. In particular, H is independent from FU and

FV , for any choice of U and V.
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Observe now that we can write the random variables in expressions (2.2) and (2.3) as

(
FU, �1FV

)
− 1

2
_UXUV =

(
FU, �1FV

)
− 1

2

(
FU, �1FV

)
− 1

2

(
FU, �2FV

)
=

1

2

(
FU,HFV

)
. (2.5)

Hence by the independence of � and H, we conclude that 1
2
F∗

UHFV is a Gaussian random variable.

Since EH8 9 = 0, it follows that EF∗
UHFV = 0. Further, we have

E
��F∗

UHFV

��2 =

∑

8 901

EFU (8)H8 9FV ( 9)FU (0)H01FV (1) =
∑

8 901

1

#
X80X 91 |FU (0) |2

��FV ( 9)
��2 =

1

#
,

where we used independence and the fact that the eigenvectors are ℓ2-normalised. The notation
∑

8 901

means that we sum over all indices from 1 to # . This shows expressions (2.2) and (2.3). �

Notation

The symbol $ ( · ) stands for the standard big-O notation. We use 2 and � to denote positive finite

constants that do not depend on the matrix size # . Their values may change from line to line. We use

double brackets to denote index sets – that is, for =1, =2 ∈ R, È=1, =2É := [=1, =2] ∩ Z. For vectors

E, F ∈ C# , we write E∗F = (E, F) for their scalar product. For an # × # matrix �, we denote by ‖�‖
its operator norm and by ‖�‖∞ := max8 9

���8 9

�� its max-norm. We use 〈�〉 := 1
#

∑
8 �88 to denote the

normalised trace of an # × # matrix � =
(
�8 9

)
# ,#

.

3. Definitions and results

In this section we introduce the model and state our main result on equipartition.

Assumption 3.1. Fix an integer : ≥ 2. Let � ] :=
(
ℎ ],8 9

)
, ] = 1, 2, . . . : , be : independent complex

Hermitian Wigner matrices of size #×# – that is, we assume that their entries are independent centered

random variables, up to the symmetry constraints ℎ ],8 9 = ℎ ], 98 – satisfying

E
��ℎ ],8 9

��2 =
1

#
, 1 ≤ 8, 9 ≤ #, ] = 1, . . . , :, (3.1)

and the families of random variables
{
ℎ ],8 9

}
have finite moments to all order – that is, for each < ≥ 3

there is a positive constant �< such that

E

���
√
#ℎ ],8 9

���
<

≤ �<, < ≥ 3, ] = 1, 2, . . . , : . (3.2)

For the main part of the paper we assume that � ] are complex Hermitian matrices. This assumption

is only for simplicity of the presentation; our result holds and the proof also applies with minor changes

to the real symmetric setup as well (see Remark 3.5).

Choose now : possibly #-dependent numbers f] ≥ 0 such that

:∑

]=1

f2
] = 1, (3.3)

and consider the random matrix

� :=

:∑

]=1

f]� ] . (3.4)
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To present our results, we use the following definition of high-probability estimates:

Definition 3.2. Let X ≡ X(# ) and Y ≡ Y(# ) be two sequences of nonnegative random variables. We

say that Y stochastically dominates X if, for all (small) n > 0 and (large) � > 0,

P

(
X(# ) > # nY(# )

)
≤ #−� (3.5)

for sufficiently large # ≥ #0 (n, �), and we write X ≺ Y or X = $≺ (Y). When X(# ) and Y(# ) depend

on a parameter E ∈ V (typically an index label or a spectral parameter), then X(E) ≺ Y(E), uniformly in

E ∈ V, means that the threshold #0 (n, �) can be chosen independently of E.

We often use the notation ≺ also for deterministic quantities, and then X(# ) ≤ # nY(# ) holds with

probability 1. Stochastic domination has the following properties:

Lemma 3.3 (Proposition 6.5 [9]).

1. - ≺ . and . ≺ / imply - ≺ / .

2. If -1 ≺ .1 and -2 ≺ .2, then -1 + -2 ≺ .1 + .2 and -1-2 ≺ .1.2.

3. If - ≺ . , E. ≥ #−21 and |- | ≤ #22 almost surely with fixed constants 21 and 22, then we have

E- ≺ E. .

Let (_U)U be the eigenvalues of the matrix � in ascending order and let (FU)U be a basis of associated

normalised eigenvectors. In this paper we are interested in estimating

F∗
U� ]FV − f]_UXUV , ] = 1, . . . , :, (3.6)

for any choice of U, V ∈ È1, #É.

Theorem 3.4. Let � be given by formula (3.4), and assume that � ], ] = 1, . . . , : , satisfy Assumption 3.1

and that f], ] = 1, . . . , : , satisfy equation (3.3). Then

��F∗
U� ]FV − f]_UXUV

�� ≺ 1√
#

(3.7)

for all U, V ∈ È1, #É and ] ∈ È1, :É.

Remark 3.5. We formulated Theorem 3.4 for complex Hermitian Wigner matrices, but with some

modifications our method and results carry over to the real symmetric case (see Theorem 8.2). The

details are given in section 8.

We further remark that one may also consider a mixed-symmetry setup, where some � ]s are complex

Hermitian Wigner matrices and the remaining � ]s are real symmetric Wigner matrices. The arguments

in section 8 can be extended to such a setting, and formula (3.7) indeed holds under this setup as well.

4. Preliminaries

In this section we collect some essential tools used in the proof of Theorem 3.4. We start with the Green

function of the random matrix � and the corresponding local laws.

4.1. Local law for the Green function and rigidity of eigenvalues

For any probability measure ` on R, its Stieltjes transform is defined as

<` (I) :=

∫

R

1

G − I
d`(G), I ∈ C\R. (4.1)
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We denote the Stieltjes transform of the standard semicircle law by <B2 (I).
Let � denote the Green function or resolvent of �:

� (I) :=
1

� − I
, I ∈ C\R. (4.2)

We refer to I = � + i[ in definitions (4.1) and (4.2) as a spectral parameter. We denote by <(I) the

normalised trace of the Green function � (I):

<(I) = 1

#
Tr� (I) = 〈� (I)〉, I ∈ C\R, (4.3)

and note that by the spectral calculus <(I) is the Stieltjes transform of the empirical eigenvalue

distribution of�. Finally, we recall the deterministic estimate ‖� (I)‖∞ ≤ ‖� (I)‖ ≤ |[ |−1, with [ = ImI.

We are interested for energies � in a neighbourhood of the support of the semicircle law – that is,

|� | < 2 + r, for some fixed r > 0. Further, fix a small n > 0 and introduce the spectral domain

E :=
{
I = � + i[ ∈ C : � ∈ [−2 − r, 2 + r], #−1+n ≤ |[ | ≤ 1

}
. (4.4)

For I, I′ ∈ E, let Ψ(I, I′) denote the deterministic control parameter

Ψ(I, I′) :=
1√
#[0

, [0 = min{|ImI |, |ImI′ |}. (4.5)

We use the convention Ψ(I, I) ≡ Ψ(I).
Let WU be the Uth #-quantile of the semicircle law – that is, WU is determined by

∫ WU

−2

1

2c

√
4 − G2dG =

U − 1/2
#

. (4.6)

The quantile WU is often also referred to as the classical location of the eigenvalue _U.

One ingredient for our work is the following strong local law for the Green function and the eigenvalue

rigidity estimate:

Theorem 4.1 (Theorem 2.1 [10], Theorem 2.3 [8]). Let � be as in definition (3.4) satisfying Assump-

tion 3.1. Then we have the uniform estimates

���8 9 (I) − X8 9<B2 (I)
�� ≺

(
Im<B2 (I)

#[

)1/2
+ 1

# |[ | ≺ Ψ(I), |<(I) − <B2 (I) | ≺ Ψ(I)2, (4.7)

for all I = � + i[ ∈ E.

Moreover, we have the eigenvalue rigidity estimate

|_U − WU | ≺
1

#2/3 min {U, # − U + 1}1/3 , (4.8)

for all U ∈ È1, #É.

4.2. Cumulant expansion

A second main tool in the proof of Theorem 3.4 are cumulant expansions, which were used, for example,

in [13, 15] to study linear eigenvalue statistics of random matrices. For our purposes, the following

version from [11, 12] is very suitable.
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Lemma 4.2 (Lemma 7.1 [11], Lemma 2.4 [12]). Let ℎ be a complex-valued random variable with

finite moments. Let ^ (?,@) be the (?, @) cumulant of ℎ, which is defined as

^ (?,@) := (−i) ?+@
(

m ?+@

mB?mC@
logEeiBℎ+iCℎ

)����
B,C=0

. (4.9)

Set 5 ∈ �∞ (
C

2;C
)
; then for any fixed ; ∈ N, we have

Eℎ 5
(
ℎ, ℎ

)
=

;∑

?+@=0

1

?!@!
^ (?+1,@) 5 (?,@)

(
ℎ, ℎ

)
+Ω;+1, (4.10)

where

5 (?,@) (F1, F2) := m
?
F1
m
@
F2

5 (F1, F2), F1, F2 ∈ C,

and the error term Ω;+1 satisfies

|Ω;+1 | ≤ �;E
[
|ℎ|;+2

]
max

?+@=;+1
sup

|F | ≤"

��� 5 (?,@) (F, F)
���

+ �;

[

E
[
|ℎ|2;+4

1 |ℎ |>"

]
E

[

max
?+@=;+1

sup
|F | ≤ |ℎ |

��� 5 (?,@) (F, F)
���
2

] ]1/2

, (4.11)

where " > 0 is an arbitrary cutoff.

We remark that Lemma 4.2 is a combination of [12, Lemma 2.4] and [11, Lemma 7.1]; the combi-

natoric part comes from [11] and the error estimate is taken from [12].

From definition (4.9), the first few cumulants of a complex random variable ℎ are given by

^ (1,0) = Eℎ, ^ (1,1) = E|ℎ|2 − |Eℎ|2, ^ (2,0) = Eℎ2 − (Eℎ)2,

and so on, with ^ (@,?) = ^ (?,@) .

5. Proof of Theorem 3.4

The proof of Theorem 3.4 is based on an essentially optimal estimate on a distinguished observable we

introduce in this section (see equation (5.2)). We are going to prove Theorem 3.4 for the case : = 2; the

case of general : then follows easily by grouping all but one summand in definition (3.4) together and

viewing it as a single Wigner matrix.

Generalising definition (2.4), we introduce the auxiliary matrix

H := f2�1 − f1�2, (5.1)

whose entries are independent centered random variables, up to the symmetry constraint, with variance

E
��H8 9

��2 =
1
#

(
f2

1
+ f2

2

)
=

1
#

(see equation (3.3)). In order to prove Theorem 3.4, we derive a high

moment estimate for observables of the form

1

#
TrHIm� (I1)HIm� (I2) = 〈HIm� (I1)HIm� (I2)〉, I1, I2 ∈ E , (5.2)

where � denotes the Green function of � (see definition (4.2)) and the domain E was defined in

definition (4.4). The main technical result of this paper is the following proposition:
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Proposition 5.1. Under the assumptions of Theorem 3.4, we have the estimate

〈HIm� (I1)HIm� (I2)〉 ≺ 1, (5.3)

uniformly in I1, I2 ∈ E.

Remark 5.2. Using the deterministic bound ‖� (I)‖ ≤ 1
|[ | and the bounds ‖�1‖, ‖�2‖ ≺ 1, which

follow from formula (4.8), we get the a priori bound

〈HIm� (I1)HIm� (I2)〉 ≺
1

|ImI1 | |ImI2 |
≺ #2 (5.4)

on the spectral domain E. Thus formula (5.3) is an improvement of two orders in # and gives the correct

size, up to factors of # n .

The proof of Proposition 5.1 is postponed to section 7, and we next show instead how it implies

Theorem 3.4.

Proof of Theorem 3.4. In order to link formula (5.3) to formula (3.7), we observe that by spectral

decomposition we have

〈HIm� (I1)HIm� (I2)〉 =
1

#

#∑

U,V=1

��F∗
UHFV

��2 [1

(_U − �1)2 + [2
1

[2
(
_V − �2

)2 + [2
2

, (5.5)

where I1 = �1 + i[1, I2 = �2 + i[2, [1 ≠ 0, [2 ≠ 0.

Fix now indicesU, V and choose �1 = _U and �2 = _V , as well as [1 = [2 = #−1+n such that I1, I2 ∈ E

with very high probability by formula (4.8). Then we obtain from the uniform bound in formula (5.3),

combined with the representation (5.5), the estimate

��F∗
UHFV

��2 ≺ #[1[2 ≺ #−1, (5.6)

for all U, V ∈ È1, #É.

Next, similar to equation (2.5), we conclude by noticing that

F∗
U�1FV − f1_UXUV = F∗

U�1FV − f2
1F

∗
U�1FV − f1f2F

∗
U�2FV

= f2
2F

∗
U�1FV − f1f2F

∗
U�2FV

= f2F
∗
UHFV

= $≺

(
1√
#

)
,

where we used formula (5.6). �

6. Computation of the expectation

In this section we compute the expectation of the observable 〈HIm� (I1)HIm� (I2)〉. Since this random

variable is positive for I1, I2 ∈ C+, the expectation already indicates its correct size. Also, the estimation

of the expectation unveils the cancellation mechanism from which Theorem 3.4 eventually results.

Lemma 6.1. Set I1, I2 ∈ E. Then

E〈HIm� (I1)HIm� (I2)〉 = Im<B2 (I1)Im<B2 (I2) +$≺

(
1√
#

)
+$≺

(
Ψ

2(I1, I2)
)
, (6.1)

where Ψ(I1, I2) is defined in definition (4.5).
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Proof. We start by noticing that it suffices to estimate

X(I, I′) := 〈H� (I)H� (I′)〉 (6.2)

for I = I1, I1 and I′ = I2, I2. Further introduce the shorthand notations

� ≡ � (I), � ′ ≡ � (I′). (6.3)

Moreover, note that we can write

X(I, I′) = 1

#

∑

8 901

H8 9Tr
(
Δ
8 9�Δ

01� ′
)
H01 , (6.4)

where the matrix
(
Δ 8 9

)
is defined to have entries

(
Δ 8 9

)
=<

= X8=X 9<, or using rank 1 operators,

Δ
8 9 :=

���48
〉〈
4 9

���, (6.5)

where (48)8 is the canonical basis in C# . Recall that
∑

8 901 indicates a sum over all indices from 1 to # .

Our task is to compute

EX(I, I′) = 1

#

∑

8 901

E

[
H8 9Tr

(
Δ
8 9�Δ

01� ′
)
H01

]
. (6.6)

For this we use the cumulant expansions of Lemma 4.2. To get started, we need more notation. Let

^
(?,@)
],8 9

= ^
(?,@)
], 98

denote the cumulants of the matrix entries ℎ ],8 9 , ] = 1, 2. We will for simplicity assume

for the moment that Eℎ2
],8 9 = 0; this condition can easily be relaxed (see section 9). Together with

Assumption 3.1, this implies

^
(1,0)
],8 9

= ^
(0,1)
],8 9

= 0, ^
(1,1)
],8 9

=
1

#
, ^

(2,0)
],8 9

= ^
(0,2)
],8 9

= 0. (6.7)

Further, from formula (3.2) we have the estimates

���^ (?,@)],8 9

��� ≤
�?+@

#
?+@

2

, ? + @ ≥ 3. (6.8)

Next, introduce the derivation operator

D 98 :=
(
f2m1, 98 − f1m2, 98

)
, (6.9)

where m], 98 ≡ m
mℎ], 98

, ] = 1, 2.

With these notations we have the computational rules

D 98H01 = X 90X81 , (6.10)

where we used equation (3.3), and

D 98� (I) = −f2f1� (I)Δ 98� (I) + f1f2� (I)Δ 98� (I) = 0, (6.11)

where we used the basic differential rule

m], 98� (I) = −� (I)f]Δ
98� (I), ] = 1, 2. (6.12)
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We will also require a higher-order analogue of D: for ?, @ ∈ N, define

D
(?,@)
98

:=
1

?!@!
#

?+@+1
2

(
f2^

(?,@+1)
1, 98

m
?

1, 98
m
@

1,8 9
− f1^

(?,@+1)
2, 98

m
?

2, 98
m
@

2,8 9

)
. (6.13)

With this notation we have D 98 = D
(1,0)
98

and record that

D
(1,0)
98

� = 0, D
(0,1)
98

= 0, (6.14)

where the first relation follows from equation (6.11) and the second follows from ^ (0,2) = 0 (see

equation (6.7)). With the notation in definition (6.13), we next recall Lemma 4.2 to obtain the following

cumulant-expansion lemma:

Lemma 6.2. Fix indices 8, 9 and integers 3, 3 ′. Let � be a monomial in the Green-function entries

(�=< (I))=<, (�=< (I′))=<, and matrix entries (H=<)=< of total degree 3 in the Green-function entries

and total degree 3 ′ in H=<, where 3 ′ ≤ 3. Then for any fixed ; ∈ N,

E8 9H8 9� =

;∑

?+@=1

#− ?+@+1
2 E8 9D

(?,@)
98

� +Ω;+1(�), (6.15)

where E8 9 denotes the expectation with respect to the random variables ℎ1,8 9 and ℎ2,8 9 . The error term

satisfies the bound

|Ω;+1 (�) | ≺ #−(;+2)/2, (6.16)

where the explicit constants depend on 3 and 3 ′ but are uniform in the matrix indices.

The proof of Lemma 6.2 is postponed to Appendix A. Lemma 6.2 has the following direct corollary,

whose proof is also postponed to Appendix A:

Corollary 6.3. Fix indices 8, 9 . Let � be a monomial in the Green-function entries (�=<(I))=<,

(�=< (I′))=<, and matrix entries (H=<)=< of total degree 3 in Green-function entries and total degree

3 ′ in H=<, where 3 ′ ≤ 3. Then for any fixed ; ∈ N,

EH8 9� =

;∑

?+@=1

#− ?+@+1
2 ED

(?,@)
98

� + EΩ;+1(�), (6.17)

where the error term satisfies the bound

|EΩ;+1 (�) | ≺ #−(;+2)/2, (6.18)

where the explicit constants depend on 3 and 3 ′ but are uniform in the matrix indices.

With Corollary 6.3 and the computational rules (6.10) and (6.14) at hand, we begin to compute the

expectation of X(I, I′):

EX(I, I′) = 1

#

∑

8 901

EH8 9Tr
(
Δ
8 9�Δ

01� ′
)
H01

=
1

#

;∑

?+@=1

−#
?+@+1

2

∑

8 901

ED
(?,@)
98

[
Tr

(
Δ
8 9�Δ

01� ′
)
H01

]
+$≺

(
# (−;+4)/2

)
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=
1

#2

∑

8 901

ED
(1,0)
98

[
Tr

(
Δ
8 9�Δ

01� ′
)
H01

]

+ 1

#

;∑

?+@=2

#− ?+@+1
2

∑

8 901

ED
(?,@)
98

[
Tr

(
Δ
8 9�Δ

01� ′
)
H01

]
+$≺

(
# (−;+4)/2

)
, (6.19)

where we used Corollary 6.3 together with formula (6.8) and power counting to estimate the error term

from cutting the cumulant expansion at order ; to be #−1#4$≺
(
#−(;+2)/2) = $≺

(
# (−;+4)/2) .

We first focus on the first term on the right side of equation (6.19). Using equations (6.10) and (6.11),

we get

1

#2

∑

8 901

ED
(1,0)
98

[
Tr

(
Δ
8 9�Δ

01� ′
)
H01

]
=

1

#2

∑

8 901

ETr
(
Δ
8 9�Δ

01� ′
)
X 90X81

+ 1

#2

∑

8 901

ETr
(
Δ
8 9

(
D 98�

)
Δ

01� ′
)
H01

+ 1

#2

∑

8 901

ETr
(
Δ
8 9�Δ

01
(
D 98�

′)
)
H01

=
1

#2

∑

8 9

E� 9 9�
′
88 = E<(I)<(I′). (6.20)

Note that the only nonzero term is when D 98 acts on H01 . By the local law in formula (4.7) and the

deterministic estimate |<(I) | ≤ 1
|[ | ≤ # , together with Lemma 3.3(3), the first term on the right side

of equation (6.19) is thus given by

1

#2

∑

8 901

ED
(1,0)
98

[
Tr

(
Δ
8 9�Δ

01� ′
)
H01

]
= <B2 (I)<B2 (I′) +$≺

(
Ψ(I, I′)2

)
. (6.21)

Consider next the second term on the right of equation (6.19). We are going to use yet another cumulant

expansion with respect to H01 to exploit further cancellation based on equation (6.14). For this purpose

we first note that if {0, 1} ≠ {8, 9} as sets, then

D
(?,@)
98

(
Tr

(
Δ
8 9�Δ

01� ′
)
H01

)
= H01D

(?,@)
98

(
Tr

(
Δ
8 9�Δ

01� ′
))

, (6.22)

because then m1,8 9H01 = m2,8 9H01 = 0. If {0, 1} = {8, 9}, then by power counting using |H01 | ≺ 1 and

the boundedness of the Green-function entries, we can estimate

������

1

#

;∑

?+@=2

#− ?+@+1
2

∑

8 901

1( {0,1}={8, 9 })ED
(?,@)
98

[
Tr

(
Δ
8 9�Δ

01� ′
)
H01

]
������
≺ 1

#

1

#3/2 #
2 ≺ 1√

#
,

where we tacitly used Lemma 3.3(3), together with Hölder’s inequality, the deterministic estimate

‖� (I)‖ ≤ |[ |−1 ≤ # and the moment bounds in formula (3.2). Hence, we have for the second term on

the right side of equation (6.19) that

1

#

;∑

?+@=2

#− ?+@+1
2

∑

8 901

ED
(?,@)
98

Tr
(
Δ
8 9�Δ

01� ′
)
H01

=
1

#

;∑

?+@=2

#− ?+@+1
2

∑

{8, 9 }≠{0,1}
EH01D

(?,@)
98

Tr
(
Δ
8 9�Δ

01� ′
)
+$≺

(
1√
#

)
. (6.23)
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Next, using a cumulant expansion to order ; with respect to H01 , we get

1

#

;∑

?+@=2

#− ?+@+1
2

∑

{8, 9 }≠{0,1}
ED

(?1 ,@1)
98

Tr
(
Δ
8 9�Δ

01� ′
)
H01

=
1

#

;∑

?1+@1=2
?2+@2=1

#− ?1+@1+?2+@2+2

2

∑

{8, 9 }≠{0,1}
ED

(?2 ,@2)
10

D
(?1 ,@1)
98

Tr
(
Δ
8 9�Δ

01� ′
)
+$≺

(
# (−;+1)/2

)
.

By equation (6.14), we see that the terms with ?2 + @2 = 1 yield a zero contribution, so we have

1

#

;∑

?+@=2

#− ?+@+1
2

∑

{8, 9 }≠{0,1}
ED

(?,@)
98

Tr
(
Δ
8 9�Δ

01� ′
)
H01

=
1

#

;∑

?1+@1=2
?2+@2=2

#− ?1+@1+?2+@2+2

2

∑

{8, 9 }≠{0,1}
ED

(?2 ,@2)
10

D
(?1 ,@1)
98

Tr
(
Δ
8 9�Δ

01� ′
)
+$≺

(
# (−;+1)/2

)

=
1

#4

∑

{8, 9 }≠{0,1}
ED

(1,1)
10

D
(1,1)
98

Tr
(
Δ
8 9�Δ

01� ′
)

+ 1

#

;∑

?1+@1+?2+@2≥5

#− ?1+@1+?2+@2+2

2

∑

{8, 9 }≠{0,1}
ED

(?2 ,@2)
10

D
(?1 ,@1)
98

Tr
(
Δ
8 9�Δ

01� ′
)

+$≺
(
# (−;+1)/2

)
. (6.24)

Using the local law for the Green-function entries in formula (4.7) and Lemma 3.3, we can easily bound

the second term on the right side by

������

1

#

;∑

?1+@1+?2+@2≥5

#− ?1+@1+?2+@2+2

2

∑

{8, 9 }≠{0,1}
ED

(?2 ,@2)
10

D
(?1 ,@1)
98

Tr
(
Δ
8 9�Δ

01� ′
)
������
≺ 1√

#
. (6.25)

For the first term on the right side of equation (6.24), we observe that D
(1,1)
10

D
(1,1)
98

contains four partial

derivatives. When those act on the Green-function entries Tr
(
Δ 8 9�Δ01� ′) = � 90�

′
18

, they create by

equation (6.12) monomials of degree 6 in the Green-function entries. Assuming that 0, 1, 8, 9 are all

distinct, the four partial derivatives will create diagonal as well as off-diagonal Green-function entries

when acting on � 90�
′
18

, since, for example, m1,10� 90 = −f1� 91�00. Note that the total number of

off-diagonal entries does not decrease, and hence each resulting monomial contains at least two off-

diagonal entries. In power counting we count diagonal entries as $≺ (1) and off-diagonal entries as

$≺ (Ψ). If there are coincidences among the indices, we gain a factor 1/# in the summation for each

coincidence, and hence those are negligible when compared with Ψ2. We thus have the estimate

������

1

#4

∑

{8, 9 }≠{0,1}
ED

(1,1)
10

D
(1,1)
98

Tr
(
Δ
8 9�Δ

01� ′
)
������
≺ (Ψ(I, I′))2. (6.26)

In sum, choosing ; ≥ 5, we get from formulas (6.21), (6.23), (6.25) and (6.26) that

EX(I, I′) = 1

#
ETrH� (I)H� (I′) = <B2 (I)<B2 (I′) +$≺

(
(Ψ(I, I′))2

)
+$≺

(
1√
#

)
. (6.27)

Using linear combinations, Lemma 6.1 follows directly from equation (6.27). �
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7. Proof of Proposition 5.1

In the previous section we identified the expectation of 〈H�H� ′〉 in Lemma 6.1. In this section we

will control the higher moments of 〈H�H� ′〉 to obtain a high-probability bound required to prove

Proposition 5.1.

Proposition 7.1. Under the assumptions of Theorem 3.4, we have

X(I, I′) = <(I)<(I′) +$≺ (1) (7.1)

uniformly in I, I′ ∈ E.

Proof. We rewrite X as

X(I, I′) = 1

#

∑

8 901

H8 9Tr
(
Δ
8 9�Δ

01� ′
)
H01 =:

1

#

∑

8 901

H8 9-
8 901H01 , (7.2)

where we introduced

- 8 901 ≡ Tr
(
Δ
8 9�Δ

01� ′
)
= � 90�

′
18 . (7.3)

As in section 6, we assume for the moment that Eℎ2
],8 9 = 0, ] = 1, 2, 8, 9 ∈ È1, #É. This implies that

^
(0,2)
],8 9

= ^
(2,0)
],8 9

= 0 as well as D
(0,1)
98

≡ 0. We will explain in section 9 how this additional assumption

can easily be dropped.

Next, we observe from equations (6.10) and (6.14) that

1

#2

∑

8 901

D
(1,0)
98

- 8 901H01 =
1

#2

∑

8 9

�88�
′
9 9 = <(I)<(I′) := p(I, I′), (7.4)

where we introduce the shorthand p. For =, < ∈ N, define

%(=, <) := (X − p)= (X − p)<. (7.5)

Fix a (large) � ∈ N, I, I′ ∈ E, and consider

E%(�, �) =
∑

ijab

E

[
�∏

==1

(
1

#
H8= 9=-

8= 9=0=1=H0=1= −
1

#2
X 9=0=X8=1=�8=8=� 9= 9=

)

×
2�∏

==�+1

(
1

#
H 9=8=-

8= 9=0=1=H1=0= −
1

#2
X 9=0=X8=1=�8=8=� 9= 9=

)]

, (7.6)

where i = (81, 82, . . . , 82�) ∈ È1, #É2� , and similarly j, a, b ∈ È1, #É2� are 8� free summation indices

corresponding to 4� factors of Hs. In this expression, for each =, we call H8= 9= and H0=1= ‘twins’.

We now successively use the cumulant expansions from Corollary 6.3 to expand the summands in

equation (7.6) in all the factors of Hs. We start by expanding in the variable H81 91 to obtain

E[(X(I, I′) − p(I, I′))%(� − 1, �)]

=
1

#

;∑

?1+@1=1

∑

81 910111

#− ?1+@1+1

2 E

[
D

(?1 ,@1)
9181

[
- 81 910111H0111

%(� − 1, �)
] ]

− E [p%(� − 1, �)] + E
[
$≺

(
#

−;+4
2

)
%(� − 1, �)

]
. (7.7)
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First, using the facts that |X| ≤ [−2
0

≤ #2 and |p| ≤ [−2
0

≤ #2, with [0 = min{|ImI |, |ImI′ |}, the

third term on the right of equation (7.7) is bounded as $≺
(
#

−;+4
2

+(4�−2)
)
, and hence for ; ≥ 10�,

that error term is bounded as $≺

((
1√
#

)2�
)
. Here we also tacitly used, as we will do repeatedly later,

Lemma 3.3(3) to justify the estimate. Second, in the first term on the right, for ? + @ = 1 we consider

the derivation D
(1,0)
9181

(recall from equation (6.7) that D
(0,1)
9181

= 0). When D
(1,0)
9181

acts on a Green function

in - 81 910111 , we get a zero contribution thanks to equation (6.14). If D
(1,0)
9181

acts on its twin H0111
, we

generate by equation (7.4) the term E[p%(� − 1, �)], which will precisely cancel with the second term

on the right side of equation (7.7).

Thus, choosing ; ≥ 10�, we have

E%(�, �) = 1

#2

∑

81 910111

E

[
- 81 910111H0111

D
(1,0)
9181

%(� − 1, �)
]

+ 1

#

;∑

?1+@1=2

∑

81 910111

#− ?1+@1+1

2 E

[
D

(?1 ,@1)
9181

[
- 81 910111H0111

%(� − 1, �)
] ]

+$≺

((
1√
#

)2�
)

. (7.8)

In the following we consider the terms on the right side of equation (7.8) separately.

First term on the right of equation (7.8).

We start with the term

1

#2

∑

81 910111

E

[
- 81 910111H0111

D
(1,0)
9181

%(� − 1, �)
]
. (7.9)

When D
(1,0)
9181

acts on %(� − 1, �), it acts either on a Green-function entry �8= 9= or �0=1= or on H8= 9=

or H0=1= , = ∈ È2, . . . , 2�É. In the former case we get by equation (6.14) a zero contribution, and in the

latter case by equation (6.10) the number of free summation indices in %(� − 1, �) gets reduced from

4(2� − 1) to 4(2� − 1) − 2. Bearing this in mind, we expand the term in formula (7.9) using H0111
to

obtain, with ; ≥ 10�,

1

#2

∑

81 910111

E

[
- 81 910111H0111

D
(1,0)
9181

%(� − 1, �)
]

=
1

#2

∑

81 910111

;∑

?2+@2=1

#− ?2+@2+1

2 E

[
D

(?2 ,@2)
1101

[
- 81 910111D

(1,0)
9181

%(� − 1, �)
] ]

+$≺

((
1√
#

)2�
)

=
1

#2

∑

81 910111

1

#
E

[
- 81 910111D

(1,0)
1101

D
(1,0)
9181

%(� − 1, �)
]

+ 1

#2

∑

81 910111

;∑

?2+@2=2

#− ?2+@2+1

2 E

[
D

(?2 ,@2)
1101

[
- 81 910111D

(1,0)
9181

%(� − 1, �)
] ]

+$≺

((
1√
#

)2�
)

, (7.10)
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where we used equation (6.14). For the first term on the right side in equation (7.10), the number of free

summation indices in D
(1,0)
1101

D
(1,0)
9181

%(� − 1, �) is 4(2� − 1) − 4 by equations (6.10) and (6.14). Or, put

differently, there are 2(2� − 1) − 2 factors of Hs left that we can use in cumulant expansions.

For the second term on the right side of equation (7.10), either we get a zero contribution when D
(1,0)
9181

acts on a Green-function entry of %(� − 1, �) or the number of free summation indices gets reduced by

two if D
(1,0)
9181

acts on a factor of H. For the higher derivative terms in D
(?2 ,@2)
1101

, with ?2 + @2 ≥ 2, acting

on - 81 910111D
(1,0)
9181

%(� −1, �), either the number of Green-function entries is increased by one for each

derivative hitting a Green-function entry or the number of free summation indices is reduced by two for

each derivative hitting a factor H. We have now expanded the first term on the right of equation (7.8) in

H81 91 and H0111
. Before we go on and expand the remaining Hs in %(� − 1, �), we return to second

term on the right of equation (7.8).

Second term on the right of equation (7.8).

Consider now the term

1

#

;∑

?1+@1=2

∑

81 910111

#− ?1+@1+1

2 E

[
D

(?1 ,@1)
9181

[
- 81 910111H0111

%(� − 1, �)
] ]

. (7.11)

Since ?1 + @1 ≥ 2, we do not have further cancellations from equation (6.14) in the expression

E

[
D

(?1 ,@1)
9181

- 81 910111H0111
%(� − 1, �)

]
.

If one of the derivatives in D
(?1 ,@1)
9181

acts on H0111
, the number of free summation indices is reduced by

two; if none of the derivatives acts on H0111
, we use a cumulant expansion in H0111

stopped at order

; ≥ 10�. The leading term containing D
(1,0)
1101

will then either give a zero contribution if it acts on any

Green-function entry (by equation (6.14)) or reduce the number of free summation indices by two. For

the terms containing D
(?2 ,@2)
1101

, ?2 + @2 ≥ 2, we have no cancellation due to equation (6.14) but the

number of free summation indices gets reduced by two for each derivative acting on a factor H.

Classification of the expanded terms from equation (7.8).

We have now expanded all the terms on the right side of equation (7.8) using cumulant expansions

and performed all the derivatives by Leibniz’s rule. The resulting terms can be classified by the number

of collapses " of two free summation indices when H81 91 or H0111
act on some other Hs (except their

own twin), and the number of cumulant expansions ! in total; the number of cumulant expansions !1

starting from order 1 – that is, with ?= + @= ≥ 1; and the number of cumulant expansions !2 starting

from order 2 – that is, with ?= + @= ≥ 2. For the moment, either ! = 1 or ! = 2, with !1 + !2 = !.

Because of the bounds
���8 9 (I)

�� ≺ 1, ‖� (I)‖ ≤ |[ |−1 ≤ # and Lemma 3.3(3), we may ignore the

number of Green-function entries in the power counting, and do not keep track of them.

Iteration and continued expansion.

We have now fully expanded equation (7.8) in terms of H81 91 and H0111
. We will continue expanding

in the remaining Hs while keeping track of the numbers " , !1 and !2 just introduced.

Pick now one of the resulting terms from before; if that term contains H82 92 and its twin H0212
, we

expand first in H82 92 . When D
(0,1)
1202

acts on H0212
, we get the cancellation with p from equation (7.4), so

that we are left with a cumulant expansion with ?2 + @2 ≥ 2 only. In case the twin H0212
is missing, we

note that the number of free summation indices has already been reduced by two. If we pick a term that

does not contain H82 92 , we go on and expand in the next H, H0212
or, if missing, the next available H.

In this way we successively expand all factors H, except those appearing in the error term of a cumulant

expansion cut at order ; ≥ 10�.
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Estimation of fully expanded terms.

A resulting fully expanded term containing no more Hs is then classified by the total number of

collapses " of free summation indices, resulting from equation (6.10). The number of free summation

indices in such a term is 8� − 2" , whereas the number of total cumulant expansions ! in that term is

4� − " . As before, let !1 be the number of cumulant expansions with ?= + @= = 1 and let !2 be the

number of cumulant expansions with ?= + @= ≥ 2. Note that !2 = 4� − " − !1.

Hence a fully expanded term with given " , !1 and !2 gives a contribution to equation (7.6)

bounded by

1

#2�
#8�−2"



;∑

?=+@==1

(
1√
#

) ?=+@=+1

!1 

;∑

?=+@==2

(
1√
#

) ?=+@=+1

!2

≺ #6−2"#−!1#− 3
2
!2

=

(
1√
#

)−"+!1

, (7.12)

where we used the facts that
���8 9

�� ≺ 1, ‖� (I)‖ ≤ 1
|[ | ≤ # with probability 1 and there are no more

Hs in a fully expanded term, so that by Lemma 3.3 we get the first line. To obtain the second line we

used the fact that � and ; ≥ 10� are fixed numbers, and for the third line we used !2 = 4� − " − !1.

Summarising, so far we have expanded equation (7.6) in all the factors H and shown that each resulting

fully expanded term with given " , !1 and !2 is bounded by equation (7.12).

We next claim that !1 ≤ " for any fully expanded term. Indeed, if for some pair of indices 8= 9= or

0=1= there is no collapse – meaning that the derivatives in D
(?= ,@=)
9=8=

(or D
(?= ,@=)
1=0=

) exclusively act on

Green-function entries – then we have due to equation (6.14) that ?= + @= ≥ 2 in order to get a nonzero

contribution.

Thus we reach the maximum for " = !1 in equation (7.12), and the term is stochastically dominated

by 1 – that is, each fully expanded term is stochastically bounded by 1. The number of generated terms

in the expansion is bounded by (��)2� if we choose ; to be proportional to �.

It follows that

E%(�, �) = E|X(I, I′) − p(I, I′) |2� ≺ 1 (7.13)

for any �, and hence by Markov’s inequality we have

|X(I, I′) − p(I, I′) | ≺ 1, (7.14)

which was to be proven for fixed I, I′ ∈ E.

It remains to extend this bound to a uniform bound for all I, I′ ∈ E. LetL ⊂ E×E be a lattice such that

|L| = $
(
#10

)
and for any (I, I′) ∈ E×E there is a

(
I0, I

′
0

)
∈ L such that

��(I, I′) −
(
I0, I

′
0

) �� = $
(
#−10

)
.

Since 〈H� (I)H� (I′)〉 is Lipschitz continuous in (I, I′) with constant bounded by [−4
0

≤ #4, [0 =

min{|ImI |, |ImI′ |}, as follows from equation (6.12), the uniform estimate follows from a union bound

over L and formula (7.14). This concludes the proof of Proposition 7.1, modulo the assumption that

Eℎ2
],8 9 = 0. This condition can easily be removed, as we will show in section 9. �

Remark 7.2. We can strengthen estimate (7.1) to

X(I, I′) = <(I)<(I′) +$≺
(
Ψ

2(I, I′)
)
+$≺

(
1√
#

)

= <B2 (I)<B2 (I′) +$≺
(
Ψ

2(I, I′)
)
+$≺

(
1√
#

)
.
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To establish this, one needs to count the number of off-diagonal Green-function entries generated along

the expansion procedure and then use
���8 9

�� ≺ Ψ + X8 9 .

8. Real symmetric case

In this section, we outline how our results for the complex Hermitian setup carry over to the real

symmetric one. We start with the analogue to Assumption 3.1.

Assumption 8.1. Fix an integer : ≥ 2. We assume that � ] :=
(
ℎ ],8 9

)
are : independent real symmetric

Wigner matrices of size # × # – that is, we assume that their entries are independent centered random

variables, up to the symmetry constraints ℎ ],8 9 = ℎ ], 98 , satisfying

Eℎ2
],8 9 =

1 + X8 9

#
, 1 ≤ 8, 9 ≤ #, ] = 1, . . . , :, (8.1)

and the families of random variables
{
ℎ ],8 9

}
have finite moments to all order – that is, they satisfy

formula (3.2).

We then have the following result for the real symmetric case:

Theorem 8.2. Let � be given by definition (3.4) and assume that � ], ] = 1, . . . , : , satisfy Assumption 8.1

and that f], ] = 1, . . . : , satisfy equation (3.3). Then

��F∗
U� ]FV − f]_UXUV

�� ≺ 1√
#
, (8.2)

for all U, V ∈ È1, #É and ] ∈ È1, :É.

Proof. In the following we sketch the proof of the theorem for : = 2. First we define the cumulants

^
(?)
],8 9

= ^
(?)
], 98

for the real random variables ℎ ],8 9 as

^
(?)
],8 9

:= (−i) ? m ?

mB?
logEeiBℎ],8 9

����
B=0

(8.3)

and note that they satisfy estimate (6.8).

Second, we introduce the real symmetric analogue to D
(?,@)
98

by setting

D
(?)
98

:=
1

?!
#

?+1
2

(
f2^

(?+1)
1, 98

m
?

1, 98
− f1^

(?+1)
2, 98

m
?

2, 98

)
, ? ∈ N. (8.4)

With these definitions we obtain the following cumulant expansion formula for the real symmetric case:

let � be a monomial in the Green-function entries and entries of H as in Corollary 6.3; then for any

; ∈ N,

EH8 9� =

;∑

?=1

#− ?+1
2 ED

(?)
98

� + EΩ;+1(�), (8.5)

where the error term satisfies the bound

|EΩ;+1(�) | ≺ #−(;+2)/2. (8.6)

Third, we recall the basic differentiation rule for the real symmetric setup:

m], 98� (I) = −� (I)f]Δ
98� (I) − � (I)f]Δ

8 9� (I), ] = 1, 2. (8.7)
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It is then easy to check that we have the computational rules

D
(1)
98
� (I) = 0 (8.8)

and

D
(1)
98
H01 = X 90X81 + X80X 91 , (8.9)

where H01 = f2�1 − f1�2 and where we used equations (3.3) and (8.1).

Armed with these definitions and rules, we turn to the computation of E〈H� (I)H� (I′)〉. We follow

the computation in section 6 up to equation (6.20), which now becomes

1

#2

∑

8 901

ED
(1)
98

[
Tr

(
Δ
8 9�Δ

01� ′
)
H01

]
=

1

#2

∑

8 901

ETr
(
Δ
8 9�Δ

01� ′
)
D

(1)
98
H01

=
1

#2

∑

8 901

ETr
(
Δ
8 9�Δ

01� ′
) (

X 90X81 + X80X 91

)

= E<(I)<(I′) + 1

#2

∑

8 9

E�8 9�
′
98

= E<(I)<(I′) +$≺
(
Ψ(I, I′)2

)
, (8.10)

where we used the local law for the Green function in formula (4.7) to get the last line, and the fact

that Theorem 4.1 holds for real symmetric Wigner matrices as well. The only change was the addition

of the error term $≺
(
Ψ(I, I′)2

)
in equation (8.10). Following the computation in section 6 further, we

conclude that Lemma 6.1 holds in the real symmetric setup too.

We move on to bound the higher moments of 〈H�H� ′〉 following the arguments in section 7. Due

to the modified rule (8.9) in the real setup, we redefine p(I, I′) from equation (7.4) as

p(I, I′) := <(I)<(I′) + 1

#2

∑

8 9

�8 9 (I)� 98 (I′), (8.11)

so that

1

#2

∑

8 901

D
(1)
98
- 8 901H01 = p(I, I′) (8.12)

holds with the adapted notation - 8 901 given in equation (7.3). This modification of p ensures that

X(I, I′) − p(I, I′) is a self-normalising quantity – that is, in the computation of E%(�, �), with % from

definition (7.5), when some H8= 9= acts on its twin H0=1= we get a zero contribution to E%(�, �) as in

the complex Hermitian computation.

Yet if some H8= 9= acts on another H which is not its own twin, then we get an additional contribution

from the second term on the right side of equation (8.9) which is absent in the complex case. However,

when this happens the number of free summation indices is reduced by two, and we continue to expand

the resulting term in the same way as in the complex case. Thus the modified rule (8.9) produces more

terms in the expansion of E%(�, �), but after all terms are fully expanded in the Hs, the sizes of the

terms are estimated by the same power counting as in the complex Hermitian case. In this way one

obtains

〈HIm� (I)HIm� (I′)〉 = Im<(I)Im<(I′) +$≺ (1), (8.13)
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uniformly in I, I′ ∈ E, similar to Proposition 7.1. The proof of Theorem 8.2 is then concluded in the

same way as in section 5. �

9. Complex case revisited

In this last section, we return to the complex Hermitian case. In the proof of Proposition 5.1 in section 7,

we assumed for simplicity that Eℎ2
],8 9 = ^

(0,2)
],8 9

= 0. In this section we explain how this assumption can

be removed. Even if ^
(0,2)
],8 9

≠ 0 and hence D
(0,1)
98
. 0, we have

D
(1,0)
98

� (I) = D
(0,1)
98

� (I) = 0, (9.1)

similar to equation (6.14). Further, equation (6.10) is modified as

D
(0,1)
98

H01 = X81X 90, D
(1,0)
98

H01 = f2
2 ^

(0,2)
1, 98

X80X 91 + f2
1 ^

(0,2)
2, 98

X80X1 9 . (9.2)

Since the cumulant expansions of Corollary 4.2 remain valid, it is straightforward to check that Proposi-

tion 7.1 holds true also when ^
(0,2)
],8 9

do not necessarily vanish, after modifying the definition of p similarly

to the real symmetric case to obtain self-normalising quantities in the moment bounds of X − p. More

precisely, redefining

p(I, I′) := <(I)<(I′) + 1

#

∑

8 9

(
f2

2 ^
(0,2)
1, 98

�8 9 (I)� 98 (I′) + f2
1 ^

(0,2)
2, 98

�8 9 (I)� 98 (I′)
)
, (9.3)

we find that

1

#2

∑

8 901

(
D

(0,1)
98

+D
(1,0)
98

)
- 8 901H01 = p(I, I′), (9.4)

with - 8 901 given in equation (7.3). We leave the further details aside. Finally, the proof of Theorem 3.4

from Proposition 7.1 remains unaffected by this modification.

Appendix A. Proof of Lemma 6.2

Proof. Fix the indices 8 and 9 . We write � ≡ �
(
ℎ1,8 9 , ℎ1, 98 , ℎ2,8 9 , ℎ2, 98

)
to emphasise the explicit

dependencies. From Lemma 4.2 and the definition of D
(?,@)
98

in definition (6.13) we directly obtain

equation (6.15), where Ω;+1(�) is the sum of two error terms Ω1,;+1 and Ω1,;+2, the first coming from

cumulant expansion with respect to ℎ1,8 9 and the second from expanding with respect to ℎ2,8 9 in H8 9 . To

bound the error term Ω1,;+1, we choose " = #−1/4 in formula (4.11). Then together with the moment

bounds in formula (3.2), for any (large) � > 0, we have

��Ω1,;+1

�� ≤ �;

#
;+2
2

max
?+@=;+1

sup
F ∈C, |F | ≤# −1/4

��m ?
Fm

@

F
�

(
F, F, ℎ2,8 9 , ℎ2, 98

) ��

+ �;,�

#�/2

(

E8 9

[

max
?+@=;+1

sup
|F | ≤ |ℎ1,8 9 |

��m ?
Fm

@

F
�

(
F, F, ℎ2,8 9 , ℎ2, 98

) ��2
])1/2

(A.1)

for # sufficiently large, where we used Hölder’s inequality and the moment assumption (3.2) to conclude

that for any ; and �,

E8 9

��ℎ1,8 9

��;+2 ≤ �;

#
;+2
2

, E8 9

[��ℎ1,8 9

��2;+4
1|ℎ1,8 9 |># −1/4

]
≤ �;,�

#�/2 (A.2)

for # sufficiently large.
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Consider next the Green-function entry �01 ≡ �01 (I) for some fixed I ∈ E and some choice

of indices 0, 1. We write �01 = �01

(
ℎ1,8 9 , ℎ1, 98

)
in the following. Recall from the local law in

formula (4.7) that
���01

(
ℎ1,8 9 , ℎ1, 98

) �� ≺ X01 +Ψ(I). Hence, using a Neumann expansion of the resolvent,

we get

�01 (F, F) (A.3)

= �01

(
ℎ1,8 9 , ℎ1, 98

)
− Tr

[
Δ

10�
(
ℎ1,8 9 , ℎ1, 98

)
f1

( (
F − ℎ1,8 9

)
Δ
8 9 +

(
F − ℎ1, 98

)
Δ

98
)
� (F, F)

]
.

(A.4)

Thus, denoting

Λ̂> := sup
F ∈C, |F | ≤# −1/4

max
0,1

|�01 (F, F) | ,

we get from equation (A.3) and
��ℎ1,8 9

�� ≺ 1√
#

that

Λ̂> ≺ 1 + 1

#1/4 Λ̂>, (A.5)

and hence Λ̂> ≺ 1. Next observe that m
?

8 9
m
@

98
� is a polynomial in the Green-function entries and the

matrix entries of H of degree at most 3 + 3 ′ + ; + 2. Since � was a monomial, the number of monomial

summands in m
?

8 9
m
@

98
� depends on ?, @ and 3 + 3 ′ + ; + 2, but is independent of # . Using the bounds

|H01 | ≺ 1 and Λ̂> ≺ 1, we conclude that supF ∈C, |F | ≤# −1/4

���m ?

8 9
m
@

98
� (F, F)

��� ≺ 1, for all ?, @ with

? + @ ≤ ; + 1. It follows that the first term on the right side of formula (A.1) is of order $≺
(
#−(;+2)/2) .

To control the second term on the right side of formula (A.1), we use once more that m
?

8 9
m
@

98
� is

a finite linear combination of monomials in the Green-function entries and the matrix entries of H.

The maximal number of Green-function entries occurring is 3 + ; + 2, and estimating each factor by

‖�‖∞ ≤ 1
[0

≤ # , we get a contribution of order #3+;+2 from the Green-function entries. From the

factors of H01 we use |H01 | ≺ 1 and the moment bounds in formula (3.2) to conclude that

(

E8 9

[

max
?+@=;+1

sup
|F | ≤ |ℎ1,8 9 |

���m ?

8 9
m
@

98
�

(
F, F, ℎ2,8 9 , ℎ2, 98

) ���
2

])1/2

≺ #3+;+2. (A.6)

Hence choosing � sufficiently large, the second term on the right side in formula (A.1) is bounded

by $≺
(
#−(;+2)/2) . In sum, we have |Ω1,;+1 (�) | ≺ #−(;+2)/2. We derive the corresponding bound on

Ω2,;+1 (�) in the same way. �

Proof of Corollary 6.3. Corollary 6.3 follows from Lemma 6.2, together with an application of

Lemma 3.3(3) using the the estimates
���8 9 (I)

�� ≺ 1, ‖� (I)‖ ≤ |[ |−1 ≤ # and the moment assumptions

in Assumption 3.1, combined with Hölder’s inequality. �
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