ON MODULAR REPRESENTATION ALGEBRAS AND A CLASS OF MATRIX ALGEBRAS

J-C. RENAUD

(Received 12 January, 1981)

Communicated by D. E. Taylor

Abstract

Let G be a cyclic group of prime order p and K a field of characteristic p. The set of classes of isomorphic indecomposable (K, G)-modules forms a basis over the complex field for an algebra \mathcal{A}_p (Green, 1962) with addition and multiplication being derived from direct sum and tensor product operations.

Algebras \mathcal{A}_n with similar properties can be defined for all $n \ge 2$. Each such algebra is isomorphic to a matrix algebra \mathfrak{M}_n of $n \times n$ matrices with complex entries and standard operations. The characters of elements of \mathcal{A}_n are the eigenvalues of the corresponding matrices in \mathfrak{M}_n .

1980 Mathematics subject classification (Amer. Math. Soc.): 20 C 20.

1. Introduction

Let G be a cyclic group of prime order p and K a field of characteristic p. A G-module is a (K, G)-module with the elements of G acting as right operators: there exist exactly p distinct isomorphism classes of indecomposable G-modules, with K-dimension 1,...,p. (For further details, see Green, 1962 or Renaud, 1979.)

Choose representatives V_1, \ldots, V_p from the classes with V_i having K-dimension *i*. The modular representation algebra \mathscr{Q}_p has basis $\{V_1, \ldots, V_p\}$ over the complex field, with products defined by

$$V_r \times V_s = \sum_{i=1}^p a_{irs} V_i$$

where a_{irs} is the number of modules isomorphic to V_i in the direct sum decomposition of $V_r \otimes_K V_s$.

Copyright Australian Mathematical Society 1982

$$V_r \times V_s = \sum_{i=1}^{S} V_{s-r+2i-1} + (r-c)V_p$$

where

$$c = \begin{cases} r & \text{if } r + s \leq p, \\ p - s & \text{if } r + s \geq p. \end{cases}$$

 \mathcal{A}_p may be regarded as generated by V_2 with relation $V_r = V_2 \times V_{r-1} - V_{r-2}$ for $2 < r \le p$, restricted by $V_2 \times V_p = 2V_p$, and hence elements in \mathcal{A}_p are polynomials in V_2 .

This class of algebras can be extended in a natural way: for all integers $n \ge 2$ let \mathcal{C}_n be the algebra with identity V_1 and generator V_2 , defining relation for V_r and restriction as above, with p replaced by n. Note that this is not in general a representation algebra of a group: the V_i are abstract elements, not modules.

We wish to show \mathcal{Q}_n is isomorphic to a particular matrix algebra \mathfrak{M}_n .

2. The matrix algebra

Let \mathfrak{M}_n be the algebra generated by the $n \times n$ matrix W_2^n which has entries 1 on the sub- and super-diagonals, 1 at each end of the main diagonal, and 0 elsewhere. We wish to show \mathfrak{M}_n is isomorphic to \mathfrak{A}_n .

Let W_1^n be the unit $n \times n$ matrix. Let $W_r^n = W_2^n \times W_{r-1}^n - W_{r-2}^n$. Clearly necessary and sufficient conditions for the isomorphism to hold are that the restriction $W_2^n \times W_n^n = 2W_n^n$ hold, and that the W_r^n be linearly independent. To show this, and also to describe the W_r^n in general, we have

PROPOSITION. W_r^n is the $n \times n$ matrix (a_{ii}) with

$$a_{ij} = 1 \quad if (i) \ i + j - 1 \le r$$

or (ii) $2n - (i + j - 1) \le r$
or (iii) $|i - j| - 1 \equiv r \pmod{2}$ and $|i - j| < r$,
 $a_{ij} = 0$ otherwise.

PROOF. The proposition clearly holds for r = 1 and r = 2. Examination of the pattern in diagrams of $W_k^n \times W_2^n$ versus those of W_{k+1}^n and W_{k-1}^n is then sufficient.

352

COROLLARY. (i) W_n^n is the $n \times n$ matrix with every entry 1. Hence $W_2^n \times W_n^n = 2W_n^n$.

(ii) Examination of the first row of the W_r^n shows they are linearly independent. Hence \mathfrak{M}_n is isomorphic to \mathfrak{R}_n .

3. The characters of \mathcal{Q}_n

A character of \mathscr{Q}_n is a non-trivial homomorphism, $\phi: \mathscr{Q}_n \to \mathbb{C}$ where \mathbb{C} is the complex field. Green (1962) derived the characters for \mathscr{Q}_p : the general case is similar.

Let x be indeterminate over a commutative, associative algebra with identity *i*. The Chebyshev polynomials S_k are defined by

$$S_0(x) = i$$
, $S_1(x) = x$, $S_k(x) = xS_{k-1}(x) - S_{k-2}(x)$ for $k \ge 2$.

(For further details, see Abramovitz and Stegun (1972), Chapter 22.)

Now for $1 \le r \le n$, $V_r = S_{r-1}(V_2)$. Let $\phi: \mathcal{Q}_n \to \mathbf{C}$ be a character of \mathcal{Q}_n : clearly $\phi(V_1) = 1$ and since $V_n \times (V_2 - 2V_1) = 0$, $\phi(V_n) = 0$ or $\phi(V_2) = 2$. The second case gives the dimension character

$$\delta(V_r)=r, \qquad 1\leqslant r\leqslant n.$$

For the first case, let $\phi(V_2) = x$. Then we require $S_{n-1}(x) = 0$, and this has solutions $x_i = 2 \cos(\pi j/n), j = 1, \dots, n-1$.

Moreover, $S_{r-1}(2\cos\theta) = \sin r\theta / \sin\theta$, $r \ge 1$, and hence there are n-1 other characters,

$$\phi_j(V_r) = \frac{\sin(\pi j r/n)}{\sin(\pi j/n)}, \qquad 1 \le r \le n, \ 1 \le j \le n-1.$$

4. The eigenvalues of matrices in \mathfrak{M}_n

The characteristic polynomial of W_2^n is derived from the equation

$$W_n^n(W_2^n-2W_1^n)=0;$$

thus the eigenvalues of W_2^n are the solutions of $S_{n-1}(\lambda)(\lambda - 2) = 0$, and these are just the characters at V_2 . Hence the eigenvalues of W_r^n are the character values at V_r .

J-C. Renaud

REMARK. This gives rise to an eigenvalue result of some minor interest: let A be the $n \times n$ matrix symmetric about both diagonals, with

$$a_{ij} = (-1)^{i+1} \left\{ x_j + \sum_{k=1}^{i-1} (-1)^k (x_{j-k} + x_{j+k}) \right\}$$

for $1 \le i \le \frac{1}{2}(n+1)$, $i \le j \le n+1-i$, where $x_j \in \mathbb{C}$, $j = 1, \dots, n$. For example, with n = 5,

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ x_2 & x_1 - x_2 + x_3 & x_2 - x_3 + x_4 & x_3 - x_4 + x_5 & x_4 \\ x_3 & x_2 - x_3 + x_4 & x_1 - x_2 + x_3 - x_4 + x_5 & x_2 - x_3 + x_4 & x_3 \\ x_4 & x_3 - x_4 + x_5 & x_2 - x_3 + x_4 & x_1 - x_2 + x_3 & x_2 \\ x_5 & x_4 & x_3 & x_2 & x_1 \end{pmatrix}.$$

Now

$$A = x_n W_n^n + \sum_{i=1}^{n-1} (x_i - x_{i+1}) W_i^n$$

and hence the eigenvalues of A are

$$\lambda_0 = \sum_{i=1}^n x_i \quad \text{and} \quad \lambda_j = \sum_{i=1}^{n-1} (x_i - x_{i+1}) \frac{\sin(\pi i j/n)}{\sin(\pi j/n)}$$

for j = 1, ..., n - 1.

5. The eigenvectors of W_r^n

The eigenvectors of W_r^n also have interesting properties. For W_2^n , the eigenvalues are $\lambda_j = 2\cos(\pi j/n), j = 0, ..., n - 1$. Let λ_j have a corresponding eigenvector $[y_1, ..., y_n]$. It is not difficult to show that we may choose $y_1 = 1$, and that for $1 < i \le n$

$$y_i = S_{i-1}(\lambda_j) - S_{i-2}(\lambda_j)$$

= $\cos(\pi i j/n) + \sin(\pi i j/n) \tan(\pi j/n).$

Moreover, it can be deduced that this set of eigenvectors is orthogonal.

REMARK. Any matrix similar to W_2^n will generate an algebra similar to \mathfrak{M}_n : one such with a pattern as clear as that of W_2^n is the $n \times n$ matrix (r_{ij}) with

$$r_{ij} = \begin{cases} 1 & \text{if } |i-j| = 1, \\ 2 & \text{if } i = j = n; \\ 0 & \text{otherwise.} \end{cases}$$

Of course, it is trivially obvious that the matrix $\bigoplus_{i=0}^{n-1} [2\cos(\pi i/n)]$ also generates an algebra isomorphic to \mathfrak{M}_n .

References

M. Abramovitz and I. Stegun (1972). Handbook of mathematical functions (Dover, New York).

- J. A. Green (1962), 'The modular representation algebra of a finite group', Illinois J. Math. 6, 607-619.
- J-C. Renaud (1979), 'The decomposition of products in the modular representation ring of a cyclic group of prime power order', J. Algebra 58 (1), 1-11.

Department of Mathematics University of Papua New Guinea Papua New Guinea

https://doi.org/10.1017/S1446788700018772 Published online by Cambridge University Press