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ABSTRACT. Large ice masses . contain a wealth of 
information regarding past climates and atmospheric 
chemistry. To interpret properly information from ice cores 
obtained from glaciers, a time-scale for the ice core must 
be established. A procedure based on the finite-element 
method, using velocity-pressure and stream-function 
formulations to establish particle paths and hence isochrones, 
is outlined. Examples are presented which demonstrate the 
ability of the procedure to predict particle paths and 
isochrones which can be used to determine the time-scale 
or to confirm dates established by other methods, of ic~ 
cores obtained from large ice masses. 

RESUME. Determination des trajets des particules il 
[,aide d 'une technique d 't!ltiments finis. Les gran des masses de 
glace contiennent une abondance d'informations sur les 
climats et la chimie atmospheriques du passe. Pour 
interpreter clairement les informations donnees par les 
carottages de glace, il est necessaire d'etablir une echelle de 
temps. On etablit une procedure basee sur la methode des 
elements finis, qui prend en compte les vitesses et les 
fonctions d'ecoulment pour etablir les trajets des particules 
et de hi les isochrones. On presente des exemples qui 

INTRODUCTION 

Glaciers and other large ice masses provide detailed 
and continuous records of past climatic and atmospheric 
chemistry over a period of approximately 100000 years . For 
ice-core information to be useful, the age of the glacier ice 
must be established. There are four basic methods for 
determining the age of glacier ice: (I) radioisotope methods; 
(2) use of reference horizons; (3) counting annual layers; (4) 
use of flow models (Paterson, 1981). Each of these methods 
has advantages and disadvantages that are associated with 
the respective techniques for dating. A review of these 
techniques is not intended; instead, the reader is referred to 
the aforementioned reference for details. 

This paper outlines a procedure for determining the 
age of glacier ice based on predictions of the velocity field 
and associated particle paths by using velocity-pressure and 
streamline finite-element formulations . The finite-element 
models presented in this paper offer distinct advantages over 
existing flow models for determining particle paths, and 
thus for establishing the age of glacier ice. The advantages 
associated with the finite-element method are: 

(I) More realistic velocity fields can be determined to 
establish particle paths. 

(2) Variations in material properties and temperatures 
can be accommodated. 

(3) Glaciers with irregular geometry and complex 
boundary conditions can be modelled. 

It is assumed that ice creep can be modelled by using 

demontrent la capacite de cette procedure pour predire les 
trajets des particules et des isochrones qui peuvent etre 
utilises pour determiner I'echelle de temps ou pour 
confirmer les dates obtenues par d'autres methodes dans les 
carottes tirees des grandes masses de glace. 

ZUSAMMENFASSUNG. Bestimmung von Parlikelbahnen mil 
der Melhode der finilen Elemenle. Grosse Eismassen 
enthalten eine Fiille von Informationen uber die Klima
geschichte und die Chemie der Atmosphlire. Zur richtigen 
Interpretation dieser Informationen aus Eisbohrkernen von 
Gletschern muss eine Zeitskala fiir den Eiskern aufgestellt 
werden. Hier wird ein Verfahren vorgestellt, das auf der 
Methode der finiten Elemente beruht und zur Ermittlung 
von Partikelbahnen und daraus wieder von Isochronen 
Formulierungen von Funktionen zwischen Geschwindigkeit, 
Druck und Fluss heranzieht. Es werden Beispiele vorgefiihrt, 
welche die Eignung des Verfahrens zur Vorhersage von 
Partikelbahnen und Isochronen erweisen. Aus ihnen 
wiederum Hisst sich die Zeitskala herleiten oder die 
Richtigkeit von Daten, die mit anderen Methoden gewonnen 
wurden, bestlitigen, - fur Eisbohrkerne, die aus grossen 
Eismassen gezogen wurden. 

contemporary continuum-mechanics concepts for planar flow 
and that the variation in ice-creep properties can be 
established through optimization procedures which estimate 
the flow parameters by minimizing the error between pre
dicted and observed surface velocities. Of course, in order 
to predict particle paths based on steady-state flow fields , 
we must assume that the ice mass has been deforming 
under steady-state conditions over a period of time greater 
than the age of ice in which we are interested. 

Examples are presented which clearly demonstrate the 
applicability of the proposed procedure to predict particle 
paths and isochrones. 

BACKGROUND PRELIMINARIES 

The general procedure for establishing the age of ice 
via flow models, involves: 

(I) Determining velocity field of ice mass. 

(2) Estimating the particle paths from the velocity 
field. 

(3) Integrating along particle paths to obtain the age of 
ice along the particle paths (see Fig. 1). 

(4) Joining points of equal time between particle paths 
to establish isochrones. 

Many of the past methods for establishing particle 
paths and isochrones have relied on simplifying assumptions 
regarding the flow field which often have ignored 
significant features of glacier flow. For example, Budd's 
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Fig. 1. Particle path for typical glacier. 

model (Budd and others, 1971) assumed glacier ice flows as 
a column with all shear concentrated at the bottom, 
resulting in almost uniform horizontal velocities and constant 
vertical strain-rate with depth. While such dynamics may 
reflect the flow behaviour of ice masses having significant 
basal sliding or high basal shearing due to warmer basal 
temperatures, such a flow field, in general, presents an 
over-simplification. For further information on dating 
glacier ice with simplified flow models, the reader is 
referred to Nye (1963), Dansgaard and Johnsen (1969) , 
Philberth and Federer (1971), and Budd and others (1971). 

Recently, Reeh and others (1985) modelled the Dye 3 
area, Greenland, by combining finite-difference and 
perturbation techniques to establish flow-line and isochrone 
patterns. Although their approach is a dep¥ture from the 
simplified ones which have generally been adopted by 
glaciologists in the past, the authors believe that it is more 
complicated and not as versatile as the approach expounded 
in this paper. 

FINITE-ELEMENT MODEL 

Owing to the advent of the finite-element method in 
the 1950s, many complex boundary-valued problems, for 
which closed-form analytical solutions do not exist, have 
been solved. The method has been successfully applied to 
many fields of endeavour, and more recently has been 
applied to the problem of glacier dynamics (Hooke and 
others, 1979; Raymond, 1983; Stolle, unpublished). This 
section summarizes the finite-element models used in this 
study for the determination of particle paths. 

To solve for particle paths, it is possible to approach 
the problem in terms of a stream-function formulation as 
outlined by Zienkiewicz and Godbole (1974) for extrusion 
problems. This type of formulation, however, requires use 
of plate-bending type elements with Cl continuity which 
demands significant computational resources. Furthermore, it 
is difficult to satisfy stress-dependent sliding boundary con
ditions and to model compressible flow fields. In the 
approach proposed herein, velocities are first computed by 
using a primitive variable formulation, and then particle 
paths are determined through a stream-function formulation 
that makes use of the kinematic relationship 

VZIjI + w = 0 (I) 

where IjI is the stream function and w is the vorticity of 
the flow field . The vorticity is calculated in the primitive 
variable formulation by using the relationship 

(2) 

where VI is the velocity in the Xl direction and Vz is the 
velocity in the x2 direction. Equation (I) is obtained by 
substituting into Equation (2) the stream-function gradients 
for velocities VI = 81j1/8x2 and v2 = -81j1/8x l . This 
relationship has been used previously to locate free surfaces 
in polymer-extrusion problems (Mitsoulis, unpublished). 
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PRIMITIVE VARIABLE FORMULATION 

Stolle (unpublished) developed a finite-element model 
for studying steady-state planar glacier flow subject to 
gravity loading. It is assumed in this model that the 
influence of elastic strains is negligible, the flow field is 
incompressible, and flow parameters can be expressed in 
terms of non-Newtonian fluid rheology. 

The primitive-variable approach adopted for this model 
is based on the principle of virtual velocities, which is used 
to write the equilibrium equations in a suitable integral 
form 

where 6vi and Sdij are virtual velocities and compatible 
virtual rates of deformation respectively, bi are body forces, 
V is the volume, and Ti are surface tractions on the 
boundary r. The stresses 0ij are related to the deformation 
rates dij and mean normal stress om by 

(4) 

with 

d ·· = 1/ 2(v · . + v · -) Ij I.j j ,1 
(5) 

where jJ. is the deformation- rate and temperature-dependent 
viscosity given by 

(6) 

The symbol si ' is the Kronecker delta, 0e = (3 / 2SijSi/!2 
and Ee = (2/3~/"jdi)1!2 are Dorn's definitions for equivalent 
stress and de ormation rate, respectively, and Sij are 
deviatoric stresses. Summation over repeated indices is 
assumed. A creep relationship between effective deformation 
rate and stress is required. A power-law form, generally 
used in glaciology, has been adopted for this paper: 

(7) 

where A is a temperature-dependent scalar function and n 
is a constant. At this point it should be noted that from a 
practical point of view no distinction need be made 
between strain-rate tensor generally used when describing 
material behaviour derived from ice-deformation tests and 
rate of deformation tensor which is associated with the 
principle of virtual velocities, provided that one is dealing 
with small strains. 

A second virtual work-rate equation is necessary to 
enforce incompressibility 

O. (7) 

This equation states that the internal work rate due to a 
virtual mean normal stress SOm' acting on an incompressible 
flow field is zero. 

The primitive variables are mean normal stress, om' and 
velocities, Vi' A similar finite-element model has been 
developed by Hooke and others (1979), in which they used 
quadilateral finite elements. They observed longitudinal 
oscillations in predicted pressure which they attributed to 
their model. To avoid such oscillations, quadratic velocity 
and linear mean normal stress interpolations were used 
within each six-noded triangular element. Four-point 
integration was used to assemble the stiffness matrix and 
load vector. For details on the assembly of the 
finite-element equations, the reader is referred to 
Zienkiewicz (1977). 

STREAM-FUNCTION FORMULATION 

The Galerkin weighted residual procedure was used to 
develop the stream-function finite-element equations. The 
weighted residual expression corresponding to Equation (I), 
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subject to natural type and essential boundary conditions, is 
given by: 

where 61/1 is the weighting function consistent with 1/1, v is 
the tangential boundary velocity, and the other terms sa re 
the same as defined previously. Again, the reader is 
referred to Zienkiewicz (1977) or any other finite-element 
method text for details on the reduction of Equation (8) to 
a matrix form that is suitable for computer 
implementation. 

The stream-function finite-element model was subjected 
to numerous tests to verify its accuracy. Originally, a 
three-noded triangular with linear interpolation for stream 
function was employed. However, the element performed 
poorly and was replaced with a six-noded triangular element 
with quadratic interpolation. Input for the stream-function 
finite-element program from the prImItIve variable 
simulations consisted of vorticity at each integration point 
and boundary velocities. The zero streamline was specified 
to conform to the bedrock topography. 

To aid interpretation of results from the 
stream-function model, a computer program was developed 
to draw contours of constant stream function. For an 
incompressible flow field, these contours represent the paths 
that particles follow as the ice creeps. This program also 
calculated the resident times of ice particles at points along 
particle paths which could then be used to draw the 
isochrones. 

EXAMPLES 

Idealized double-slope ice mass 
The prImItIve variable 

finite-element models were used 
mass, the double-slope ice mass 
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Fig. 2. Double-slope ice mass idealization. 

obtained by Hooke for the Barnes Ice Cap were used to 
simulate the creep behaviour of the double slope: 

(9) 

where 0e is measured in bars and Ee is in units of per 
annum. A unit weight of 8.952 kN/ m3 was assumed . It 
should be noted that the constant in the flow law is con
sistent with units and definition of effective stress adopted. 

The boundary conditions for the creep simulations with 
the primitive variable formulation were a stress-free upper 
surface, a no-slip boundary along the bed, and only vertical 
movement along the divide. The boundary conditions for the 
stream-function simulations with the stream-function finite
element formulation were 1/1 = 0 along the bed and d ivide, 
and velocities were specified along the upper surface of the 
ice mass. The results of the stream-function simulations are 
shown in Figure 3. It is clearly shown that the isochrones 
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Fig . 3. Particle paths and isochrones for double-slope 
problem. 

are approximately parallel to the ice-mass surface. A 
sensitivity study indicated that the use of a coarser grid, 
i.e. three elements, did not significantly affect the 
predictions of particle paths. In general, however, it may be 
said that the more elements there are, the better the 
representation of the actual continuum, and the more 
accurate the predictions for particle paths and isochrones. 
Of course, one must keep in mind the limitations of the 
mathematical models when attempting to use model 
predictions to assess actual field behaviour. That is, if the 
mathematical model used to describe the flow behaviour is 
poor, then any predictions provided by the model are likely 
poor. The variation of material parameters, used by the 
model, throughout the continuum must also be properly 
taken into account. 

Barnes Ice Cap 
The Barnes Ice Cap is a medium-sized ice cap located 

on Baffin Island, N.W.T ., Canada. The geometry of the ice 
mass, along the Trilateration Net Flowline was taken from 
Hooke and others (1979); the finite-element grid used in 
this study is shown in Figure 4. Two types of ice exist in 
this ice mass at this section: white ice, located near the 
base, and blue ice which composes most of the ice cap. 
While the difference in unit weights of each ice was 
accounted for in the ice-dynamic analysis, it was assumed 
that both types of ice are isothermal and incompressible. 

The assumption of incompressibility for the entire 
problem is believed to be reasonable since the ice cap is 
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parameter; ( b) grid. 
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nourished "by the formation of superimposed ice rather than 
snow-firn-ice metamorphism" (Classen, 1977). Since this 
paper focuses on techniques of analysis, no attempt has 
been made at this point in time to account for actual 
temperature variations which influence the creep law. In 
order to establish reasonable ages for glacier ice, the 
velocities generated by the primitive variable finite-element 
model must be close to those measured in the field. To 
obtain a reasonable match between predicted and measured 
horizontal surface velocities, the A parameter of the creep 
law was adjusted along the glacier, while the power was 
held constant. Since more detailed information on velocities 
at depth were not available, no attempt was made to vary 
the A parameter with depth. At this point, it should be 
noted that the optimization procedure accounts for mean 
variations in temperature and fabric along the ice mass via 
the A parameter. The increase in A parameter toward the 
margin as shown in Figure 4 likely reflects increased 
thickness of softer white ice relative that of blue ice. The 
boundary conditions for the primitive variable finite-element 
program were a no-slip boundary at the base, a stress-free 
upper surface, and only vertical deformation at the ice-cap 
divide. For the stream-function finite-element simulation, 
IjI = 0 was imposed on the bed and along the divide, and 
velocities were specified along the upper surface. 

Figure 5 compares computed and measured surface 
velocities. While reasonable agreement exists between 
horizontal velocities, computed vertical surface velocities are 
consistently higher than the measured ones, except at one 
point. Hooke and others (1979) attributed these discrepancies 
to the influence of finite-element discretization on solution, 
errors associated with describing ice-cap geometry, and the 
effect of small transverse strain-rates. Grid error is 
responsible for some of the difference. However, the quasi
static equilibrium analysis completed in this study is 
expected to underestimate vertical surface velocities since 
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horizontal; (b) yertieal. 
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the influence of fabric and vertical temperature vanatlOns, 
which would concentrate shear closer to bedrock thereby 
increasing uniformity of longitudinal strain-rates with depth, 
was not taken into account. Furthermore, the effect of 
transverse strain-rates is considered to be negligible for this 
section since the deviation of the prinCipal strain-rates from 
the flow line is less than 3 (arc) as reported by 
Holdsworth (1975). Thus, the authors believe that a major 
factor contributing to the lack of agreement between 
computed and measured velocities is the error associated 
with defining the ice-cap geometry. 

The resulting particle paths and isochrones for the 
Barnes Ice Cap are shown in Figure 6. It can be clearly 
seen that the particle paths are significantly affected by 
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Fig . 6. Particle paths and isoehrones for the Barnes Ice Cap 
problem. 

changes in the bedrock topography and that particle paths in 
the upper part of the glacier are affected as well as those 
near the bedrock. It should be noted that this observation is 
consistent with that of Reeh and others (1985), who 
recently showed that both isochrone and flow-line 
predictions are sensitive to bedrock topography. 

The location of the 10000 year isochrone is of 
particular interest. Hooke (1976) has established that the top 
of the white ice at the base of the Barnes Ice Cap is of 
Pleistocene age, that is approximately 10000 years old. The 
10000 year isochrone determined from the finite-element 
analyses approximately matches the top of the white ice, 
thereby confirming, by independent means, Hooke's 
assertion. 

CONCLUSIONS 

An attempt has been made to define better the velocity 
field for purposes of refining particle-path and isochrone 
predictions by using the finite-element method. While 
simplifying assumptions regarding ice rheology and 
temperature distribution were assumed for the analyses pre
sented in this paper, the finite-element method has the 
flexibility to accommodate further refinements in analyses if 
more detailed input information is available. 

From this study two main conclusions can be reached: 

(I) The finite-element method procedure outlined in this 
paper has great potential for accurately determining the 
age of glacier ice, provided that the calculated and 
measured velocities almost match. A major drawback in 
the procedure lies in the manner in which the 
calculated velocities are fine-tuned to correspond to 
measured surface velocities. In the absence of field 
data regarding velocities at depth, further refinements 
to the procedure will not guarantee improvements in 
predictions. 

(2) Particle paths even near the surface of the Barnes Ice 
Cap seem to reflect changes in bedrock topography . 
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