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Abstract

Tsuno and Nodera proposed a new variant of the GMRES(m) algorithm. Their algorithm is
referred to as the GMRES(< m ) algorithm and performs the restart process adaptively,
considering the distribution of the zeros of the residual polynomial. However, unless the
zeros of the residual polynomial are distributed uniformly, mp, is always chosen and their
algorithm becomes almost the same as the GMRES (/) algorithm with m = m .

In this paper, we include a convergence test for the residual norm in the GMRES(< mpgy)
algorithm and propose a new restarting technique based on two criteria. Even if the
distribution of zeros does not become uniform, the restart can be performed by using
the convergence test of the residual norm. Numerical examples simulated on a Compaq
Beowulf computer demonstrate that the proposed technique accelerates the convergence of
the GMRES(< ) algorithm.

2000 Mathematics subject classification: primary 65F10; secondary 65M12.
Keywords and phrases: linear system of equations, GMRES (/) algorithm, parallel com-
puter, adaptive restart.

1. Introduction

We study a linear system of equations
Ax =b, AeR"™, x,beR", (1.1)

where the coefficient matrix A is large, sparse, nonsingular and nonsymmetric. It is
well known that the GMRES algorithm [12] is one of the major iterative solvers for
System (1.1). It is difficult to implement this algorithm because of the computational
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cost and the difficulty of orthogonalization. The GMRES(m) algorithm — the restart
version of the GMRES algorithm — is usually used in order to reduce the cost of
orthogonalization. It is important to choose a suitable restart cycle m to avoid both the
stagnation of the convergence of the residual norm and excessive orthogonalization
cost. Up to now, many techniques that improve the GMRES(m) algorithm have been
studied. Techniques that augment the Krylov subspace by using eigenvectors have
been proposed [3, 8, 15]. Morgan [9] performs the restart using Harmonic Ritz values.
Baglama et al. [2] compute the preconditioner with spectral information obtained from
an Arnoldi process. Moreover, Zitko [14] uses a pre-iteration technique before starting
the GMRES(m) algorithm. Moriya and Nodera [10] studied an adaptive procedure
that combines the DEFLATED-GMRES(m, k) algorithm and the determination of a
restart frequency m automatically. Tsuno and Nodera [13] proposed a new variant
of the GMRES(m) algorithm in which m is varied adaptively. In their technique, the
restart occurs when the zeros of the residual polynomial are distributed on the complex
plane uniformly. The restart must be carried out with the restart cycle m = mpyy,,
and the orthogonalization cost becomes excessive unless the distribution of the zeros
becomes uniform. In this paper, we study a parameter for the convergence test of the
residual norm and apply it to the restarting technique of Tsuno and Nodera [13]. The
main objective of the proposed technique is to decrease the number of restart cycles.

A brief introduction to the residual polynomials and their zeros is included in Sec-
tion 2. In Section 3, we combine a new criterion of the restart with the
GMRES(< m,) algorithm and describe the selection process for m. In Section 4,
three examples are implemented on a Compaq MIMD parallel Beowulf computer,
and a PC with a single processor. The numerical results for these examples are also
reported and demonstrate the effectiveness of the proposed technique. Finally, we
give some concluding remarks in Section 5.

2. Residual polynomials and their zeros

The GMRES and GMRES(< m ) algorithms are introduced briefly, using their
residual polynomials. The computation of the zeros of the residual polynomial which
the GMRES(< mp,) algorithm employs is also studied.

2.1. Residual polynomial of the GMRES algorithm The ideal residual polyno-
mial Wé(r) of the GMRES algorithm is defined as

!

Ve(r) = 1—-— .

=[] ( M) : @1
J J

where k;’ are the zeros of the polynomial (2.1) and the exact eigenvalues of A. The

zeros of this residual polynomial are harmonic Ritz values [4]. The £-th dimensional
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residual polynomial WE (r) of the GMRES algorithm is defined as

[4
v =[] (1 - ALG) . 22)
i

j=0

By using the residual polynomial (2.2), the £-th residual vector of the GMRES algo-
rithm is described as

re= ‘1’?(’)'0,

where the zeros k]c.‘ are computed so that the residual norm || r, ||, is minimized.

The zeros Af are chosen to minimize || r, || and are not always chosen to be
close to A5. However, as the dimension £ gets larger, the number of Aj‘." increases,
and it is more likely that Af will be close to A%. It may be effective to increase
the dimension of the polynomial (2.2) when Af are not sufficiently close to A5. In
the following sections, A} are referred to as the “ideal zeros”. Generally speaking,
it is almost impossible to compute the ideal zeros of the residual polynomial of the
GMRES algorithm because the eigenvalues of A are required.

2.2. Residual polynomial of the GMRES(< m,;,) algorithm We now assume
that the restart has been performed i times and k iterations have been executed after
the i-th restart, We describe the total number of iterations before the i-th restart as
€ =73, ,mj wherem,isthe j-threstart cycle and m; <mq,. The j-th restart cycle
is the number of iterations from the (j — 1)-th to the j-th restart. Here

k

w0 =[] (1 - ﬁ) . (1<k<mp) and 23)

sni=1

. el t '
\V,(,.’j)(t)=l_[<1—w), (As=mj<muy, j=1,2,...,0) (2.4)

sp=1 52

are two types of residual polynomials of the GMRES(< m,,) algorithm, whose di-
mensions are k and m;, respectively. While the residual polynomial (2.3) is computed
before the i-th restart, the residual polynomial (2.4) is obtained after the i-th restart.

By using the product of these two polynomials, the £-th (= Y j=1m; + k) residual
vector r, is characterized as

re= YAV Ao,

j=1

where A{*" and A{)’ are the zeros of the residual polynomials (2.3) and (2.4), respec-
tively.
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If A is nonsymmetric, some of the ideal zeros A are complex. In order to approach
the ideal zeros, the dimensions of the residual polynomials (2.3) and (2.4) must be
more than two. The simplest way to ensure this is that the dimensions of both the
residual polynomials are chosen as two. However, if the residual vector r, is computed
by only quadratic residual polynomials, it is likely that A/+D and A{)’ are not close to
the ideal zeros at all. In this case, it may be of benefit to increase the dimensions of
the residual polynomials (2.3) and (2.4) so that Ag+ D and Ag) often become closer to
the ideal zeros. However, the disadvantage of increasing the dimensions is that the
computation cost per iteration becomes excessive. Therefore, it is important to choose
an appropriate dimension of the residual polynomial. In the following sections, A{+"
and Ag’ are referred to as the “approximate zeros” or “zeros”.

2.3. Computation of zeros We show the implementation of the residual polynomial
of the GMRES(<m,,,) algorithm. The residual polynomial (2.3} is described as
W) =1 —apt —agt? — - — gyt (2.5)

We consider the computation of the coefficients of the residual polynomial (2.5)
oy, oy, ..., & based on Nachtigal et al. [11]. The orthonormal basis of the Krylov
subspace K, (r;, A) is defined as

Vk = [v(), Vi, ..vy vk_l],

where r; is the £-th residual vector obtained when the last restart occurred. Two
matrices R, and C, are also defined as i

Re=1[r; Arg ..., A*'r;] and C =

Cik

Cki

Since V is the orthonormal basis of K, (r;, A),
Vk = Rka (26)
is satisfied, where C, is the upper triangular matrix.
The formula for the Arnoldi process can be described as
Uiyt = hk_l.‘k(Avk - Vihy)
hk = [hl,kv h2,k1 veey hk,k]T ,
where h; ; is the i, j-th entry of the (k + 1) x k upper Hessenberg matrix

—hI'] hl,2 v h‘.k 7
hz'] h2'2 “ .. hz'k

27

hk,k—l hk.k

L O Piyr i
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The left-hand side of Equation (2.7) is described as
Vir1 = Ry [Cl.k+1, Coitls oo Ck+1.k+1]T (2.8)
by using Equation (2.6). From Equation (2.7),
Ave = AVie, = ARcix, Coxr -y Cetl” = Rintl0, Cips Coy -+ -y Cekl”  (2.9)

is satisfied. Equation (2.6) can be transformed into

C
Vi = Risr [0“] . (2.10)
By multiplying both sides of Equation (2.10) by h,, we obtain
C.h
Vihy = Rig [ ko “]. (2.11)
Substituting (2.8), (2.9) and (2.11) in (2.7), we obtain the recurrences
C1k+1 0
C2.k+1 -1 Clk Cihy
. = Mk -
Cht1,k+1 Chk 0

Since vy = ¢y r; is satisfied from Equation (2.6), ¢;; = 1/]|r;|l, is also obtained. The
¢-th residual vector of the GMRES(< m,,,,) algorithm is characterized as

re=ri— AViy, (2.12)
where y, is computed so that |{r, |, is minimized. Substituting (2.6) in (2.12),
re=r;i— ARCiy, =r;—[Ary, A’r, ..., A'r] Cey,

is obtained. Setting C,y, = [ag, a1, . .., x_1], the coefficients of the residual poly-
nomial W{*"(¢) are obtained from C;y,.

We consider the computation of the zeros of the residual polynomial (2.5), which
has the same zeros as the k-dimensional monic polynomial

k-1
- o;_ .
Pty =i+ L=t - —
— & Ay
Jj=1
Since P, () is also the characteristic polynomial of the matrix
0o ... 0 l/ak_,
| ST :
D, = )
0 —oy-3/oy_y

O 1 —aa/a-
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the zeros of the residual polynomial (2.5) are just the eigenvalues of matrix Dj.
Since D, is an upper Hessenberg matrix, QR decomposition is a typical scheme we
can use for computing the eigenvalues. Another procedure for computing the zeros of
the residual polynomial (2.5) was also studied by Freund [5].

3. Choosing the restart cycle

We propose a new restart technique, in which the convergence test of the residual
norm is combined with the GMRES(< m,,,) algorithm. The restart is determined
based on two criteria.

3.1. Restart based on the distribution of zeros The restart technique proposed
by Tsuno and Nodera [13] is presented. In order to accelerate the convergence of
the residual norm, the approximate zeros are required to be close to the ideal zeros.
The most appropriate approach is to perform the restart when the distribution of the
approximate zeros is similar to that of the ideal zeros. However, it is impossible to
ascertain the distribution of the ideal zeros. It would be significant to achieve an
uniform distribution of the approximate zeros on the complex plane such that they
overlap all the ideal zeros. Now, let us discuss two examples. We assume a distribution
of the ideal zeros “o” as given in Figures 1(a) and (b). If all the approximate zeros
are restricted to only a small region of the complex plane, as in Figure 1(a), the
distribution of the approximate zeros may not encompass the distribution of the ideal
zeros. On the other hand, if the approximate zeros are distributed uniformly, as shown
in Figure 1(b), it becomes more likely that the approximate zeros are close to the ideal
zeros. As the approximate zeros are distributed more uniformly, it further increases
the possibility that the distribution of the approximate zeros overlaps that of the ideal
zeros. In some cases, the ideal zeros may be in close proximity in a small region.
However, as the number of approximate zeros increases and they are distributed more
widely, the possibility that some of them get close to the ideal zeros would increase.
The approximate zeros are of two types, A+" and 1. The first type, A(*", are the
zeros of the residual polynomial (2.3) and are varied as the iterations are increased.
The second type, A§{), are the zeros of the residual polynomial (2.4). Their values are
fixed before the i-th restart is performed and are never varied after the i-th restart.
We now assume that there are £ approximate zeros on the complex plane. We also
define M., and M;,, as the ranges of the real and imaginary directions of the rectangular
region in which the approximate zeros exist, respectively. If all the approximate zeros
are distributed uniformly on a region of size Mi, X M,, they exist uniformly in the
direction of either the imaginary or real axis. If the distribution of the approximate
zeros is uniform in the direction of the real axis, the interval between two zeros is more
than M. /(€ — 1). Similarly, this interval is more than M,/ (£ — 1) in the direction of
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FIGURE 1. Distributions of ideal zeros (o) and approximate zeros (x). We illustrate an example of
(a) nonuniform and (b) uniform distribution of the approximate zeros.

the imaginary axis. On the other hand, if the distance between two arbitrary zeros is
less than M,./(€ — 1) and M;,,,/(£ — 1) in the direction of the real axis and imaginary
axis, respectively, the approximate zeros are not distributed uniformly. Based on the
above information, Tsuno and Nodera [13] determined the restart when the following
condition is satisfied.

CONDITION 1. For all A{*Y, there are no zeros A’ in the rectangular region

) . 1 M . I M
T (A9} = { € C |re |A0*D) — ————, im|Ai*D - s,
() i=qze et —d < 3Ty N -l < 35T
where
M, = max {re(Ai*"), re(A)} — min {re(AI+"), re(\”)} and
$1,52.) 51,52, ! ’

Min = max {Im@A&*), im( )} - Jrlnslznj {ImAEHD), im(A )}

In Figure 2 there are some fixed and new zeros. In this figure, there are also some
rectangulars T (A{*") whose central points are new zeros A{*". The rectangulars
are not clustered. In order to distribute all zeros uniformly, there must be only one
zero in each rectangular. If fixed zeros A/’ exist in these rectangulars, it follows that
there are more than two zeros in such rectangulars. Therefore, when Condition 1
is satisfied, all the zeros are distributed uniformly and k new zeros A/*" should be
fixed. Figure 2(b) illustrates the relation between A{*" and A’ when Condition 1 is
satisfied. In Figure 2(a), it is obvious that 1{") exists in the rectangular region 7 (A{*")
and Condition 1 is not satisfied.

We study the reduction in the computational cost of the zeros. If the coefficient
matrix A is real, the coefficients of the residual polynomial are also real, and all the
zeros are distributed symmetrically about the real axis. Therefore, only the zeros
whose imaginary parts are non-negative are required for the determination of the
restart. If the restart is performed at an odd step, at least one zero is real. In this
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FIGURE 2. Interval between Aﬁ';“)' (o) and Ag’ (s). We show the cases where (a) the zeros are not
distributed uniformly and (b) the zeros are distributed uniformly. The rectangles with central points *o”
are T(Af";*”) of order My /(£ — 1) X Min /(€ — 1).

case, if all the ideal zeros are complex, the real zeros do not approximate any ideal
zeros. Therefore, the determination of the restart is carried out only at even steps.
Since there are no zeros on the complex plane at the start of the iteration, the restart is
always performed at the 2nd iteration step in order to produce the initial distribution
of the zeros.

3.2. The convergence test of the residual norm The GMRES(< m,,) algorithm
has the drawback that it becomes necessary to perform the restart with m,, com-
pulsorily if the approximate zeros do not become distributed uniformly. In order to
improve this drawback, we apply the convergence test of the residual norm to the
original GMRES(< m ) algorithm. The main objective of the proposed technique is
to reduce the occurrence of the restart cycle reaching m .

We study the £(= 2 + k)-th residual vector of the GMRES(<m ) algorithm

r¢=rl-—dk
dy = AV,y,

b

where £ is the iteration at which the last restart was performed and d, is the search
vector. Here V is the orthonormal subspace of order k and is obtained by the Amoldi
process [1]. The parameter y, is determined in order to minimize the following least
squares problem of order k:

Ib — AxI2 = |Ber — Aoy

where H is the (k + 1) x k Hessenberg matrix and 8 =||r;||,. The parameter for the
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convergence test of the residual norm

|(re. d4)|
i dy) = ——Z— .
COS; (re k) ”r‘?"2 AR 3.1
rell
- 3.2
Irell3 G-2)

is defined. The formulae (3.1) and (3.2) show the inner product of r; and d,. Since
ll7¢llz and ||r;|l; are often computed during the iterations, we use formula (3.2). The
residual norm converges more rapidly as the value of cos,(r;, d;) increases. We
consider that the convergence of the residual norm does not stagnate if the formula

cose(rs di) > ¢ (3.3)

is satisfied. Even if Condition 1 is not satisfied, we perform the restart when formula
(3.3) is satisfied. Unfortunately, since it is impossible to choose &€ mathematically, we
will consider varying ¢ adaptively during the iterations using the results of the restart
determined by Condition 1. The details are presented in Subsection 3.3.

3.3. A new approach to determine the restart We apply the convergence test of
the residual norm to the GMRES(< m,,,) algorithm. This new technique determines
the restart cycle based on Condition 1 and formula (3.3). The restart is performed
when either Condition 1 or formula (3.3) is satisfied.

We determine ¢ used in formula (3.3) adaptively. Since the determination of the
restart is carried out at every even step, cos,(r;, d) is also computed at each of these
steps. If the restart occurs according to Condition 1, cos.(r;, d;) computed at this
step is assigned to €. At the next even step, cos(rj, d;) is recomputed. If the latter
cos.(rg, d;) is greater than the former one, we consider that the previous restart was
performed effectively. In this case at least, there is the result that the restart was
carried out according to Condition 1, when the former cos,(r;, d,) was computed. If
formula (3.3) is satisfied when the latter cos,(r;, d,) is computed, it is evident that
the convergence of the residual norm is improved. Therefore, we also perform the
restart when the latter cos,(r;, d,) is larger than the former one. We notice that ¢ is
not updated if the restart is carried out according to formula (3.3).

In summary, we determine the restart in the following sequence.

Step 1 When the number of iterations is even, k approximate zeros and the current
cos,(r;, d;) are computed after the Arnoldi process. The current cos,(rz, d)
is assigned to p.

Step 2 The determination of the restart is carried out.

Step 2.1 If Condition 1 is satisfied or the total number of iterations is two,
the restart is performed, setting € = p.
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Step 2.2 If formula (3.3) is satisfied or the restart cycle is mp,y, the restart is
performed without setting &€ = p.

Just like the GMRES(< m ) algorithm, the determination of the restart is carried
out at each even step.

In Figure 3, we show the new GMRES(< m ) algorithm with the convergence
test of the residual norm. The determination of the restart is carried out after the
approximate solution and the residual vector are updated. The notation of “Fix k
approximate zeros A{*D” means that the values of k approximate zeros A(*" are
fixed and are never varied later. In this paper, the GMRES(< m,,) algorithm with
the adaptive restarting process based on these two criteria is referred to as the BC-
GMRES(< My, ) algorithm, where “BC” means “Bi-Conditions”.

BC-GMRES(< m ) algorithm

Choose x¢

{=Et+1
Compute V, through the Arnoldi process.
Update x,, r, and d;.
if || 7¢ ||7 is sufficiently small then
Stop iterations
endif
{{ Beginning of the determination of the restart ))
if (k mod 2) = 0 then
Compute k approximate zeros Ag*" and cos,(r;, dy).
Set p = cos,(r;, dy)
if “Condition 1" is satisfied or £ = 2 then
Fix k approximate zeros A{+"
k=1, i=¢, X;=Xy, Pj=Try E=p
goto start
endif
if condition (3.3) is satisfied or k = m,, then
Fix k approximate zeros A(+!
k=1, =8 x;=x, ri=ry
goto start
endif
endif
{{ End of the determination of the restart ))
k=k+1
goto start

FIGURE 3. The BC-GMRES(< m ) algorithm.
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4. Numerical Examples

We solve the linear system (1.1) in order to compare the performance of the BC-
GMRES(< mp,,) algorithm with the GMRES(< m ) and GMRES(m) algorithms.
There are two numerical examples in this section.

4.1. Examples for a PDE boundary value problem Two examples for a PDE
boundary value problem are implemented on a Compaq Beowulf computer with a WS
cluster system. The specifications of this system are as follows.

CPU: Alpha 600 MHz

Local main memory per CPU: 1 GB

OS: Alpha Linux

Floating point: Double precision arithmetic (64 bits)

The communication library: MPI (Message Passing Interface)

We used 16 CPUs for these two numerical examples. In both examples, the initial
approximate solution is chosen as xo, = 0, and the stopping criterion for solving the
linear system is

hrell2
ol

The iterations are terminated as soon as stopping criterion (4.1) is satisfied.

< 1.0 x 107", 4.1

EXAMPLE 1. We consider the following two-dimensional problem in the region
Q = [0, 11? (see Joubert [6]):

—Uyy — Uy + D {(y -1/ u, +(x=-2/3)(x — 1/3)u,.} =f on{2
u(x, y)laa =1+ xy,

where f is determined so that the exact solution is ¥ = 1 + xy. We discretize this
problem using the five-point central differential scheme with 512 x 512 grid points
to produce a linear system of order 262,144. In Table 1, we list the numerical results
for four kinds of values of Dh, where & is the length between two grid points and
h = 1/513. The notation “time” and “iter” in Table 1 mean the computation time and
iterations required for satisfying stopping criterion (4.1), respectively. In all cases, the
residual norm of the BC-GMRES(< m y,,) algorithm converges more rapidly than that
of the other two algorithms. In most of the cases, the computation time required by
the GMRES(< m ) algorithm is less than 50% of that required by the GMRES(m)
algorithm.

With regard to Dh = 25 and m, mp,x = 30, Figure 4 plots the behaviour of the
residual norm and £. In Figure 4(a), the residual norm of the BC-GMRES(<30)
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TABLE 1. Numerical results in Example 1 (time: computation time (s), iter: iterations). An entry ...
means that the stopping criterion (4.1) could not be satisfied in one hour.

. Dh
Algorithm 273 24 2-3 2-2

time iter time iter time | iter time iter
GMRES(10)
GMRES(20) 2162.0 | 41150 | 1365.0 | 26890 | 1232.0 | 24449 | 1069.0 | 21255
GMRES(30) 1546.0 | 21478 | 1088.0 | 15510 | 1490.0 | 20181 | 1014.0 | 14034
GMRES(40) 1297.0 | 14666 | 1316.0 | 14272 | 1112.0 | 12562 | 921.0 | 10460
GMRES(50) 2044.0 | 18521 | 1160.0 | 10335 | 1107.0 | 9866 | 1203.0 | 10213
GMRES(<10) 549.0 16351 557.0 16455 414.0 12751 625.0 18267
GMRES(<20) 669.0 | 12837 | 737.0 | 14158 | 719.0 | 13411 | 822.0 | 14675
GMRES(<30) 690.0 9745 601.0 8609 663.0 9635 788.0 | 10921
GMRES(<40) 581.0 7803 634.0 8553 731.0 9651 716.0 9453
GMRES(<50) 630.0 7717 723.0 9056 757.0 9449 836.0 10288
BC-GMRES(<10) | 305.0 | 12345 | 271.0 | 11040 | 2750 | 11088 | 271.0 | 11676
BC-GMRES(<20) | 232.0 8497 300.0 | 11254 | 231.0 8975 254.0 | 10626
BC-GMRES(<30) | 267.0 9843 302.0 | 11254 | 248.0 9764 223.0 9446
BC-GMRES(<40) | 229.0 7958 297.0 | 11254 | 254.0 9764 226.0 9446
BC-GMRES(<50) | 231.0 7958 | 298.0 | 11254 | 252.0 9764 227.0 9446

algorithm converges about twice and five times as fast as the GMRES(< 30) and
GMRES(30) algorithms, respectively. In Figure 4(b), ¢ is varied adaptively from 1.0 x
1072 t0 1.0 x 10° and £ does not have to be determined by the user. For the same case,
we also show the number of occurrences of the restart cycle in the GMRES(< 30) and
BC-GMRES(< 30) algorithms in Table 2. While the compulsory restarts with 71,
are never performed in the BC-GMRES(< 30) algorithm, about 50% of the restart
cycles reach m,, in the GMRES(< 30) algorithm. The restarts in the GMRES(< 30)
algorithm are not always performed effectively.

4.2. An example from the Matrix Market series In this subsection, an example
from the Matrix Market series [7] is implemented on a PC with a single processor. This
example need not be parallelized because the order of the linear system is not as large
as that in the previous exafnple. The specifications of this PC are as follows.

o Processor: Pentium4 2.66GHz

e Main memory: 512MB

e OS: RedHatlinux 9

o Floating point: Double precision arithmetic (64 bits)
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TABLE 2. Classification of the frequency in use for the two restarting criteria in Example 1 (Dh = 275),
A: Restart based on the distribution of zeros, B: Restart based on the convergence test of the residual
norm, C: Compulsory restart with mmax.

Occurrences
Restart cycle BC-GMRES(<30) GMRES(<30)
A B C A B C
2 883 703 - 168 - -
4 23 918 - 74 - -
6 2 115 - 10 - -
8 0 74 - 20 - -
10 0 29 - 2 - -
12 0 35 - 3 - -
14 0 21 - 0 - -
16 0 9 - 0 - -
18 0 4 - 0 - -
20 0 7 - 0 - -
22 0 2 - 0 - -
24 0 0 - 1 - -
26 0 0 - 0 . -
28 0 1 - 2 - -
30 0 2 4 73 - 218

EXAMPLE 2. We now consider the linear system with the coefficient matrix “MEM-
PLUS”, one of the Matrix Market series. The order of the coefficient matrix is 17,758
and its nonzero entries are 126,150. The right-hand side of the linear system is defined
such that all the entries of the exact solution are 1.0. We show the computation time
and iterations required to satisfy stopping criterion (4.1) in Table 3.

- The convergence of the GMRES(10) algorithm is not possible for iterations that are
of the order of the coefficient matrix. The residual norm of the BC-GMRES(< #ay)
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TABLE 3. Classification of the frequency in use for the two restarting criteria in Example 2.
A: Restart based on the distribution of zeros, B: Restart based on the convergence test of the residual
norm, C: Compulsory restart with m .

occurrences
Restart cycle BC-GMRES(<40) GMRES(<40)

A B C A B C
2 91 174 - 36 - -
4 1 275 - 13 - -
6 0 31 . 1 ; ;
8 0 15 - 3 . .
10 0 10 . 0 . ;
12 0 5 - 0 . .
14 0 7 - 0 . .
16 0 13 - 0 . .
18 ] 15 - 1 - -
20 0 10 - 1 . ]
2 0 9 - 2 ; ;
24 1 1 . 0 - ;
26 1 0 . 1 ) ]
28 0 6 . 1 ; ;
30 2 4 - 0 . -
32 1 8 - 1 ; ]
34 1 1 - 0 ; -
36 1 2 - 0 ; ;
38 0 1 - 0 ; ;
40 0 1 0 0 . 74

algorithm converges more rapidly than in the two other algorithms. While the required
computation time of the GMRES(< 40) algorithm is about 50% of that of the GM-
RES(40) algorithm, the computation time of the BC-GMRES(< 40) algorithm is only
about 30% of that of the GMRES(40) algorithm. The BC-GMRES(< 40) algorithm
requires a larger number of iterations than the GMRES(<40) algorithm. However, the
former involves a comparatively lower computation cost. In this context, we analyze
the occurrences of the restart cycle in Table 3. The BC-GMRES(< 40) algorithm gen-
erally uses less than the restart cycle of m = 20 and the maximum restart cycle 71y, is
used only once. On the other hand, in the GMRES(< 40) algorithm, the restart cycle
m = 40 is used more frequently than the other values. Therefore, despite the lower
number of iterations, the orthogonalization of the GMRES(< 40) algorithm is more
expensive than for the BC-GMRES(< 40) algorithm. The behaviours of the residual
norm and ¢ for the GMRES(40), GMRES(< 40) and BC-GMRES(< 40) algorithms

https://doi.org/10.1017/51446181100012852 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100012852

{15] Convergence test for a modified GMRES algorithm 307

are shown in Figure 5.
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FIGURE 5. Example 2: Behaviours of the residual norm and ¢, A: GMRES(40), B: GMRES(< 40),
C: BC-GMRES(<40).

The first 30 seconds of the computations of the GMRES(40) and GMRES(< 40)
algorithms are identical, and the speedup of the GMRES(< 40) algorithm occurred
after this interval. The convergence of the BC-GMRES(< 40) algorithm is almost
identical to that of the GMRES(40) algorithm during the first 15 seconds. After this
interval, the residual norm of the BC-GMRES(< 40) algorithm converges faster than
that of the GMRES(40) algorithm.

5. Conclusions

We have proposed the BC-GMRES(< m ) algorithm. The proposed technique
applies the convergence test of the residual norm to the original GMRES(< m )

algorithm. We have also analyzed its performance, using two numerical examples in
Section 4. In most of the cases considered in the two examples, the residual norm

converges more rapidly in the BC-GMRES(< mi,,) algorithm than in the GMRES(m)
and GMRES(< my,,) algorithms. We have also shown that the proposed technique
reduces the number of restarts with m = m,,,, and a shorter restart becomes possible.
Therefore, the BC-GMRES(< m ) algorithm can be considered as an alternative to
the original GMRES(< m ) algorithm in some boundary value problems for partial
differential equations.
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