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Inductive and projective limits of

smooth topological vector spaces

John W. Lloyd

In J. Math. Mech. 15 (1966), 877-898, Bonic and Framp+on have

laid the foundation for a general theory of smoothness of Banach

spaces. In this paper, we shall study one aspect of the

smoothness of topological vector spaces, namely, the relationship

between smoothness and inductive and projective limits of

topological vector spaces. As a consequence, we obtain

smoothness results for nuclear spaces and some Montel spaces.

1. Preliminaries

We begin with the various definitions of differentiability. These

definitions in topological vector spaces are due to Averbukh and Smolyanov

[/], C2]. Let TVS denote the class of all topological vector spaces over

the real field R . Let Li{E, F) = L(E, F) denote the set of all

continuous linear maps from E into F , where E, F t TVS . We define by

induction L (E, F) = L{E, L^E, F)) . Each Lp(E, F) is given the

topology of uniform convergence on bounded subsets of E .

DEFINITION 1. Let E, F i TVS , A be an open subset of E and

f : A -*• F . Let a be a class of subsets of E such that every single

point set belongs to 0 . Then we say / is o-differentiable at x € A ,

if there exists u t L(E, F) such that for each S $ o and for each

0-neighbourhood U in F , there exists 6 > 0 such that

f(x+th) - fix) - u.th € tU , whenever h (. S and |t| £ 5 .

In this case, the mapping u is determined uniquely and is denoted by
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228 John W. Lloyd

f'(x) . We say f' (x) is the a-derivative of f at x .

If f (.x) exists for each x i A , then we may define a map

/' : A •*• L(E, F) by x •+ f (x) . We say f is the a-derivative of f .

Higher order 0-derivatives are then defined in the obvious way [J,

p. 227].

Given E, F t TVS and open sets U in E and V in F , denote by

C (f, V) , the set of all continuous functions from U into V . Denote

by Ca^U, V) {k = 1, 2, ...) , the set of all continuous functions from

U into V , whose CT-derivatives of all orders 5 k exist and are

continuous, and by C (U, V) , the set of all continuous functions from V

into V , whose a-derivatives of all orders exist and are continuous.

Denote by D*(U, V) {k = 1, 2, ... ) , the set of all functions from U

into V , whose a-derivatives of all orders 5 k exist, and by

£>(£/, V) , the set of all functions from U into V , whose a-derivatives

of all orders exist. C will denote all continuous functions between open

subsets of topological vector spaces. Analogous meanings are attached to

the symbols D and C {k = 1, 2, ..., M ) . An example in [2, p. 107]

oo oo

shows that D^ is different from C , even in the special cases below.

The three most important cases of a-differentiability are as follows:

(I) If a is the class of a l l finite subsets of E , then f € D^

is said to be Gateaux differentiable. The classes D and C

(k = 1, 2, . . . , ») are then denoted by D and C* .

(II) If O is the class of a l l sequentially compact subsets of E ,

_1 k
then f i Dl is said to be Hadamard differentiable. The classes D^ and

C* {k = 1, 2 , . . . , « > ) a r e then denoted by ui and CZ .
O tin

(III) If a is the class of a l l bounded subsets of E , then / £ D^
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Limits of smooth spaces 229

is said to be Freahet differentiable. The classes D and C

(k = 1, 2, . .. , <*>) are then denoted by Dw and ci .
t t

The definitions, given in [3], of an S-category and an S-smooth

Banach space can be generalized to topological vector spaces with only

minor modifications.

DEFINITION 2. An S-category is a category S , whose objects are

all open subsets of all topological vector spaces. For any pair of objects

U and V , the morphisms S{U, V) are functions from U into V with

the usual composition as their product. We suppose also that the following

conditions are satisfied:

51. C~(£/, V) c S{U, V) c C°{U, V) , for all objects U and V ;

52. if f £ S(U, V) and W is an open subset of V containing

f(U) , then / £ S(U, W) ;

S3- if / 6 C°{U, V) and for each x € U , there is an open set W

with x € W c U such that f\w £ S(W, V) , then / £ S(U, V) ;

SU. if fi £ S(Ui, Vx) and f2 £ S(U2, V2) , then

0 k k kThe most important examples of S-categories are C , Cu, C^, Dr, and
ti t ti

D* (k = 1, 2, ..., °°) . The classes C^ and D* (k = 1, 2, . .. , °°) are

not S-categories, since the product of Gateaux differentiable maps is not

necessarily Gateaux differentiable. Let supp/ denote the support of a

real valued function / .

DEFINITION 3. Let E £ TVS and 5 be an S-category. E is said

to be S-smooth if given any O-neighbourhood V in E , there exists a

non-trivial f £ S(E, R) such that supp/ c V .

It is easy to see that E is S-smooth if and only if given a £ E

and a neighbourhood V of a , there exists / £ S(E, R) such that

f(a) > 0 , f(x) 2 0 (for each x £ E ) and supp/ c V . In case E is a

Banach space, the definition given here coincides with the one given by

Bonic and Frampton. Let LCS denote the class of all (Hausdorff) locally
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convex topological vector spaces over R . For each continuous seminorm p

on E ( LCS , let N = {x d E | p(x) = 0} . N is a closed subset of

E .

DEFINITION 4. Suppose E £ LCS and 5 is an S-category. E is

said to be strongly S-smooth if there exists a collection P(E) of

continuous seminorms on E which generate the topology on E and satisfy

p € S[E\N , R) , for each p € P(£) .

The following propositions give some of the simplest properties of

S-smoothness and strong 5-smoothness.

PROPOSITION 1. Ed TVS is S-smooth if and only if the topology on

E is the same as the weak topology generated by the functions in

S(E, R) .

Proof. The proof is similar to [3, p. 880] and hence is omitted.

PROPOSITION 2. Let E 6 LCS . If E is strongly S-smooth, then E

is S-smooth.

Proof. Let V be a 0-neighbourhood in E . Then there exist

continuous seminorms p. , . . . , p and £ > 0 such that

sup p.(x) 5 e> c V and p . i S\E\N , R\ , for each i . Now
i=l n t > t- >- Pi J

choose <p : R •*• R such t ha t <p € C_(i?, f?) , <p = 1 in some open

0-neighbourhood U , and supp<p c {t \ \t\ S e} . Pick a and B such

t h a t 0 < a < 1 < 6 . Then choose ty : Rn •* R such tha t ty € C^(fln, B) »

\p[t1, . . . , tn) > 0 , i f t i i (a, g) ( i = 1, . . . , n) , and i|> = 0 ,

otherwise. Define f : E -*• R by

/ = l|> O ([ip O f J X . . . K [(P O p J ) o d ,

where d is the diagonal map d : E ->• a , d(x) = (a;, ..., a;) .

First we show that / £ S(E, R) . Clearly f i C°(E, R) . How let

(. E . Then there are two cases:
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(I) xQ i _U N .
1=1 *i

n
Put W = E - U N . Then xQ f W , W is open and /|V 6 S(W, i?)

(II) x0 « U
^=l

By changing subscripts if necessary, suppose xQ £ N , ..., N
P l P

and

n
xn k N , ..., N . If m < n , since U N is closed, there
0 Pm+1 Pn P

n
exists open W such that a;. ? W^ and V n U N = </) . Put

m n
W = W n fl p. (£/) . If m = n , put P/ = 0 p. (tf) . Now, for

1 i=l * i=l t'

i = 1, ...,m , [if op.)|(/=l , and for i = m+1, ... , n ,
Is

(<p o p.)\W £ S(W, R) . Thus x d W , W is open and /|(/ € 5((/, R) .

Hence, by axiom S3, / f 5(S, i?) .

Now f is non-trivial, since f(0) = ^(l, 1, ..., l) > 0 . Finally

suppf c V . For suppose fix) # 0 . Hence (ip o p.)(x) € (a, 3) j and so

(<p ° p.)(x) i- 0 , for each i . Thus p.(x) 6 suppcp c {t | |t| < e} ,

for each i . Thus suppf c {x sup p.(x) < e> c V .
*- i=l,...,n t >

It is not known, even for Banach spaces [3, p. 882], if the converse

of Proposition 2 holds. We also remark that the results of Section 3 in

[3], on the existence of partitions of unity, can be generalized without

difficulty to separable metrizable topological vector spaces [7, p. 36].

There is a simple connection between the theory of smoothness of Bonic

and Frampton and the older theory of Day, Klee and others. This connection

depends on the following result.

PROPOSITION 3. Let E i LCS and p be a continuous seminorm on

E . Then p is Gateaux differentiate at x (. E if and only if p is
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Hadamard differentiable at x .

Proof. Suppose that p is Gateaux differentiable at x 6 E . It

suffices to show that, given h •* h in E and t •*• 0 in R , then
n n

t~ . fp(a;+tn/2w}-p(a;)-p'

derivative at x .

Now

-»• 0 , where p'(x) is the Gateaux

V ) + IP1 (*)•(*„-'') I
by the continuity of p and p'(x) , and the existence of the Gateaux

derivative. Thus p is Hadamard differentiable at x .

Now, in Day's terminology, a Banach space E is smooth if its norm is

Gateaux differentiable away from the origin. Hence, by Proposition 3, a

Banach space which is smooth (in Day's sense) is strongly fl^-smooth, and

hence D -smooth. Day [4, p. 519] proved that every separable Banach space

has an equivalent norm which is Gateaux differentiable away from the

origin. Thus, by Proposition 3, every separable Banach space is strongly

D-smooth. Later we extend this result to separable locally convex spaces.

Notice, however, that we cannot even hope to show that every separable

Banach space is Cr.-smooth. For if f t C„ , then f t D- . But Bonic and
h Lr t

Frampton have shown that the separable space I is not O^-smooth [3,

p. 882].

2. Results

The main concern of this paper is with inductive and projective limits
of S-smooth topological vector spaces. Our first theorem gives a
connection between 5-smoothness and locally convex kernels. We follow the
notation and terminology of Kothe [5, §19].

THEOREM 1. Let E[T] = K/l^fg [ f j ) be the locally convex kernel

of the locally convex spaces } where each Aa is a linear map from E
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into E . Let S be an S-category.

(i) If each E is S-smooth, then E is S-smooth. The converse

does not hold.

(II) If each E is strongly S-smooth, then E is strongly

S-smooth. The converse does not hold.

Proof ( I ) . Let a f E and U be a neighbourhood of a . Since E

is regular, there exists another neighbourhood V of a such that

a i V c V c U . By the definition of the kernel topology on E , there

exist f ini te ly many neighbourhoods V , . . . , V in E , ..., E such
1 n

n
that a i n A {V.) c V .

t=l ^

Now, for each i = 1, ..., n , there exists /. 6 S\E , R\ such that
1 *• i '

f. \A (a)\ > 0 and supp/. c V. . Choose a., g. in R such that

0 < a. < /. L4 (a) < 3 . . Thus, for each i , we have
1 ^ i J

/!„ (a) C /"1(a., 8.) c 7. . Choose <p : Rn -* R such that cp f c"(i?", i?) ,

. p ^ , ..., tn) > 0 , if ^ f (ai, B^) (i = 1, 2, ..., n) , and <p = 0

otherwise. Define / : E -*• R by

/ = tp o (f x . . . x f J o L x . . . x 4 I o d ,
*• 1 n J

where d is the diagonal map. We show that / has the required

properties.

Clearly, / > 0 and f(a) > 0 . Also f f S(E, R) since

* € < £ ( * " , * ) . A x • • • x / „ « s fcx X • • • X Ea '
*• 1 n

4 x . . . x A i cl\En, E x . . . x EI and d € c"(ff, E") . Finally
u l n '"• 1 n>

we show that supp/ c (/ . Suppose fix) > 0 . Hence
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a- < / ^ ( x ) ] < e^ , and so Aa_(x) € f }
1 ^ , Bi) <= ̂  , for each i .

7*

71

Hence x € D A (V.) c V . Thus suppf <= V c U , and the proof is

.__ CX. "Z-

finished.

The counterexample to the converse is as follows. The space c is a
CD CD

subspace of I . However, c is strongly C^-smooth [3, p. 896], but

1° is not even D -smooth [3, p. 882].

(II). For each index a , let \VO ) be a collection of continuous

seminorms on £• which generate the topology of E and satisfy

p" € 5\Ea\N , R\ , for each 3 . Then the kernel topology on E is

H

generated by all seminorms of the form p_ o A . For some fixed a, 3 >

let p = Pg o 4 . Clearly tf = -jx € i& | i4 (ar) € Af > , and since

Aa € CF\E\N , Ea\N \ and p " f S E ^ a , /? , we have that

V P6
p f S[E\N , R) .

The example given in part (I) also serves as a counterexample to the

converse of part (II).

COROLLARY 1. Every nuclear space is strongly C^-smooth.

Proof. Every nuclear space is topologically isomorphic to a subspace

of a topological product of spaces {.E^ , where each E is a subspace of

2 p oo

I [6 , p. 101]. But I i s strongly C^-smooth.

COROLLARY 2. Every separable locally convex space is strongly

DZ-smooth,
ti

Proof. Every locally convex space E is topologically isomorphic to
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a subspace of a topological product of Banach spaces, {E } [5, p. 208].

If E is separable, then so is each E . Hence, by our previous remarks,

each E will be strongly D -smooth, and the result now follows from theot h

theorem.

COROLLARY 3. Every (FM)-spaoe is strongly Cp-smooth.

Proof. Every (.KM)-space E is separable [5, p. 370]. Thus, by

Corollary 2, E will be strongly O^-smooth. But if a continuous seminorm

p is Frechet differentiable on some open subset A c E , then p' is

continuous on A [7, p. 39]- Thus E will be strongly C_-smooth.
t

COROLLARY 4. Every locally convex space with the weak topology is

CO

strongly Cp-smooth.

We now consider the connection between smoothness and inductive

limits. First suppose that E[T] = £ E \j ] is a topological inductive
a

limit with the property that T induces the topology T on each E

Then, by Theorem 1, if E is S-smooth (strongly S-smooth), each E is

5-smooth (strongly S-smooth). However, in more general situations, we

cannot make the same conclusion. By [5, p. 280], every separable Banach

space is topologically isomorphic to a suitable quotient space of I .

So, in particular, R is topologically isomorphic to a quotient space of

1 » 1 1
I . But R is strongly C_-smooth, while I is not £>--smooth.

t r

The converse situation is more interesting. Suppose E is a

topological inductive limit of the S-smooth spaces E . Then is E

S-smooth? We give a positive result in a particular case (Theorem 3).

First we prove a result which will be needed in the proof of Theorem 3> and

which has some interest itself.

THEOREM 2. Let E[T] = \ Ejj^ be a strict inductive limit [5,

a

p. 222], with the property that a subset B c E is bounded if and only if

B is contained in some E and is bounded there. Suppose F € LCS , V
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is an open subset of E and f : E •*• F . Then f (. D^,(U, F)

(fc = 1, 2, ...,«•) if and only if f\E^ t D*{UnEa, F) , for each a .

Proof. The "only if" part is trivial. For the converse, suppose

first that k = °° . We show by induction that / i D™(U, F) . Let

x € U . We define a map u. : E + F as follows. Given y € E , since E

is a strict inductive limit, there exists a such that x, y d E . Then

define uAy) = (/I^O ' (*) -y • ty the uniqueness of the Frechet

derivative, the value of uAy) is independent of the choice of a , so

long as x, y € E . Also u. is linear, and is continuous, since

uAE = iflEy)' (x) is continuous, for each a .

We show that u = f (x) . Let B be a bounded subset of E . Then

there exists an a such that B c E and is bounded there. Also,

x € Eo , for some 3 . Now choose Y such that y - B and y ± a . Then
p

x (. E and B c E . Also B is bounded in £ , since the topology

induced by E on E is the original topology T^ on i?a .

Now let V be a O-neighbourhood in F . Then the existence of

[f\E )'(x) gives the existence of 6 > 0 such that

f(x+th) - fix) - u .th 6 tV , whenever |t| 2 6 and h t. B . That is,

fix) = ux .

Now suppose f (.x) exists. Define u + 1 : E •* L (E, F) as

follows: «n+1(j/) = (f|Sa)^
n+l)(a;).z/ , where x, y (. Ea . Then, as before,

u +, is a well-defined, continuous linear map. Further, as before, given

a O-neighbourhood V in L (E, F) and given a bounded set B in E ,

there exists 6 > 0 such that f^n\x+th) - /"'(*) "

whenever h € S and |t| 5 6 . That is, pn+1'{x) = u . Thus
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/ € D°F(U, F) .

When k is finite, the proof is similar.

The following theorem is a special case of Corollary 1 of Theorem 1.

However, in the special case considered here, it is also possible to give

GO

a simple construction of a class of generating C_-seminorms.
r

THEOREM 3. Let E be a vector space (over R ) with a countable

Hamel basis, and let E have the finest locally convex topology T . Then

00

E is strongly C - smooth.

Proof. Let {e , e^ e , ...} be a basis for E . For each

n , let E be the vector subspace spanned by {e., e^, ..., e } . Give

each E the Euclidean topology. Then we may consider E as the strict

inductive limit of the sequence {E } . A O-neighbourhood base V for T

consists of all absolutely convex absorbent subsets of E .

Consider the sequences a = [a-., ..., a , ...) of real numbers, where

Then
r n n 2 \

each a. > 0 . Put U = \x i E \ x = £ a; .e., £ (x./a.) < 1> .

each y is absolutely convex and absorbent. Thus each U is a
a a

O-neighbourhood in T . We show that {ll } is a O-neighbourhood base for

T .

Let V £ V . Since P is absorbent, there exist £. > 0 such that

z.e- € V , for i = 1, 2 Put a. = £..2"^" and a = (a • ) " _ - , • Put

A = \\ a.e.e. | J |a.|<l,
W 'l x v id v

J | | , where I is some finite set of
id v

positive integers}- = absolutely convex cover of {e.e.}._ .
J % % i—1

Since A c V , it suffices to show that U c A . Suppose

n
x = I x,-e,- e #„ • Clearly \x. \ S e. .2~'t , i = 1, 2, ..., n . Thus we
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n n n
can write x = £ a.e.e. , where £ |a.| 5 5! 2"1 < 1 • Thus x f /3 ,

• ^ If If 1r . _ t- . _

1=1 1=1 1=1
and so {i/a} is a 0-neighbourhood base for T .

Now, let P{E) be the collection of gauges of the sets U . Each

gauge will in fact be a norm. Then certainly P(E) generates T . Thus

we have only to show that P{E) c Cp(E\{0}, R) . So let p be the gauge

of some U . A straightforward calculation shows that if

x = I x-ie-; € En > t h e n 'P(x) = I [x-/a.) . Thus, for each n ,
i=l % % n k=l % ^ \

p\En d D^(En\{0}, R) . Further, by [5, p. 223], a subset B of E is

bounded if and only if it is contained in some E and is bounded there.

Thus, by Theorem 2, p € DI[E\{O} , R) .

Now in [2, p. 106] it is proved that if E is the strict inductive

limit of the increasing sequence {E } _. of locally convex spaces, where

the embeddings E -*• E are compact, then any map from E to F d TVS

that is Hadamard differentiable in some neighbourhood of x t E is

continuous at x . Thus we have p € Cp(E\{0}, R) , and the theorem is

proved.

We remark that Proposition 2 now shows that E is C^-smooth. This

can also be proved directly. With the same notation as above, define

/ : E •* R as follows:

fix) = exp{- 1 -

whenever

n r . I
I x.,21• z.
•Z-, { 1- I 1-

2 i n

and fix) = 0 , otherwise.
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Then similar methods show that / t Cp(E, F) , / i s non-trivial and

supp/ c V .

Finally, we give, an example to show that if E[T] = ][ A (F [T ]) is a
a a a a

locally convex hull and each FQ is S-smooth (strongly S-smooth), then

E is not necessarily S-smooth (strongly S-smooth). Grothendieck has

constructed an (FM)-space E which has a quotient space topologically

isomorphic to I1 [5, p. 1»33]. By Corollary 3 of Theorem 1, E is

strongly C_-smooth, but I is not even /^-smooth.
t t

Note added in proof, 7 December 1971. Every Schwartz space can be

embedded in a topological product of separable Banach spaces and hence is

D -smooth,
n
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