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Increasing evidence from the EU Project EARNEST and many other investigators demonstrates
that early nutrition and lifestyle have long-term effects on later health and the risk of common
non-communicable diseases (known as ‘developmental programming’). Because of the
increasing public health importance and the transgenerational nature of the problem, obesity
and associated disorders are the focus of the new EU funded project ‘EarlyNutrition’.
Currently, three key hypotheses have been defined: the fuel mediated ‘in utero’ hypothesis
suggests that intrauterine exposure to an excess of fuels, most notably glucose, causes perma-
nent changes of the fetus that lead to obesity in postnatal life; the accelerated
postnatal weight gain hypothesis proposes an association between rapid weight gain in infancy
and an increased risk of later obesity and adverse outcomes; and the mismatch hypothesis
suggests that experiencing a developmental ‘mismatch’ between a sub-optimal perinatal and an
obesogenic childhood environment is related to a particular predisposition to obesity and
corresponding co-morbidities. Using existing cohort studies, ongoing and novel intervention
studies and a basic science programme to investigate those key hypotheses, project Ear-
lyNutrition will provide the scientific foundations for evidence-based recommendations for
optimal nutrition considering long-term health outcomes, with a focus on obesity and related
disorders. Scientific and technical expertise in placental biology, epigenetics and metabolomics
will provide understanding at the cellular and molecular level of the relationships between
early life nutritional status and the risk of later adiposity. This will help refine strategies for
intervention in early life to prevent obesity.

Early nutrition: Developmental programming: Obesity and related disorders:
Key hypothesis

There is a convincing body of research evidence which
demonstrates that early nutrition and lifestyle factors
have long-lasting programming effects on the risk of later
obesity and associated non-communicable diseases,
including type 2 diabetes, hypertension and CVD(1–5).
Lifetime experimental studies in animals, historical and

prospective cohort studies in human subjects, and ex-
perimental, hypothesis-testing interventions in human
subjects with long-term follow-up lend support to this
conclusion.

Obesity and associated disorders offer some of the best
evidence for early nutrition programming(6). Moreover,
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focused research on obesity and associated disorders has
become increasingly urgent for the following reasons:

obesity in children and adults has increased exponen-
tially and is now of immense public health importance;
the extensive co-morbidities of obesity such as diabetes
and CVD mean that research in this area is relevant to
many health outcomes;
the trans-generational amplification of obesity pro-
gramming adds to the public health importance.

Of the 77 million children in the EU in 2004, 11 million
were overweight and 3 million were obese, and each
year an estimated additional 85 000 children become
obese (based on data from the International Obesity Task-
force, www.iotf.org). Fig. 1 shows the prevalence of
overweight among children aged 7–11 years in different
EU countries, based on a BMI exceeding the equivalent
of a BMI >25 kg/m2 at age 18 years. Rates of obesity
and especially of childhood obesity have rapidly increased
all over the world during the past two decades, and there is
an urgent need to find ways of reversing this alarming
trend(7). Childhood obesity is a problem in its own right
because it is not only a prelude to many other childhood
diseases but also to adult obesity and early death(8,9).
Recent data show that children with a BMI in the top
quartile at age 11 years, compared with those with a BMI
in the lowest quartile, are more than twice as likely to die
before the age of 55 years(10). Thus, prevention of over-
weight childhood and obesity is a high public health
priority.

The growing prevalence of overweight and obesity is
propelling an upsurge in diabetes, hypertension and CVD
and the risk of other non-communicable diseases. By 2030
rates of type 2 diabetes are predicted to rise by nearly 40%
in Europe and by nearly 60% in Asia from those reported
in the year 2000(11).

Not only is obesity a prelude to many other diseases, but
focusing on childhood obesity as an endpoint has the
practical advantage that it occurs over a shorter timeframe
and allows a step-by-step understanding of the develop-
ment of the disease. Questions still to be resolved include:

how is susceptibility to obesity ‘programmed’ by
environmental influences in early life?
what are the relevant environmental stimuli?
what are the sensitive periods of susceptibility during
development?
what are the specific effects of developmental expo-
sures on adiposity and co-morbidities in the offspring?

EarlyNutrition researchers appreciate the need to accu-
rately assess body composition, particularly fat mass. The
focus on adiposity (i.e. body fat content) is important
because it is a better predictor of health outcomes than
childhood BMI(12,13).

Currently three key hypotheses are proposed to explain
why early nutrition programmes obesity and its co-mor-
bidities. These are not mutually exclusive and could have a
greater or lesser impact in different circumstances: (i) the
fuel mediated ‘in utero’ hypothesis; (ii) the accelerated
postnatal weight gain hypothesis and (iii) the mismatch
hypothesis.

The early nutrition pathways to programming of obesity
are likely to be multifactorial, but Fig. 2 illustrates how these
hypotheses could contribute to the developmental program-
ming of non-communicable disease risk (adapted from(14)).

Fuel-mediated in utero hypothesis

The hypothesis of fuel-mediated teratogenesis proposes
that intrauterine exposure to an excess of fuels, most not-
ably glucose, causes permanent fetal changes that lead to
obesity in postnatal life. Recently, the hypothesis that the
fetus is susceptible to the humoral influences of maternal
obesity has been strengthened by numerous observational
studies suggesting that maternal obesity and excessive
pregnancy weight gain independently increase the risk of
obesity in the child, leading to the ‘fuel-mediated’ in utero
hypothesis(15). Obese women are more than twice as likely
to have a large-for-gestational age baby as normal weight
women(16). Children of obese women and of those with an
excessive weight gain during pregnancy are at increased
risk of becoming overweight and obese themselves(17–21).
While this could be the result of shared genetic predis-
position and a similar lifestyle, there is now increasing
evidence suggesting that an obesogenic uterine environ-
ment is of major importance in modulating long-term risk
of adiposity and related outcomes. This evidence includes
several reports that suggest that children of obese mothers
have a higher risk of obesity than children of obese
fathers(22–24). Also, children born to formerly obese women
who had undergone bariatric surgery leading to weight
loss, had only half the risk of becoming obese as compared
with their older brothers and sisters who had been born
prior to bariatric surgery and hence under a less favourable
prenatal metabolic and endocrine environment(25). In
addition, some evidence from the diabetes literature could

Fig. 1. Prevalence (%) of overweight among children aged

7–11 years across Europe (data redrawn from the International

Obesity Taskforce (IOTF)).
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indirectly support the hypothesis that obesity is associated
with an increased risk of gestational diabetes, and two
studies have shown that improved glycaemic control in
women with gestational diabetes is associated with a re-
duction of macrosomia or a composite end point including
macrosomia(26,27). Programming the susceptibility to obe-
sity while in utero through modified tissue responses and
subsequent metabolic changes could potentially lead to
acceleration in the risk from generation to generation (see
Fig. 3).

The rise in obesity in women of child-bearing age and in
the numbers of obese pregnancies is consistent with the
recent rise in rates of childhood obesity. Accelerated pre-
natal fetal growth can result from increased fuel supply to
the fetus which occurs when maternal blood glucose and
lipid levels are increased due to insulin resistance or
gestational diabetes mellitus, both of which are prevalent
among obese pregnant women. Indeed, maternal blood
glucose and TAG concentrations are directly related to
neonatal adiposity in obese women(28). Better control of
blood glucose levels, or reduction of insulin resistance
during pregnancy through diet and exercise, offer ways of
modifying fetal growth and potentially reducing the child’s
future risk of obesity(29).

Accelerated postnatal growth hypothesis

Many observational studies have reported that rapid weight
gain in infancy is associated with an increased risk of later
obesity and other adverse outcomes such as the risk of
CVD(30–35). Accelerated postnatal weight gain can result
from high intake of growth-enhancing nutrients such as
protein in the infant diet. Available evidence suggests that
higher protein intakes increase plasma and tissue levels of
insulin-releasing amino acids and of insulin and insulin-
like growth factor 1, and thereby increase weight gain and
adipogenic activity(36,37).

A meta-analysis of nine studies showed that breast-
feeding, which supplies less protein than conventional
infant formulae, is associated with an approximately 20%

lower risk of obesity at later ages(38,39). A trial in which
1138 healthy, formula-fed infants in five European
countries were randomly assigned to receive infant
and follow-on formulae with lower or higher protein con-
tents for the first year found that, at 24 months, the average
weight-for-length z-score in the lower protein formula
group was lower than in the higher protein group and was
similar to that of the breast-fed reference group(40). This
difference in weight for length at 2 years is of major
benefit as it predicts a 13% lower obesity risk at age
14–16 years with lower protein infant formula(14). Long-
term follow-up of a subset of children assigned in other
trials to nutrient-dense or less nutrient-dense infant for-
mulae found that those infants who received the growth
promoting formulae had increased body fat mass 5–8 years
later(41). Moreover, in several non-randomised analyses,
faster weight gain in infancy was associated with greater
fat mass in childhood(30,32,33,40).

Fetal undernutrition and obesogenic
childhood environment

e.g. maternal nutritional imbalances,
placental dysfunction

Mismatch
hypothesis

Accelerated
postnatal
growth

hypothesis

Postnatal nutrition and growth
e.g. lack of or short breast-feeding,

overfeeding, excessive protein intake

Fuel-mediated
in utero

hypothesis

Genes and environment

Obesity/visceral obesity
Metabolic syndrome

Diabetes
Hypertension

Cardiovascular and
other diseases, asthma

Fetal overnutrition
e.g. maternal obesity, high pregnancy

weight gain diet in pregnancy, gestational
diabetes

Fig. 2. Integration of hypotheses for programming of obesity and related disorders (modified from(14)).

Maternal obesity

Maternal glucose, insulin, leptin, lipids,
inflammatory response

Placenta modifies
materno-placental nutrient supply

Fetal developmental plasticity

Postnatal weight trajectory

Obesity, cardiovascular and
diabetes risk

Fig. 3. The potential pathways which may lead to trans-genera-

tional acceleration of obesity.
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Mismatch hypothesis

The mismatch hypothesis suggests that people who experi-
ence developmental ‘mismatch’ between a sub-optimal
pre-natal/infant environment and an obesogenic childhood
environment have a particular predisposition to obesity and
related co-morbidities(3,42). During limited time periods of
developmental plasticity (see Fig. 4), the fetus responds to
cues from the early environment, to produce a phenotype
best suited to survival in that environment, leading to irre-
versible changes in metabolism and endocrine regulation.

After the early phase of developmental plasticity, the
established changes become less subject to environmental
modulation. Individuals are likely to remain healthy when
their resulting phenotype is matched to their environment,
as they can mount appropriate responses to everyday
challenges. But, when not well matched, their risk of
disease increases. The degree of any mismatch hence
determines the risk of later disease. People who were small
at birth and had poor growth in infancy have an increased
risk of CHD, particularly if their impaired early growth is
followed by increased childhood weight gain(43,44). Greater
mismatch can arise from altered mother’s body composi-
tion, unbalanced or low-energy maternal diet or impaired
placental nutrient transfer, or through an influence of
an obesogenic lifestyle in the later environment. Such
changes are important in both affluent settings and in
developing societies going through rapid socio-economic
transitions.

Potential mechanisms of early nutrition
programming effects

The precise mechanisms underlying how early nutrition
can cause programming of obesity are unknown, but are
thought to be associated with altered development of organ

structure or persistent alteration at the cellular level. Some
proposed mechanisms(45) include:

epigenetic memory: transcriptional modification
(e.g. DNA-binding proteins, histone acetylation, CpG
methylation to 5-methyl-cytosine and altered miRNA
expression);
induction of altered organ structure (vascularisation,
innervation and juxtaposition), e.g. altered hepatic
architecture during organogenesis which may perma-
nently modify metabolism; reduced nephron number
which may influence risk of hypertension;
alteration of cell number (hyperplasia and hyper-
trophy);
clonal selection (disproportionate growth of cells that
proliferate rapidly under specific metabolic conditions).
Metabolic differentiation (e.g. hepatocellular changes
associated with enhanced metabolic activity).

The molecular mechanisms proposed include acute or
persistently altered gene expression through a variety of
epigenetic pathways. During in utero or early postnatal
development, short-term changes through environmental
influences could permanently change organ development at
a time of extreme vulnerability or ‘plasticity’. For exam-
ple, experimental studies and human observations have
shown that a reduction in nutrient and oxygen supply
differentially affect the growth and development of organs
and tissues. Organs affected include the lungs, kidney, gut
and liver. Additionally, clinical and experimental studies
provide evidence for developmental changes in the homo-
eostatic set points for many hormones and for alterations in
tissue sensitivity to these hormones. Alterations of the fetal
hypothalamic–pituitary–adrenal axis, central mechanisms
controlling energy balance and sympatho-adrenal respon-
ses are likely to be an important mechanism by which
developmental exposures affect the offspring’s subsequent
responses to challenges. One of the keys to understanding
how these changes are brought about is to establish whe-
ther the placenta plays a facilitatory or protective role in
the face of nutritional challenge. As a mandatory pre-
paratory step, we need to establish which maternal expo-
sures are modified by the placenta and how, and to
determine what the vulnerable fetus actually experiences.
Only then we can begin to unravel the pathways to in utero
programming which will lead to successful interventions
in the mother(46,47). While conceptually, epigenetic modi-
fication provides a framework for understanding how dif-
ferences in the early environment can lead to permanent
changes in metabolism and therefore long-term health
risks, much work is still to be done to unravel the specific
post epigenetic modifications involved in different disease
processes.

The role of the placenta

As the ‘gateway’ to the fetus, the placenta is located
between the maternal and fetal circulation and thus ex-
posed to metabolic, endocrinal and inflammatory changes
in the fetal and maternal blood. These factors, which de-
pend on maternal nutrition and lifestyle, have been shown
to affect placental transfer of nutrients, through modulation

Maternal nutritional environment

Placenta modifies
materno-placental nutrient supply

Impaired fetal nutrition

 Fetal developmental plasticity and
appropriate epigenetic changes to

nutritional status

Low nutrition/high physical activity
postnatal environment

High nutrition/low physical activity
postnatal environment

Normal disease risk
Obesity, cardiovascular

and diabetes risk

Fig. 4. A developmental ‘mismatch’ between a sub-optimal pre-

natal/infant environment and an obesogenic childhood environment

may predispose to obesity and related disorders.
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of placental gene expression(48) or via mammalian target
of rapamycin signalling(49). Maternal macronutrients
in particular, have been ascribed a strong influence on fetal
development. Maternal overnutrition promotes glucose and
lipid supply to the fetus leading to hyperinsulinaemia and
enhanced fetal fat accretion. As discussed earlier, this state
of nutrient excess may be associated with a greater long-
term risk for adult disease(50). Maternal obesity and
increased plasma lipid concentrations are related to fetal
obesity, highlighting the importance of lipid status and
potentially of placental fatty acid transfer(28,51,52).

While the maternal-to-fetal transfer of fatty acids,
especially of PUFA, has been studied in normal pregnan-
cies(53), little is known whether and how this may be
changed with maternal overnutrition/obesity or gestational
diabetes. Although many of the basic processes of pla-
cental lipid transfer and metabolism are established(54),
neither the timing nor the magnitude of their modifications
with maternal obesity or diet have been defined yet.

Studies in diabetic pregnancies have previously exam-
ined the close relationship between increased fetal lipid
and total fat accretion, but not in maternal obesity or
how they are modified by diet and physical activity(55).
Placental enzymes, receptors, binding proteins and trans-
port proteins all play roles in lipid transfer to the
fetus(56,57). Thus, they strongly contribute to fetal fat ac-
cretion and may serve as predictors of fetal and neonatal
adiposity. The quantitative disposition of fatty acids and
molecular signatures of maternal weight, diet and physical
activity in the placenta have to be identified, but will
contribute to our understanding of the mechanisms under-
lying developmental programming and to identification of
biomarkers of the long-term effects of factors acting during
pregnancy on offspring health.

Epigenetics and metabolomics

Further to the identification of epigenetic modifications
leading to modified gene expression and thus function in
the placenta, studying the epigenetic changes through
environmental factors such as maternal nutrition and life-
style in other tissues and cell types has become of in-
creased interest in the research of obesity and related
disorders. Epigenetics comprises, among other more tech-
nically challenging methods, the investigation of DNA
methylation profiles as the primary mark of environmen-
tally mediated changes to gene expression. While the exact
role of epigenetic mechanisms in fetal programming of
metabolic diseases and body weight regulation remains to
be further investigated, a number of animal models have
demonstrated a causal relationship between early nutrition
and later metabolic phenotype with gene dysregulation
mediating such adverse metabolic outcomes(58–62). A re-
cently published article reviews the scientific evidence
base of the association between the role of epigenetics in
the fetal programming of adverse metabolic outcomes
concluding that despite a vast amount of epigenomic data
generated, the challenge still is to decipher the biological
and clinical relevance of these epigenetic changes(63).
Although studies assessing the role of DNA methylation in

mediating the effect of maternal metabolic factors on
offspring obesity have been performed, identification of
specific genes as biomarkers have been confined to only a
few reports(64,65). Genome-scale DNA methylation analysis
has detected highly variable regions of differential methy-
lation in human subjects, some of which consistently co-
vary with BMI over time(66). Identification of perinatal
epigenetic markers holds the potential to prognose indivi-
dual susceptibility to later obesity and to be applied in
monitoring programmes aiming at optimising maternal
nutrition and lifestyle. The challenge now is to develop
specific studies aimed at investigating how environmental
exposures interact with underlying genetic determinants to
dysregulate gene expression and lead to metabolic dis-
orders(65).

In parallel to the expanding field of epigenomics,
the application of metabolomics has recently gained
considerable interest in the area of obesity, metabolic
syndrome and diabetes research(67–70). Exploration of
molecular mechanisms of metabolic programming and
early growth by metabolomics approaches is an ongoing
and still unresolved challenge with considerable relevance,
since understanding of the sequence of underlying events
and of key metabolic processes may allow for the devel-
opment of even more targeted and effective intervention.
In the field of perinatal development and metabolic pro-
gramming by early nutrition, metabolomics has been rarely
used so far, but a promising example demonstrated the
possibility to identify women from metabolite profiles
determined in first trimester plasma samples, who later in
pregnancy developed preeclampsia(71). Furthermore, using
ultrahigh pressure chromatography coupled to an orbitrap
mass spectrometer, biomarkers for small for gestational
age babies were identified in plasma samples collected
during the 15th week of pregnancy(72). The already avail-
able epigenetic and metabolomic data in the area of meta-
bolic programming and accumulated experience in other
fields indicate that both tools are mandatory for the eluci-
dation of the mechanisms linking early nutrition to long-
term health.

The EarlyNutrition project

EarlyNutrition (www.project-earlynutrition.eu) is a large-
scale collaborative project running from 2012 to 2017
under the umbrella of the EU 7th Framework Programme
(FP7) which brings together a multi-disciplinary team of
highly successful international scientists and leaders in key
areas of the developmental programming field located
in twelve European countries, the USA and Australia.
Leaders of relevant intervention trials in pregnancy and
infancy, some of the best characterised cohorts of pre-
pregnant and pregnant women and their children in the
world, as well as those involved in the forefront of mech-
anistic animal studies and in placental biology will work
together with partners from industry and small and medium
size companies. With a total budget of 11.12 million Euro,
the project is supported with 8.96 million from the Eur-
opean Commission.

Project EarlyNutrition presents an integrated work pro-
gramme designed to fill gaps in the knowledge base, as
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addressed by three key hypotheses, as described earlier,
linking early nutrition to long-term health and perfor-
mance. Prevention of adiposity, i.e. increased body fat
content that is closely related to disease risk, and of asso-
ciated disorders are the principal targets. The project and
its likelihood of success benefits from concentration on
four population target groups, namely women prior to
pregnancy, pregnant women, infants (including breast-
feeding) and young children. Combining research from
animal, observational and human intervention studies, the
relative roles of placental function, early growth patterns,
pre-pregnancy weight status, pregnancy weight gain, over-
weight and obesity, gestational diabetes, breast-feeding,
genetic variation, environment, gender, lifestyle, physical
activity, ethnicity and geographic background as deter-
minants of the risk of obesity and associated disorders in
the offspring will result in an increased evidence base to
help formulate recommendations.

It is of outmost importance that early nutrition pro-
gramming research now considers the entire life course
and addresses socio-economic priority issues, fosters in-
novation and ensures rapid translational application, e.g. by
leading to health-promoting policies and evidence-based
dietary recommendations for the four population target
groups. Through the EarlyNutrition project, the field will
benefit markedly from close partnership of academia with
some of Europe’s most successful companies in the food
industry as well as small and medium enterprises, with
considerable potential for knowledge transfer to the com-
mercial sector and development, for example of novel bio-
markers of disease risk and of foods for the health sector.
International collaboration across and beyond Europe,
including leading investigators in the USA and Australia,
will lend to global generalisability of the results and fur-
ther enhance opportunities for progress and innovation.

Conclusions

Convincing evidence now shows that nutrition during both
pre- and early post-natal life can programme long-term
health, well-being and performance into adulthood and old
age. These advances are widely recognised to offer an
important, different and exciting perspective for strategies
in the prevention of disease. Among the prerequisites for
effective translation to public health recommendations is
the need to strengthen the scientific evidence, e.g. on effect
sizes of early life programming in contemporary popula-
tions, on specific nutritional exposures, on sensitive time
periods in early life, on underlying mechanisms, and on
potential effect differences in subgroups characterised for
example by ethnicity, genetic predisposition or gender.
Evidence that diet and lifestyle modifications during preg-
nancy can reduce the increased risk of obesity in offspring
of obese pregnant women will help break an intergenera-
tional cycle of obesity which might otherwise lead to spi-
ralling rates of obesity and associated disorders throughout
the world.

A wealth of recommendations for optimised nutrition
before and during pregnancy and for infancy and early
childhood already exists nationally and internationally.

However, these have usually been based on immediate
physiological requirements, and have not often been rela-
ted to the longer-term health consequences of nutritional
status in these critical periods of life. An analysis of
twenty-six breast-feeding policy documents from five
European countries for the EARNEST project found that
only about one-third mentioned long-term outcomes
such as a reduction in diabetes risk as a benefit of breast-
feeding(73).

A better evidence-base on the effects and mechanistic
pathways of early nutrition will allow dietary recommen-
dations for optimised nutrition to be formulated, which
will aim at reducing the future risk of obesity and co-
morbidities in the following relevant target groups, accor-
ding to the critical periods for programming and where
recommendations are appropriate: pre-pregnant women,
pregnant women, infants (including breast-feeding) and
young children.

Thus, evidence that excessive weight gain in pregnancy
and/or rapid early infant weight gain leads to later obesity
will help to formulate policies to reverse the increasing
rates of childhood obesity and related disorders. Moreover,
further research on dietary modifications in infancy, in par-
ticular relating to breast-feeding and complementary feed-
ing practices, as well as novel compositional approaches to
infant formula, can reduce the risk of obesity and related
disorders in offspring. Research in project EarlyNutrition
moves from studies of historical cohorts to a focus on
selected key hypotheses that drive research targeted on
public health priorities in contemporaneous populations,
utilising novel biotechnology methodologies, exploring
uniquely characterised prospective cohorts and undertaking
interventions that increase the evidence base for practical
recommendations and applications.
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