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The Schwarz Lemma at the Boundary of
the Egg Domain Bp1,p2 in Cn

Xiaomin Tang and Taishun Liu

Abstract. Let Bp1 ,p2 = {z ∈ Cn
∶ ∣z1 ∣p1 + ∣z2 ∣p2 + ⋯ + ∣zn ∣p2 < 1} be an egg domain in Cn . In this

paper, we ûrst characterize the Kobayashi metric on Bp1 ,p2 (p1 ≥ 1, p2 ≥ 1) and then establish a
new type of classical boundary Schwarz lemma at z0 ∈ ∂Bp1 ,p2 for holomorphic self-mappings of
Bp1 ,p2(p1 ≥ 1, p2 > 1), where z0 = (e iθ , 0, . . . , 0)′ and θ ∈ R.

1 Introduction

Let Cn be the n-dimensional complex Hilbert space with the inner product and the
norm given by

⟨z,w⟩ =
n
∑
j=1

z jw j , ∥z∥ = (⟨z, z⟩)
1
2 ,

where z, w ∈ Cn . Let Bn = {z ∈ Cn ∶ ∥z∥2 = ∣z1∣2 + ⋯ + ∣zn ∣2 < 1} be the open unit
ball in Cn . _e unit sphere is deûned by ∂Bn = {z ∈ Cn ∶ ∥z∥ = 1}. _roughout this
paper, we write a point z ∈ Cn as a column vector in the following n × 1 matrix form

z =
⎛
⎜
⎜
⎜
⎝

z1
z2
⋮

zn

⎞
⎟
⎟
⎟
⎠

,

and the symbol ′ stands for the transpose of vectors or matrices. In what follows, a
domain is a connected open subset in Cn .

For p1 ≥ 1 and p2 ≥ 1, the egg domain Bp1 ,p2 is deûned by

Bp1 ,p2 = {z ∈ Cn
∶ ∣z1∣p1 + ∣z2∣p2 +⋯ + ∣zn ∣p2 < 1}.

Denote by ∂Bp1 ,p2 the boundary of Bp1 ,p2 . Let H(Bp1 ,p2) be the set of all holomorphic
mappings fromBp1 ,p2 toCn . For f ∈ H(Bp1 ,p2),we alsowrite it as f = ( f1 , f2 , . . . , fn)′ ,
where f j is a holomorphic function from Bp1 ,p2 to C, j = 1, . . . , n. _e derivative of
f ∈ H(Bp1 ,p2) at a point a ∈ Bp1 ,p2 is the complex Jacobian matrix of f given by

J f (a) = (
∂ f i
∂z j

(a))
n×n

.
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_en J f (a) is a linear mapping from Cn to Cn . We set

J f i (a) = (
∂ f i
∂z1

(a), . . . , ∂ f i
∂zn

(a)) , i = 1, . . . , n.

Let D be the unit disk in the complex planeC. _e classical Schwarz lemma states
that a holomorphic function f mapping D into itself, with f (0) = 0, satisûes the in-
equality ∣ f (z)∣ ≤ ∣z∣ for any z ∈ D. It is well known that the Schwarz lemma is one of
themost important results in the classical complex analysis,which has become a cru-
cial theme in many branches ofmathematical research for over a hundred years. Es-
tablishing various versions of the Schwarz lemma has attracted the attention ofmany
mathematicians. We refer the reader to [1, 9, 11, 15, 16, 19] for more on this matter. It
has been a very natural task to obtain the boundary version of the Schwarz lemma.
In the case of one complex variable, the following Schwarz lemma at the boundary is
classical.

_eorem 1.1 ([5]) Let f ∶D → D be a holomorphic function. If f is holomorphic at
z = 1 with f (0) = 0 and f (1) = 1, then f ′(1) ≥ 1. Moreover, the inequality is sharp.

If we remove the condition f (0) = 0 in _eorem 1.1, then by applying _eorem 1.1
to the holomorphic function

g(z) = 1 − f (0)
1 − f (0)

f (z) − f (0)
1 − f (0) f (z)

,

we have the estimate

(1.1) f ′(1) ≥ ∣1 − f (0)∣2

1 − ∣ f (0)∣2
> 0.

D. Chelst [3] and R. Osserman [14] studied the Schwarz lemma at the boundary
of the unit disk. S. G. Krantz [10] explored versions of the Schwarz lemma at the
boundary point of a domain. Recently, B. N. Örnek [13] gave some new inequalities
of Schwarz inequality at the boundary of the unit disk and obtained the sharpness
of these inequalities. On the other hand, in the case of several complex variables,
H.Wu [18] provedwhat is now called the Carathéodory–Cartan–Kaup–Wu theorem,
which generalizes the classical Schwarz lemma for holomorphic mappings to higher
dimension. _is result is stated as follows.

_eorem 1.2 ([18]) Let Ω be a bounded domain in Cn and let f be a holomorphic
self-mapping of Ω that ûxes a point p ∈ Ω. _en
(i) the eigenvalues of J f (p) all havemodulus not exceeding 1;
(ii) ∣det J f (p)∣ ≤ 1;
(iii) if ∣det J f (p)∣ = 1, then f is a biholomorphism of Ω.

A natural question arises. What is a higher dimensional version of the Schwarz
lemma at the boundary? It is this problem thatmotivated our study. In [2], Burns and
Krantz obtained a Schwarz lemma at the boundary, which gives a new rigidity result
for holomorphic mappings. In [6], Huang further strengthened the Burns–Krantz
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result for holomorphic mappings with an interior ûxed point. See [7, 8] for more on
thesematters. Here are two typical results in these papers.

_eorem 1.3 ([2]) Let Ω be a bounded strongly pseudoconvex domain in Cn . Let
p ∈ ∂Ω and let f ∶Ω → Ω be a holomorphicmapping such that f (z) = z + O(∣z − p∣4)
as z → p. _en f (z) ≡ z.

_eorem 1.4 ([6]) Let Ω ⊂⊂ Cn(n > 1) be a simply connected pseudoconvex do-
main with C∞ boundary. Suppose that p ∈ ∂Ω is a strongly pseudoconvex point. If
f ∶Ω → Ω is a holomorphic mapping such that f (z0) = z0 for some z0 ∈ Ω and
f (z) = z + o(∣z − p∣2) as z → p, then f (z) ≡ z.

More recently, in [12]we established a version of the boundary Schwarz lemma for
holomorphic self-mappings of Bn . _e following result is one of the main results in
[12].

_eorem 1.5 ([12]) Let f ∶Bn → Bn be a holomorphicmapping. If f is holomorphic at
z0 ∈ ∂Bn and f (z0) = z0, then for the eigenvalues λ, µ2 , . . . , µn of J f (z0), the following
ûve statements hold.

(i) λ ≥ ∣1−a
′z0 ∣2

1−∥a∥2 > 0, where a = f (0).

(ii) z0 is an eigenvector of J f (z0)
′
with respect to λ. _at is, J f (z0)

′
z0 = λz0 .

(iii) µ j ∈ C and ∣µ j ∣ ≤
√

λ for j = 2, . . . , n.
(iv) For any µ j , there exists α j ∈ T(1,0)z0 (∂Bn) ∩ ∂Bn such that

J f (z0)α j = µ jα j , j = 2, . . . , n.

(v) ∣det J f (z0)∣ ≤ λ n+1
2 , ∣trJ f (z0)∣ ≤ λ +

√
λ(n − 1).

Here, T(1,0)z0 (∂Bn) = {w ∈ Cn ∶ z0′w = 0} is the holomorphic tangent space to ∂Bn at
z0. Moreover, the inequalities in (i), (iii), and (v) are sharp.

_e purpose of this work is to prove the boundary Schwarz lemma at z0 =

(e iθ , 0, . . . , 0)′ ∈ ∂Bp1 ,p2 for holomorphic self-mappings of Bp1 ,p2 . At the same time,
we will develop some properties of the Kobayashi metric on Bp1 ,p2 .

2 Auxiliary Results

In this section, for p1 ≥ 1 and p2 ≥ 1 we characterize the Kobayashi metric on Bp1 ,p2 ,
which will not only be used in the subsequent section but also has its own interest.
We begin with some notation and deûnitions.
A domain Ω ⊂ Cn is said to be circular if e iθz ∈ Ω whenever z ∈ Ω and θ ∈ R, and

a domain Ω ⊂ Cn is said to be convex if tz1 + (1 − t)z2 ∈ Ω whenever z1 , z2 ∈ Ω and
0 ≤ t ≤ 1. It is easy to check that Bp1 ,p2 is a bounded convex circular domain in Cn .
_eMinkowski functional ρ(z) of Bp1 ,p2 is deûned by

ρ(z) = inf{ t > 0 ∶
z
t
∈ Bp1 ,p2} , z ∈ Cn .
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It is clear that theMinkowski functional ρ(z) of Bp1 ,p2 is a Banach norm of Cn , and

Bp1 ,p2 = { z ∈ Cn
∶ ρ(z) < 1}

is the open unit ball of Cn as the Banach space with the norm ρ(z) (see [17]). _e
Minkowski functional ρ(z) of Bp1 ,p2 is C1 on Cn except for some submanifolds of
lower dimensions.

Let H(D, Bp1 ,p2) be the family of all holomorphic mappings from D into Bp1 ,p2 .
For any z ∈ Bp1 ,p2 , ξ ∈ Cn ,

FK(z, ξ) = inf {
ρ(ξ)

ρ( f ′(0))
=

∥ξ∥
∥ f ′(0)∥

∶ f ∈ H(D, Bp1 ,p2),

f (0) = z, f ′(0) and ξ have the same direction}

is said to be the inûnitesimal form of Kobayashi metric of Bp1 ,p2 , where f ′(0) =

( f1′(0), . . . , fn ′(0))′.

Lemma 2.1 For any z ∈ Bp1 ,p2 , ξ = (ξ1 , ξ2 , . . . , ξn)′ ∈ Cn ,

FK(z, ξ) ≥
(∣ξ2∣p2 +⋯ + ∣ξn ∣p2)

1
p2

(1 − ∣z1∣p1)
1
p2

.

Proof Suppose that h ∈ H(D, Bp1 ,p2), h(0) = z, and h′(0) and ξ have the same
direction. Without loss of generality, we assume that ξ /= 0. _en there exists λ ≥ 0
such that h′(0) = λξ. So we have ρ(h′(0)) = ρ(λξ) = λρ(ξ), which implies λ =
ρ(h′(0))

ρ(ξ) . _is means

h′(0) = ρ(h′(0))
ρ(ξ)

ξ.

Hence, for any ζ ∈ D, we obtain

h(ζ) =
⎛
⎜
⎜
⎜
⎝

z1
z2
⋮

zn

⎞
⎟
⎟
⎟
⎠

+ h′(0)ζ +
⎛
⎜
⎜
⎜
⎝

b1
b2
⋮

bn

⎞
⎟
⎟
⎟
⎠

ζ2
+⋯

=

⎛
⎜
⎜
⎜
⎝

z1
z2
⋮

zn

⎞
⎟
⎟
⎟
⎠

+
ρ(h′(0))

ρ(ξ)

⎛
⎜
⎜
⎜
⎝

ξ1
ξ2
⋮

ξn

⎞
⎟
⎟
⎟
⎠

ζ +
⎛
⎜
⎜
⎜
⎝

b1
b2
⋮

bn

⎞
⎟
⎟
⎟
⎠

ζ2
+⋯ ∈ Bp1 ,p2 ,

where b j =
1
2 h

′′
j (0), j = 1, . . . , n. It follows that

∣ z1 +
ρ(h′(0))

ρ(ξ)
ξ1ζ + b1ζ2

+⋯∣
p1

+ ∣ z2 +
ρ(h′(0))

ρ(ξ)
ξ2ζ + b2ζ2

+⋯∣
p2

+⋯

⋯+ ∣ zn +
ρ(h′(0))

ρ(ξ)
ξnζ + bnζ2

+⋯∣
p2

< 1.
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It is known that there exists a bounded linear functional T = (a1 , . . . , an) on the
Banach space Cn with the norm ρ(z) such that ∥T∥ = 1 and

T( z1 ,
ρ(h′(0))

ρ(ξ)
ξ2 , . . . ,

ρ(h′(0))
ρ(ξ)

ξn)
′

= (a1 , a2 , . . . , an)( z1 ,
ρ(h′(0))

ρ(ξ)
ξ2 , . . . ,

ρ(h′(0))
ρ(ξ)

ξn)
′

= ρ( z1 ,
ρ(h′(0))

ρ(ξ)
ξ2 , . . . ,

ρ(h′(0))
ρ(ξ)

ξn) .

(2.1)

Set ζ = re iθ , where r ∈ (0, 1) and θ ∈ [0, 2π]. Notice that

∣ z1+
ρ(h′(0))

ρ(ξ)
ξ1re iθ+b1r2e2iθ+⋯∣

p1

+∣ z2e−iθ
+

ρ(h′(0))
ρ(ξ)

ξ2r+b2r2e iθ+⋯∣
p2

+⋯

⋯+ ∣ zne−iθ
+

ρ(h′(0))
ρ(ξ)

ξnr + bnr2e iθ +⋯∣
p2

< 1.

_is shows that

η = ( z1 +
ρ(h′(0))

ρ(ξ)
ξ1re iθ + b1r2e2iθ +⋯, z2e−iθ

+
ρ(h′(0))

ρ(ξ)
ξ2r

+ b2r2e iθ +⋯,⋯, zne−iθ
+

ρ(h′(0))
ρ(ξ)

ξnr + bnr2e iθ +⋯)
′

∈ Bp1 ,p2 .

Hence, we have

R{ a1( z1 +
ρ(h′(0))

ρ(ξ)
ξ1re iθ + b1r2e2iθ +⋯)

+ a2( z2e−iθ
+

ρ(h′(0))
ρ(ξ)

ξ2r + b2r2e iθ +⋯) +⋯

⋯+ an( zne−iθ
+

ρ(h′(0))
ρ(ξ)

ξnr + bnr2e iθ +⋯)}

≤ ∣T(η)∣ ≤ ∥T∥ρ(η) < 1.

Taking the integral with θ on [0, 2π] for the inequality above, we obtain

(2.2) R{ a1z1 + a2
ρ(h′(0))

ρ(ξ)
ξ2r +⋯ + an

ρ(h′(0))
ρ(ξ)

ξnr} < 1.

Let r → 1−. _en (2.1) and (2.2) imply

ρ( z1 ,
ρ(h′(0))

ρ(ξ)
ξ2 , . . . ,

ρ(h′(0))
ρ(ξ)

ξn) ≤ 1.

It follows that

∣z1∣p1 + ∣
ρ(h′(0))

ρ(ξ)
ξ2∣

p2

+⋯ + ∣
ρ(h′(0))

ρ(ξ)
ξn ∣

p2

=

∣z1∣p1 + ∣
ρ(h′(0))

ρ(ξ)
∣
p2

(∣ξ2∣p2 +⋯ + ∣ξn ∣p2) ≤ 1.
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_is gives

ρ(h′(0))
ρ(ξ)

≤
(1 − ∣z1∣p1)

1
p2

(∣ξ2∣p2 +⋯ + ∣ξn ∣p2)
1
p2

.

By the deûnition of the Kobayashi metric, we get

FK(z, ξ) ≥
(∣ξ2∣p2 +⋯ + ∣ξn ∣p2)

1
p2

(1 − ∣z1∣p1)
1
p2

.

_e proof is complete.

Lemma 2.2 For any z = (z1 , 0, . . . , 0)′ ∈ Bp1 ,p2 , ξ = (0, ξ2 , . . . , ξn)′ ∈ Cn ,

FK(z, ξ) =
(∣ξ2∣p2 +⋯ + ∣ξn ∣p2)

1
p2

(1 − ∣z1∣p1)
1
p2

.

Proof Without loss of generality, we assume that ξ /= 0. Take

h(ζ) = z + ζ(1 − ∣z1∣p1)
1
p2

ξ
(∣ξ2∣p2 +⋯ + ∣ξn ∣p2)

1
p2

, ζ ∈ D.

_en h∶D → Cn is a holomorphicmapping, and

∣h1(ζ)∣p1 + ∣h2(ζ)∣p2 +⋯ + ∣hn(ζ)∣p2 = ∣z1∣p1 + ∣ζ ∣p2(1 − ∣z1∣p1) < 1.

_is means that h ∈ H(D, Bp1 ,p2) and h(0) = z. Moreover,

h′(0) = (1 − ∣z1∣p1)
1
p2

(∣ξ2∣p2 +⋯ + ∣ξn ∣p2)
1
p2

ξ and ξ

have the same direction. Hence,

FK(z, ξ) ≤
ρ(ξ)

ρ(h′(0))
=

(∣ξ2∣p2 +⋯ + ∣ξn ∣p2)
1
p2

(1 − ∣z1∣p1)
1
p2

.

On the other hand, by Lemma 2.1, we obtain

FK(z, ξ) ≥
(∣ξ2∣p2 +⋯ + ∣ξn ∣p2)

1
p2

(1 − ∣z1∣p1)
1
p2

.

_is gives the desired result.

_e following lemma characterizes the contraction property of theKobayashimet-
ric, which is also a version of the Schwarz lemma.

Lemma 2.3 ([4]) Let ϕ∶Bp1 ,p2 → Bp1 ,p2 be a holomorphic mapping. _en for any
z ∈ Bp1 ,p2 , ξ ∈ Cn ,

FK(ϕ(z), Jϕ(z)ξ) ≤ FK(z, ξ).
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3 Main Results

In this section,we present themain results of this article. First,we set up the following
notations and deûnitions. We then provide a generalization of_eorem 1.1.
For p1 > 1 and p2 > 1, take

g(z) = ∣z1∣p1 + ∣z2∣p2 +⋯ + ∣zn ∣p2 , z ∈ Cn .

_en the gradient of g(z) is

∇g(z) = 2(
∂g
∂z1

(z), ∂g
∂z2

(z), . . . , ∂g
∂zn

(z))
′

= ( p1∣z1∣p1−2z1 , p2∣z2∣p2−2z2 , . . . , p2∣zn ∣p2−2zn)
′

,

and∇g(z) is continuous onCn . _is shows that Bp1 ,p2 is a domainwithC1 boundary.
So we have the following proposition.

Proposition 3.1 Let p1 > 1, p2 > 1 and z ∈ ∂Bp1 ,p2 . _en the tangent spaceTz(∂Bp1 ,p2)

to ∂Bp1 ,p2 at z is

Tz(∂Bp1 ,p2) = {α ∈ Cn
∶R[ p1∣z1∣p1−2z1α1 + p2

n
∑
j=2

∣z j ∣
p2−2z jα j] = 0} ,

and the holomorphic tangent space T(1,0)z (∂Bp1 ,p2) to ∂Bp1 ,p2 at z is

T(1,0)z (∂Bp1 ,p2) = {α ∈ Cn
∶ p1∣z1∣p1−2z1α1 + p2

n
∑
j=2

∣z j ∣
p2−2z jα j = 0} .

In particular, when p1 ≥ 1, p2 > 1 and z0 = (e iθ , 0,⋯, 0)′ ∈ ∂Bp1 ,p2 , where θ ∈ R,
we have

Tz0(∂Bp1 ,p2) = {α ∈ Cn
∶Rz0′α = 0}, T(1,0)z0 (∂Bp1 ,p2) = {α ∈ Cn

∶ α1 = 0}.

_eorem 3.2 Let f ∶Bp1 ,p2 → Bp1 ,p2 be a holomorphic mapping and let z0 =

(e iθ , 0, . . . , 0)′ ∈ ∂Bp1 ,p2 , where p1 ≥ 1, p2 > 1 and θ ∈ R. If f is holomorphic at
z0 and f (z0) = z0, then for the eigenvalues λ, µ2 , . . . , µn of J f (z0), the following ûve
statements hold.

(i) λ ≥ ∣1 − f1(0)e iθ ∣2

1 − ∣ f1(0)∣2
> 0.

(ii) z0 is an eigenvector of J f (z0)
′
with respect to λ. _at is, J f (z0)

′
z0 = λz0 .

(iii) µ j ∈ C and ∣µ j ∣ ≤ λ
1
p2 for j = 2, . . . , n.

(iv) For any µ j , there exists α j ∈ T(1,0)z0 (∂Bp1 ,p2) ∩ ∂Bp1 ,p2 such that

J f (z0)α j = µ jα j , j = 2, . . . , n.

(v) ∣det J f (z0)∣ ≤ λλ
n−1
p2 , ∣trJ f (z0)∣ ≤ λ + λ

1
p2 (n − 1).

Moreover, the inequalities in (i), (iii), and (v) are sharp.

Proof _e proof is divided into ûve steps.
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Step 1. Suppose that f is holomorphic in a neighborhood V of z0. _en
f (∂Bp1 ,p2 ⋂V) and ∂Bp1 ,p2 are tangent at z0 . _is means that the tangent space
and holomorphic tangent space to f (∂Bp1 ,p2 ⋂V) at f (z0) = z0 are contained in
Tz0(∂Bp1 ,p2) and T(1,0)z0 (∂Bp1 ,p2), respectively. Notice that for any α ∈ Tz0(∂Bp1 ,p2),
J f (z0)α is a tangent vector of f (∂Bp1 ,p2 ⋂V) at f (z0) = z0 . _en J f (z0)α ∈

Tz0(∂Bp1 ,p2). _is gives Rz0′ J f (z0)α = 0 for any α ∈ Tz0(∂Bp1 ,p2). So there exists
λ ∈ R such that z0′ J f (z0) = λz0′. _at is

(3.1) J f (z0)
′
z0 = λz0 .

It follows that λ is an eigenvalue of J f (z0)
′
, and z0 is an eigenvector of J f (z0)

′
with

respect to λ. Since λ is a real number, we know that λ is also an eigenvalue of J f (z0).
_e proof of (ii) is complete.

Step 2. Take g(ζ) = z0′ f (ζz0) = e−iθ f1(ζz0), ζ ∈ D. _en g∶D → D is a holomorphic
function, and g is holomorphic at 1 with g(1) = 1. Moreover, (3.1) yields

g′(1) = e−iθ J f1(z0)z0 = z0′ J f (z0)z0 = λ.

_us, by (1.1) we obtain

λ = g′(1) ≥ ∣1 − g(0)∣2

1 − ∣g(0)∣2
=

∣1 − f1(0)e iθ ∣2

1 − ∣ f1(0)∣2
> 0.

_e proof of (i) is complete.

Step 3. Since for any α ∈ T(1,0)z0 (∂Bp1 ,p2), we have J f (z0)α ∈ T(1,0)z0 (∂Bp1 ,p2). Hence,
J f (z0) is a linear transformation on the (n − 1)-dimensional complex vector space
T(1,0)z0 (∂Bp1 ,p2). _is shows that there are µ2 , . . . , µn ∈ C such that µ2 , . . . , µn are the
all eigenvalues of the linear transformation J f (z0) on T(1,0)z0 (∂Bp1 ,p2). So there exist
eigenvectors α j ∈ T(1,0)z0 (∂Bp1 ,p2) ∩ ∂Bp1 ,p2 such that

J f (z0)α j = µ jα j , j = 2, . . . , n.

_e proof of (iv) is complete.
Take the eigenvector ξ ∈ T(1,0)z0 (∂Bp1 ,p2) ∩ ∂Bp1 ,p2 of J f (z0) with respect to µ j ,

j = 2, . . . , n. _en

ξ = (0, ξ2 , . . . , ξn)′ , ∣ξ2∣p2 +⋯ + ∣ξn ∣p2 = 1 and J f (z0)ξ = µ jξ, j = 2, . . . , n.

It follows that

(3.2) ∣µ j ∣
p2 = ∣J f2(z0)ξ∣

p2 +⋯ + ∣J fn(z0)ξ∣
p2 .

For any t ∈ (0, 1), by Lemmas 2.1–2.3, we have

∣J f2(tz0)ξ∣p2 +⋯ + ∣J fn(tz0)ξ∣p2

1 − ∣ f1(tz0)∣p1
≤[FK( f (tz0), J f (tz0)ξ)]

p2

≤[FK(tz0 , ξ)]p2

=
∣ξ2∣p2 +⋯ + ∣ξn ∣p2

1 − tp1
=

1
1 − tp1

.
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_is implies

(3.3) ∣J f2(tz0)ξ∣
p2 +⋯ + ∣J fn(tz0)ξ∣

p2 ≤
1 − ∣ f1(tz0)∣p1

1 − tp1
.

Notice that f1(tz0) = e iθz0′ f (tz0) and
f (tz0) = z0 − J f (z0)z0(1 − t) + O(∣t − 1∣2) (t → 1−).

_en

f1(tz0) =e iθ[1 − z0′ J f (z0)z0(1 − t) + O(∣t − 1∣2)]

=e iθ[1 − λ(1 − t) + O(∣t − 1∣2)] (t → 1−).

_is gives

∣ f1(tz0)∣
p1
= ∣ 1 − λ(1 − t) + O(∣t − 1∣2)∣

p1
= 1 − p1λ(1 − t) + O(∣t − 1∣2) (t → 1−).

_us,

lim
t→1−

1 − ∣ f1(tz0)∣p1

1 − tp1
= lim

t→1−
p1λ(1 − t)
1 − tp1

= λ.

_is, together with (3.2) and (3.3), yields

∣µ j ∣ ≤ λ
1
p2 , j = 2, . . . , n.

_e proof of (iii) is complete. Moreover, (v) can be easily obtained from (iii).

Step 4. We claim that λ, µ2 , . . . , µn are the all eigenvalues of the linear transformation
J f (z0) on the n-dimensional complex vector space Cn .
Assume that α2 , . . . , αn is a standard orthogonal basis of T(1,0)z0 (∂Bp1 ,p2). _en

z0 , α2 , . . . , αn becomes a standard orthogonal basis of Cn . Write

U = (z0 , α2 , . . . , αn).

_en U is a unitary squarematrix of order n. Since J f (z0)
′
z0 = λz0, we have

J f (z0)
′
(z0 , α2 , . . . , αn) = (z0 , α2 , . . . , αn)(

λ B′

0 V ′) ,

where V is a complex squarematrix of order (n − 1) and B is an (n − 1) × 1 complex
matrix. It follows that

U ′ J f (z0) = (
λ 0
B V)U ′

or J f (z0)U = U (
λ 0
B V) .

_at is,

(3.4) J f (z0)(z0 , α2 , . . . , αn) = (z0 , α2 , . . . , αn)(
λ 0
B V) .

Hence,

(3.5) J f (z0)(α2 , . . . , αn) = (α2 ,⋯, αn)V .

Notice that J f (z0) is a linear transformation on the (n−1)-dimensional complex vec-
tor space T(1,0)z0 (∂Bp1 ,p2). _is, togetherwith (3.5), shows that the all roots of the char-
acteristic polynomial det(xIn−1−V) of J f (z0) are just µ2 , . . . , µn . If λ ∉ {µ2 , . . . , µn},
then λ, µ2 , . . . , µn are the all eigenvalues of the linear transformation J f (z0) on Cn .
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_is means that the claim holds. Suppose that λ = µ i0 , where µ i0 is a root of order k
of det(xIn−1 −V), and notice that J f (z0) is also a linear transformation onCn . _en
(3.4) and (3.5) imply that the characteristic polynomial of J f (z0) is just

det[xIn − (
λ 0
B V)] = (x − λ)det(xIn−1 − V).

_us, λ = µ i0 is a root of order (k + 1) of the characteristic polynomial of J f (z0).
_erefore, λ, µ2 , . . . , µn are the all eigenvalues of the linear transformation J f (z0) on
Cn .

Step 5. We claim that the inequalities in (i), (iii), and (v) are sharp, and we break the
proof into two cases.

Case 1. f1(0) = 0. Without loss of generality, we assume that the positive integer
m ≥ 2. Set the positive integer k such that p2

p1
k ≥ m − 1. Take

f (z) = (e−i(m−1)θzm
1 , e−ikθm

1
p2 zk

1 z2 , . . . , e−ikθm
1
p2 zk

1 zn)′ .

_en for any z ∈ Bp1 ,p2 , we have

∣ f1(z)∣p1 + ∣ f2(z)∣p2 +⋯ + ∣ fn(z)∣p2 = ∣z1∣p1m +m∣z1∣p2k(∣z2∣p2 +⋯ + ∣zn ∣p2)

< ∣z1∣p1m +m∣z1∣p2k(1 − ∣z1∣p1)

= ∣z1∣p1m +m∣z1∣p1
p2
p1

k
(1 − ∣z1∣p1)

= xm
+mx

p2
p1

k
(1 − x),

where x = ∣z1∣p1 ∈ [0, 1). Notice that

xm
+mx

p2
p1

k
(1 − x) ≤ xm

+mxm−1
(1 − x) < xm

+ (1 + x +⋯ + xm−1
)(1 − x)

= xm
+ (1 − xm

) = 1.

Hence, f ∶Bp1 ,p2 → Bp1 ,p2 is a holomorphicmapping, and f is holomorphic at z0 with
f (z0) = z0. Moreover, we obtain

J f (z0) =

⎛
⎜
⎜
⎜
⎜
⎝

m 0 ⋯ 0
0 m

1
p2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ m
1
p2

⎞
⎟
⎟
⎟
⎟
⎠

.

_is means that the inequalities are sharp in (iii) and (v).

Case 2. f1(0) /= 0. Take

f (z) = (e iθ(1 − r) + rz1 , r
1
p2 z2 , . . . , r

1
p2 zn)′ ,

where r ∈ (0, 1). _en for each z ∈ Bp1 ,p2 , we get

∣ f1(z)∣p1 + ∣ f2(z)∣p2 +⋯ + ∣ fn(z)∣p2 = ∣e iθ(1 − r) + rz1∣p1 + r(∣z2∣p2 +⋯ + ∣zn ∣p2)

< ((1 − r) + r∣z1∣)p1 + r(1 − ∣z1∣p1)

= (1 − r + rx)p1 + r(1 − x p1),
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where x = ∣z1∣ ∈ [0, 1). Set

g(x) = (1 − r + rx)p1 + r(1 − x p1), x ∈ [0, 1].

_en g′(x) = p1r(1−r+rx)p1−1− p1rx p1−1. Since 1−r+rx ≥ x and p1−1 ≥ 0,we know
that g′(x) ≥ 0 for all x ∈ [0, 1]. _is shows that g(x) is an increasing function on [0,1].
_us, g(x) ≤ g(1) = 1 for all x ∈ [0, 1). Hence, f ∶Bp1 ,p2 → Bp1 ,p2 is a holomorphic
mapping. Moreover, f is holomorphic at z0 with f (z0) = z0, f1(0) /= 0 and

J f (z0) =

⎛
⎜
⎜
⎜
⎜
⎝

r 0 ⋯ 0
0 r

1
p2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ r
1
p2

⎞
⎟
⎟
⎟
⎟
⎠

.

It follows that the inequalities are sharp in (iii) and (v).
Finally, we claim that the inequality is sharp in (i). Take

f (z) = (
z1 − re iθ

1 − re−iθz1
, 0, . . . , 0)

′

,

where r ∈ (0, 1). _en f ∶Bp1 ,p2 → Bp1 ,p2 is a holomorphic mapping, and f is holo-
morphic at z0 with f (z0) = z0. Furthermore,

J f (z0) =
⎛
⎜
⎜
⎜
⎝

1+r
1−r 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

⎞
⎟
⎟
⎟
⎠

.

_is gives λ = 1+r
1−r . By a straightforward calculation, we obtain

∣1 − f1(0)e iθ ∣2

1 − ∣ f1(0)∣2
=

(1 + r)2

1 − r2
=

1 + r
1 − r

= λ,

which implies that the inequality is sharp in (i). _e proof is complete.

Remark 3.3 From the proof of_eorem 3.2 it is clear that we need only to assume
that themapping f is C1 up to the boundary of Bp1 ,p2 near z0.

Remark 3.4 When n = 1 and z0 = 1, _eorem 3.2 reduces to _eorem 1.1, which
extends the boundary Schwarz lemma for holomorphic self-mappings of the unit disk
to the egg domain Bp1 ,p2(p1 ≥ 1, p2 > 1).

Remark 3.5 If p1 = p2 = 2, then_eorem 3.2 is just _eorem 1.5 at the special point
z0 = (e iθ , 0, . . . , 0)′ ∈ ∂Bn .
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