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A Note on Conjectures of F. Galvin
and R. Rado
François G. Dorais

Abstract. In 1968, Galvin conjectured that an uncountable poset P is the union of countably many
chains if and only if this is true for every subposet Q ⊆ P with size ℵ1. In 1981, Rado formulated a
similar conjecture that an uncountable interval graph G is countably chromatic if and only if this is
true for every induced subgraph H ⊆ G with size ℵ1. Todorčević has shown that Rado’s conjecture
is consistent relative to the existence of a supercompact cardinal, while the consistency of Galvin’s
conjecture remains open. In this paper, we survey and collect a variety of results related to these two
conjectures. We also show that the extension of Rado’s conjecture to the class of all chordal graphs is
relatively consistent with the existence of a supercompact cardinal.

1 Introduction

Throughout the following, G will denote a (simple loopless) graph with vertex set
V = VG and edge relation E = EG. For a set X ⊆ V , GX denotes the induced sub-
graph with vertex set X. A clique of G is a set X ⊆ V such that GX is the complete
graph on X. Dually, an anticlique is a set X ⊆ V such that GX is the empty graph
on X. The conjectures of Galvin and Rado concern equalities between certain cardi-
nal characteristics in certain classes of graphs. These cardinal characteristics are the
following.

• The clique number is ω(G) = sup {|X| : X is a clique of G}.
• The stability number is α(G) = sup {|X| : X is an anticlique of G}.
• The chromatic number χ(G) is the smallest size of a cover of V by anticliques.
• The clique-cover number θ(G) is the smallest size of a cover of V by cliques.

Clearly, ω(G) ≤ χ(G) and α(G) ≤ θ(G). In view of this, it is natural to ask when
the equalities ω(G) = χ(G) and α(G) = θ(G) hold. It is easy to check that both
equalities fail for the odd cycle C2n+1 when n ≥ 2. In 1960, Berge conjectured that
the minimal finite graphs for which these equalities fail are precisely the odd cycles
C2n+1 and their complements C2n+1, for n ≥ 2. This fact, the Strong Perfect Graph
Theorem, was established by Chudovsky, Robertson, Seymour, and Thomas in 2002.

Thus, if G is a finite graph that contains no induced copies of the odd cycle C2n+1 of
length 2n + 1 nor its complement C2n+1 for n ≥ 2, then the equalities ω(G) = χ(G)
and α(G) = θ(G) hold not only for G, but also for every induced subgraph of G.
In fact, we see that the first equality holds for every induced subgraph of G if and
only if the second equality holds for every induced subgraph of G. This celebrated
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equivalence, the Perfect Graph Theorem, was also conjectured by Berge in 1960 and
proved by Lovász in 1972.

Theorem 1.1 (Lovász [8, 9], Chudnovsky–Robertson–Seymour–Thomas [3])
The following are equivalent for every graph G:

(i) G contains no induced copies of the odd cycle C2n+1 nor its complement C2n+1 for
n ≥ 2;

(ii) ω(GX) = χ(GX) for every finite X ⊆ V ;
(iii) α(GX) = θ(GX) for every finite X ⊆ V ;
(iv) α(GX)ω(GX) ≥ |X| for every finite X ⊆ V ,

where GX denotes the induced subgraph of G with vertex set X.

A graph G that satisfies all of these equivalent properties is known as a perfect
graph.

Several common types of graphs are known to be perfect. The first to be iden-
tified as such is probably the class of comparability graphs. Recall that a graph is a
comparability graph if it has a transitive orientation or, equivalently, if it is the graph
induced by the comparability relation of a partial ordering of the vertices.

Theorem 1.2 (Dilworth [4]) Comparability graphs are perfect.

Another important class of perfect graphs is the class of chordal graphs. Recall that
a chordal graph (also known as a triangulated graph) is a graph that has no induced
copies of the cycle Cn for n ≥ 4. (See Theorem 4.1 for an alternate characterization.)

Theorem 1.3 (Hajnal–Surányi [6], Berge [2]) Chordal graphs are perfect.

Interval graphs (i.e., intersection graphs of families of non-empty convex subsets
of a linear order) are also perfect. This can be seen either because every interval
graph is a chordal graph, or because the complement of every interval graph is a
comparability graph.

The following result is a typical use of the compactness theorem in graph theory.

Theorem 1.4 Let G = (V, E) be a graph and let k be a positive integer.

(i) χ(G) ≤ k if and only if χ(GX) ≤ k for every finite X ⊆ V .
(ii) θ(G) ≤ k if and only if θ(GX) ≤ k for every finite X ⊆ V .

For perfect graphs, we have a very strong form of this fact.

Corollary 1.5 Let G be a perfect graph and let k be a positive integer.

(i) χ(G) ≤ k if and only if χ(GX) ≤ k for every X ∈ [V ]k+1.
(ii) θ(G) ≤ k if and only if θ(GX) ≤ k for every X ∈ [V ]k+1.

Proof It is enough to prove (i), since (ii) is dual. Note that χ(GX) ≤ k for every
X ∈ [V ]k+1 if and only if ω(G) ≤ k. By Theorem 1.1, ω(G) ≤ k if and only if
χ(GX) ≤ k for every finite X ⊆ V .

It is natural to ask whether the same holds if one replaces k by an infinite cardinal
κ and k + 1 by it cardinal successor κ+. We will concentrate on the first case, κ = ℵ0

and κ+ = ℵ1.
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Definition 1.6 Let Γ be a class of graphs. We use Cχ and Cθ to denote the following
dual statements.

(Cχ) For every G ∈ Γ, χ(G) ≤ ℵ0 if and only if χ(GX) ≤ ℵ0 for every X ∈ [V ]ℵ1 .
(Cθ) For every G ∈ Γ, θ(G) ≤ ℵ0 if and only if θ(GX) ≤ ℵ0 for every X ∈ [V ]ℵ1 .

In 1968, Galvin conjectured that Cθ holds for the class of comparability graphs.1

In 1981, Rado [12] conjectured that the class of interval graphs has the property
Cχ. The consistency, relative to the existence of a supercompact cardinal, of Rado’s
conjecture was then established by Todorčević [13] in 1983. In [13, 14], Todorčević
shows that large cardinals are indeed necessary to establish the consistency of Rado’s
conjecture.

In this paper, we will show that Todorčević’s result on the consistency of Rado’s
conjecture can be extended to the consistency of Cχ for the class of all chordal graphs.

Theorem 1.7 Each of the following statements implies the next:

(i) Cχ holds for the class of σ-treeable graphs;
(ii) Cχ holds for the class of chordal graphs;
(iii) Cχ holds for the class of interval graphs (Rado’s Conjecture).

Furthermore, these statements are all consistent relative to the existence of a supercom-
pact cardinal.

This theorem will be proved in Section 4 (where we also define σ-treeable graphs).
We do not know if any of the implications of Theorem 1.7 are strict, since the same
technique is used to prove the consistency in all cases.

We will also provide a proof of the following result of Todorčević that shows that
Rado’s conjecture is equivalent to the restriction of Galvin’s conjecture to the class of
finite-dimensional comparability graphs.

Theorem 1.8 (Todorčević) The following are equivalent:

(i) Cχ holds for the class of interval graphs (Rado’s Conjecture);
(ii) Cχ holds for the class of 2-dimensional comparability graphs;
(iii) Cθ holds for the class of 2-dimensional comparability graphs;
(iv) Cθ holds for the class of finite-dimensional comparability graphs.

The equivalence of (i) and (iv) appears without proof in [15, Remark 4.6]. A proof
of this theorem will be provided in Section 3 (where we also define n-dimensional
comparability graphs).

While the consistency of Galvin’s conjecture remains open, the above results lead
us to the following more general question.

Question 1.9 Is it consistent, relative to large cardinals, that Cχ and, equivalently,
Cθ hold for the class of perfect graphs?

1Galvin never published the conjecture, but he kindly communicated to us that the conjecture appears
in a diary entry dated August 4, 1968.
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In view of Theorem 1.7, it is natural to ask about Cθ for the class of chordal graphs.
It turns out that Cθ is simply true for this class. In fact, property Cθ holds for the
broader class of squarefree graphs, i.e., graphs that do not contain induced copies of
the square C4. This follows from a result of Wagon.

Theorem 1.10 (Wagon [17]) Suppose G is a squarefree graph such that α(G) ≤ ℵ0.
Then θ(G) > ℵ0 if and only if G contains an induced copy of the comparability graph of
a Suslin tree.

Since Suslin trees have size ℵ1, we have the following immediate corollary.

Corollary 1.11 Cθ holds for the class of squarefree graphs, and hence for the class of
chordal graphs.

The techniques used by Wagon suggest that many squarefree graphs are σ-treeable,
so there is a chance that the dual of Corollary 1.11 is consistent relative to large car-
dinals.

Question 1.12 Is it consistent, relative to large cardinals, that Cχ holds for the class
of squarefree graphs?

2 Results of Abraham and Todorčević

In this section we summarize some earlier theorems that shed some light on the con-
jectures of Galvin and Rado. The first is due to Abraham, and the second is due to
Todorčević. Abraham’s result shows that Galvin’s conjecture holds for the class of
comparability graphs without infinite anticliques. Todorčević’s result gives several
equivalent forms of Rado’s Conjecture in terms of one-dimensional partition rela-
tions for posets.

In 1963, Perles [10] showed that Dilworth’s theorem (α(G) = θ(G) for finite com-
parability graphs) fails for infinite comparability graphs by observing that the carte-
sian product ω1 × ω1 has no infinite antichains but cannot be covered by countably
many chains. This example can be generalized as follows.

Definition 2.1 (Abraham [1]) A poset P is of Perles type if there is an enumeration
〈pα : α < ω1〉 of P and a function f : ω1 → ω1 such that | f−1(α)| = ℵ1 for every
α < ω1, and α < β ∧ f (α) > f (β) imply that pα and pβ are incomparable.

This definition captures the essential features of ω1 × ω1 that were used in Per-
les’s counterexample. Abraham [1] then showed that these are essentially the only
counterexamples to Dilworth’s theorem that do not have infinite antichains.

Theorem 2.2 (Abraham [1]) Suppose P is a poset without infinite antichains. Then
P is the union of countably many chains if and only if it does not contain a poset of Perles
type.

Since the posets of Perles type all have size ℵ1, we have the following corollary.

Corollary 2.3 Cθ holds for the class comparability graphs without infinite anticliques.
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To state Todorčević’s result, it is convenient to introduce some “Hungarian no-
tation” for one-dimensional partitions of posets. If ψ is a partial order type and κ
is a cardinal, we write P→(ψ)1

κ if for every coloring c : P → κ, there is a Q ⊆ P
with order type ψ such that c is constant on Q; P9(ψ)1

κ denotes the negation of this
statement. Generalizing this notation a little, if ψ1, . . . , ψk are partial order types and
κ is a cardinal, we write P→(ψ1 ∨ · · · ∨ ψk)1

κ if for every coloring c : P → κ, there
is a Q ⊆ P, with order type among ψ1, . . . , ψk, such that c is constant on Q; again
P9(ψ1 ∨ · · · ∨ ψk)1

κ denotes the negation of this statement.
We will mostly be interested in the negative cases when ψ ∈ {2, ω, ω∗}. Indeed,

P9(2)1
κ simply means that P is the union of at most κ antichains, i.e., θ(GP) ≤ κ

where GP is the comparability graph of P. Similarly, φ9(ω∗)1
κ (resp. φ9(ω)1

κ) means
that P is the union of at most κwell-founded (resp. conversely well-founded) subsets.
Finally, φ9(ω ∨ ω∗)1

κ means that P is the union of κ subsets without infinite chains.

Theorem 2.4 (Todorčević [13]) The following are equivalent to Rado’s conjecture
(i.e., Cχ holds for the class of interval graphs).

(i) For every tree T, T9(2)1
ω if and only if U9(2)1

ω for every U ∈ [T]ℵ1 .
(ii) For every poset P, P9(ω)1

ω if and only if Q9(ω)1
ω for every Q ∈ [P]ℵ1 .

(iii) For every poset P, P9(ω∗)1
ω if and only if Q9(ω∗)1

ω for every Q ∈ [P]ℵ1 .
(iv) For every poset P, P9(ω∨ω∗)1

ω if and only if Q9(ω∨ω∗)1
ω for every Q ∈ [P]ℵ1 .

Proof The equivalence of Rado’s conjecture with (i) and (ii) is [13, Theorem 6]; (iii)
is equivalent to (ii), by duality; (iv) follows from the combination of (ii) and (iii);
(iv) implies (i), since T9(2)1

ω , T9(ω)1
ω , and T9(ω ∨ ω∗)1

ω are all equivalent for a
tree T.

3 Finite-Dimensional Comparability Graphs

An n-dimensional poset is a poset P whose order relation is the intersection of n linear
orders, i.e., if there are linear orders ≤1, . . . ,≤n on the points of P such that x ≤P

y ⇔ x ≤1 y ∧ · · · ∧ x ≤n y. It turns out that the dimension of a poset is an invariant
of its comparability graph.

Theorem 3.1 (Trotter–Moore–Sumner [16]) If the graph G has an n-dimensional
transitive orientation, then every transitive orientation of G is n-dimensional.

Thus, it makes sense to say that G is an n-dimensional comparability graph if G has
an n-dimensional transitive orientation.

The class of 2-dimensional comparability graphs is especially interesting, since it
is self-dual.

Theorem 3.2 (Pnueli–Lempel–Even [11]) A graph G is a 2-dimensional compara-
bility graph if and only if G and its complement G are both comparability graphs.

This last result immediately implies the equivalence of (ii) and (iii) in Theorem 1.8.
The next result shows that (iii) implies (iv) in Theorem 1.8. This establishes the
equivalence of the last three statements of Theorem 1.8.
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Theorem 3.3 If Cθ holds for the class of 2-dimensional comparability graphs, then Cθ
holds for the class of finite-dimensional comparability graphs.

Proof We proceed by induction on dimension. Suppose that Cθ holds for every
n-dimensional comparability graph. Let P = (V,≤) be a (n + 1)-dimensional poset.
Then there are an n-dimensional partial order ≤0 and a linear order ≤1 on V such
that u ≤ v ⇔ u ≤0 v ∧ u ≤1 v. Write P0 = (V,≤0) and P1 = (V,≤1). If every
U ∈ [V ]ℵ1 is the union of countably many ≤-chains, then it is also the union of
countably many ≤0-chains. Therefore, by the induction hypothesis, V is the union
of countably many ≤0-chains, say V =

⋃∞
n=0 Cn where each Cn is a ≤0-chain. Now

the restriction of ≤ to Cn is 2-dimensional as ≤0 and ≤1 are both linear orders on
Cn. Also, by hypothesis, every D ∈ [Cn]ℵ1 is the union of countably many ≤-chains.
Since Cθ holds for 2-dimensional comparability graphs, each Cn is itself the union of
countably many≤-chains. Gathering these smaller chains together, we find that V is
the union of countably many≤-chains.

For the last equivalent form of Theorem 1.8, we appeal to the results of Todorčević
and Abraham from the previous section.

Theorem 3.4 Rado’s conjecture implies that Cθ holds for the class of 2-dimensional
comparability graphs.

Proof Let P be a 2-dimensional poset and let P ′ be a poset whose comparability
graph is the complement of that of P. Assume that every Q ∈ [P]ℵ1 is the union of
countably many chains or, dually, every Q ′ ∈ [P ′]ℵ1 is the union of countably many
antichains. Then we have Q ′9(ω ∨ ω∗)1

ω (indeed Q ′9(2)1
ω) for every Q ′ ∈ [P ′]ℵ1 .

Hence, P ′9(ω∨ω∗)1
ω , by Theorem 2.4. Thus, P ′ is the union of countably many sets

each of which has no infinite chains. It follows by duality that P =
⋃∞

n=0 Rn where
each Rn has no infinite antichains. Now, every Q ∈ [Rn]ℵ1 ⊆ [P]ℵ1 is the union of
countably many chains. It follows from Corollary 2.3 that each Rn is the union of
countably many chains. Gathering these chains together, we see that P is the union
of countably many chains.

This shows that Rado’s conjecture implies Galvin’s conjecture for 2-dimensional
posets. For the converse, we show that Galvin’s conjecture for 2-dimensional posets
implies the first equivalent form of Rado’s conjecture in Theorem 2.4.

Theorem 3.5 If Cχ holds for the class of 2-dimensional comparability graphs, then,
for every tree T, we have T9(2)1

ω if and only if U9(2)1
ω for every U ∈ [T]ℵ1 .

Proof It suffices to observe that every tree T is a 2-dimensional poset, which can be
seen by lexicographically ordering T in two opposite ways.

4 Interval, Chordal, and σ-Treeable Graphs

The following characterization of chordal graphs is due to Fulkerson and Gross [5]
in the finite case; the infinite case follows by a simple application of the Compactness
Theorem. An orientation ~E of G = (V, E) is said to be a simplicial orientation if it is
acyclic and Sv = {u ∈ V : u ~E v} is a clique in G for every v ∈ V .
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Theorem 4.1 (Fulkerson–Gross [5]) A graph G = (V, E) is chordal if and only if it
has a simplicial orientation.

With this result, it is easy to show that interval graphs are chordal.

Corollary 4.2 Every interval graph is chordal.

Proof Let G = (V, E) be an interval graph as witnessed by the family of intervals
〈Iv : v ∈ V 〉 of a linear order L. Define u ~E v if and only if Iu ∩ Iv is a nonempty
initial subinterval of Iv. (If some of the intervals are equal, break ties using a linear
ordering of V .) It is easy to check that ~E is a simplicial orientation of V .

It follows immediately that (ii) implies (iii) in Theorem 1.7.
Before we define the class of σ-treeable graphs, let us make an observation to

motivate the definition. A poset R = (V, /) is ramified if the initial interval R[/ v] is
linearly ordered by / for each v ∈ V . Thus a tree is simply a well-founded ramified
poset.

Theorem 4.3 If G = (V, E) is a chordal graph, then the transitive closure of any
simplicial orientation of G is a ramified ordering of V .

Proof Let / be the transitive closure of a simplicial orientation~E of G. For v ∈ V , let
Sv = {w ∈ V : w ~E v}. Then define S0

v = {v} and Sn+1
v =

⋃
{Sw : w ∈ Sn

v}. Note
that S1

v = Sv and w E v if and only if w ∈
⋃∞

n=0 Sn
v .

We want to show that if u, v E w, then u E v or u D v. We proceed by induction
on m, where u ∈ Sm

w .
For m = 0, we have u = w and hence u D v.
For m = 1, let v = v0 ~E v1 ~E · · · ~E vn = w witness that v E w. Let p =

min {i : u / vi}. Note that u ~E vi for i = p, . . . , n. (This is clear for i = n, since
u E w by definition of Sw. Suppose that u ~E vi+1 and i ≥ p, then u, vi ∈ Svi+1 ,
which means that u ~E vi since Svi+1 is a clique and u / vi .) If p = 0, then it follows
immediately that u / v0 = v. If p > 0, then note that vp−1 ~E u or vp−1 = u, since
u, vp−1 ∈ Sup , Sup is a clique, and u 6~E vp−1. Therefore, v = v0 E vp−1 / u.

For m > 1, note that u ∈ Sx for some x ∈ Sm−1
w . By the induction hypothesis,

either x / v, x = v, or x . v. If x E v, then u / v by transitivity of /. If x . v, then the
result follows from the case m = 1, since u ∈ Sx = S1

x.

A graph G = (V, E) is σ-treeable if it is contained in the comparability graph of
a ramified ordering / of V that has the additional property that |V [/ v]| ≤ ℵ0 for
every v ∈ V . The next lemma will perhaps clarify our choice of terminology.

Lemma 4.4 If G = (V, E) is σ-treeable, as witnessed by the ramified ordering / of V ,
then there is a partition V =

⋃∞
n=0 Vn such that the restriction of / to each Vn is a tree

of height at most ω1.

Proof (Due to Galvin, cf. [13].) Fix a well-ordering ≺ of V . For each v ∈ V , let
fv : V [E v] → ω be an injection. Define, f : V → ω by f (u) = fv(u) where v is
the ≺-first element of V such that u E v. We claim that the restriction of / to each
Vn = f−1(n) is well-founded.
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Suppose that u0 D u1 D · · · is a descending sequence of elements of Vn. Let vi

be the ≺-first v ∈ V with ui E v. Note that fvi (ui) = f (ui) = n for each i < ω.
Note also that v0 � v1 � · · · . Since ≺ is a well-ordering, there are v and k such that
vi = v for i ≥ k. Since fv is an injection, we have ui = f−1

v (n) for i ≥ k. Thus
u0 D u1 D · · · is eventually constant, which shows that / is well-founded on Vn.

If G = (V, E) is any graph such that χ(GX) ≤ ℵ0 for every X ∈ [V ]ℵ1 , then we
certainly have ω(G) ≤ ℵ0. If, moreover, G is chordal and~E is a simplicial orientation
of G, then |Sv| ≤ ℵ0 for each v ∈ V . It then follows that |V [/ v]| ≤ ℵ0 for each
v ∈ V where / is the transitive closure of~E. Therefore, every chordal graph such that
χ(GX) ≤ ℵ0 for every X ∈ [V ]ℵ1 is σ-treeable. This shows that (i) implies (ii) in
Theorem 1.7.

To complete the proof of Theorem 1.7, it remains to prove the consistency of Cχ
for the class of σ-treeable graphs, relative to the existence of a supercompact cardinal.
Rather than giving a forcing proof the consistency of Cχ for σ-treeable graphs, as
in [13], we will use the Global Game Reflection Principle (GRP+) of [7]. Let S ⊆
(A×B)<ω1 be a tree and let [S] = {s ∈ (A×B)ω1 : (∀α < ω1)(s�α ∈ S)}. Consider a
two player game G(S) of lengthω1 where in each roundα < ω1, Player I plays aα ∈ A,
Player II responds with bα ∈ B, and Player II wins if 〈(aα, bα) : α < ω1〉 ∈ [S]. If
X ⊆ A, then the restricted game G(S|X) is defined similarly except that Player I can
only play elements of X.

GRP+ If S ⊆ (A × B)<ω1 is a tree, C ⊆ [A]ℵ1 is an ω1-club, and Player II has a
winning strategy in the restricted game G(S|X) for every X ∈ C, then Player II has
a winning strategy in the unrestricted game G(S).

It is known that this principle has considerable large cardinal strength, but no more
than a supercompact cardinal. In fact, the consistency of GRP+ can be obtained by
the Lévy collapse of a supercompact cardinal to ℵ2.

Theorem 4.5 (König [7]) If κ is supercompact, then Coll(ℵ1, <κ) 
 GRP+.

It is also observed in [7] that Rado’s Conjecture follows from GRP+. Here we
prove the more general result that GRP+ implies Cχ for σ-treeable graphs.

Theorem 4.6 GRP+ implies that Cχ holds for σ-treeable graphs.

Proof Let G = (V, E) be a σ-treeable graph as witnessed by the partial ordering / of
V . By Lemma 4.4, we may assume that (V, /) is a tree of height at most ω1.

Consider the game Gχ(G) of length ω1 where, in each round α < ω1, Player I
plays vα ∈ V , Player II responds with cα ∈ ω, and Player II wins if and only if
vα E vβ ⇒ cα 6= cβ for all α < β < ω1. The fact that χ(GW ) ≤ ℵ0 for every
W ∈ [V ]ℵ1 clearly implies that Player II has a winning strategy for the restricted game
Gχ(G|W ). Therefore, by GRP+, Player II has a winning strategy in the unrestricted
game Gχ(G).

Define the coloring c : V → ω as follows. Suppose that v ∈ V has height η < ω1

and let 〈vα : α ≤ η〉 enumerate the branch V [E v] in /-order (so vη = v). Consider
the sequence 〈vα : α ≤ η〉 as a sequence of moves for Player I in the game Gχ(G)
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and let 〈cα : α ≤ η〉 be the sequence of Player II responses according to her winning
strategy. Then set c(v) = cη . Note that cα = c(vα) for every α ≤ η. Since Player II
was using her winning strategy in this play, it follows that vα E vη ⇒ c(vα) = cα 6=
cη = c(vη). Therefore, c : V → ω is a proper coloring of G and hence χ(G) ≤ ℵ0.
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[13] S. Todorčević, On a conjecture of R. Rado. J. London Math. Soc. (2) 27(1983), no. 1, 1–8.

http://dx.doi.org/10.1112/jlms/s2-27.1.1
[14] , Conjectures of Rado and Chang and cardinal arithmetic. In: Finite and infinite

combinatorics in sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
411, Kluwer Acad. Publ., Dordrecht, 1993, pp. 385–398.

[15] , Combinatorial dichotomies in set theory, Bull. Symbolic Logic, 17(2011), no. 1, 1–72.
http://dx.doi.org/10.2178/bsl/1294186662

[16] W. T. Trotter, Jr., J. I. Moore, Jr., and D. P. Sumner, The dimension of a comparability graph. Proc.
Amer. Math. Soc. 60(1976), 35–38. http://dx.doi.org/10.1090/S0002-9939-1976-0417001-6

[17] S. Wagon, Infinite triangulated graphs. Discrete Math. 22(1978), no. 2, 183–189.
http://dx.doi.org/10.1016/0012-365X(78)90123-1

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109
e-mail: dorais@umich.edu

https://doi.org/10.4153/CMB-2011-192-8 Published online by Cambridge University Press

http://dx.doi.org/10.1007/BF00337691
http://dx.doi.org/10.4007/annals.2006.164.51
http://dx.doi.org/10.2307/1969503
http://dx.doi.org/10.1007/s00153-003-0211-1
http://dx.doi.org/10.1016/0012-365X(72)90006-4
http://dx.doi.org/10.1016/0095-8956(72)90045-7
http://dx.doi.org/10.1007/BF02759806
http://dx.doi.org/10.4153/CJM-1971-016-5
http://dx.doi.org/10.1016/0012-365X(81)90208-9
http://dx.doi.org/10.1112/jlms/s2-27.1.1
http://dx.doi.org/10.2178/bsl/1294186662
http://dx.doi.org/10.1090/S0002-9939-1976-0417001-6
http://dx.doi.org/10.1016/0012-365X(78)90123-1
https://doi.org/10.4153/CMB-2011-192-8

