Canad. Math. Bull. Vol. **54** (4), 2011 pp. 619–629 doi:10.4153/CMB-2011-042-5 © Canadian Mathematical Society 2011

Artinian and Non-Artinian Local Cohomology Modules

Mohammad T. Dibaei and Alireza Vahidi

Abstract. Let *M* be a finite module over a commutative noetherian ring *R*. For ideals \mathfrak{a} and \mathfrak{b} of *R*, the relations between cohomological dimensions of *M* with respect to \mathfrak{a} , \mathfrak{b} , $\mathfrak{a} \cap \mathfrak{b}$ and $\mathfrak{a} + \mathfrak{b}$ are studied. When *R* is local, it is shown that *M* is generalized Cohen–Macaulay if there exists an ideal \mathfrak{a} such that all local cohomology modules of *M* with respect to \mathfrak{a} have finite lengths. Also, when *r* is an integer such that $\mathfrak{0} \leq r < \dim_R(M)$, any maximal element \mathfrak{q} of the non-empty set of ideals { $\mathfrak{a} : H_{\mathfrak{a}}^i(M)$ is not artinian for some $i, i \geq r$ } is a prime ideal, and all Bass numbers of $H_{\mathfrak{q}}^i(M)$ are finite for all $i \geq r$.

1 Introduction

Throughout, *R* is a commutative noetherian ring; \mathfrak{a} is a proper ideal of *R*; *X* and *M* are non-zero *R*-modules, and *M* is finite (*i.e.*, finitely generated). Recall that the *i*-th local cohomology functor $H^i_{\mathfrak{a}}$ is the *i*-th right derived functor of the \mathfrak{a} -torsion functor $\Gamma_{\mathfrak{a}}$. Also, the cohomological dimension of *X* with respect to \mathfrak{a} , denoted by $cd(\mathfrak{a}, X)$, is defined as

$$cd(\mathfrak{a}, X) := \sup\{i : \mathrm{H}^{i}_{\mathfrak{a}}(X) \neq 0\}.$$

In Section 2, we discuss the arithmetic of cohomological dimensions. We show that the inequalities $cd(\mathfrak{a} + \mathfrak{b}, M) \leq cd(\mathfrak{a}, M) + cd(\mathfrak{b}, M)$ and $cd(\mathfrak{a} + \mathfrak{b}, X) \leq ara(\mathfrak{a}) + cd(\mathfrak{b}, X)$ hold true, and we find some equivalent conditions for which each inequality becomes an equality.

In Section 3, we study artinian local cohomology modules. We first observe that over a local ring (R, \mathfrak{m}) if there is an integer n such that $\dim_R(\operatorname{H}^i_\mathfrak{a}(X)) \leq 0$ for all $i \leq n$ (respectively, for all $i \geq n$), then $\operatorname{H}^i_\mathfrak{a}(X) \cong \operatorname{H}^i_\mathfrak{m}(X)$ for all $i \leq n$ (respectively, for all $i \geq n + \operatorname{ara}(\mathfrak{m}/\mathfrak{a})$) (Theorem 3.2). In this situation, if X is finite, then $\operatorname{H}^i_\mathfrak{a}(X)$ is artinian for all $i \leq n$ (respectively, for all $i \geq n + \operatorname{cd}(\mathfrak{m}/\mathfrak{a}, X)$), which is related to the third of Huneke's four problem in local cohomology [11]. Here, for ideals $\mathfrak{a} \subseteq \mathfrak{b}$, $\operatorname{cd}(\mathfrak{b}/\mathfrak{a}, X)$ is introduced to be the infimum of the set { $\operatorname{cd}(\mathfrak{c}, X) : \mathfrak{c}$ is an ideal of R and $\sqrt{\mathfrak{b}} = \sqrt{\mathfrak{c} + \mathfrak{a}}$. It is deduced that M is generalized Cohen–Macaulay if there exists an ideal \mathfrak{a} such that all local cohomology modules of M with respect to \mathfrak{a} have finite lengths (Corollary 3.4).

Section 4 is devoted to the study of the non-artinianness of local cohomology modules. Note that $cd(a + Rx, X) \le cd(a, X) + 1$ for all $x \in R$ [9, Lemma 2.5]. We

Received by the editors September 27, 2008; revised November 17, 2008.

Published electronically March 11, 2011.

M. T. Dibaei was supported by a grant from IPM No. 87130117.

AMS subject classification: 13D45, 13E10.

Keywords: local cohomology modules, cohomological dimensions, Bass numbers.

show that if there exist $x_1, \ldots, x_n \in R$ such that $cd(\mathfrak{a}+(x_1, \ldots, x_n), X) = cd(\mathfrak{a}, X) + n$, then dim_R(H^{cd(a,X)}_a(X)) $\geq n$ and so H^{cd(a,X)}_a(X) is not artinian (Corollary 4.1). For each integer $r, 0 \le r < d$ ($d := \dim_R(M)$), we introduce $\mathcal{L}^r(M)$, the set of all ideals a for which $H^i_a(M)$ is not artinian for some $i \ge r$. It is evident that if d > 0, then $\mathcal{L}^{r}(M)$ is not empty. We show that any maximal element q of $\mathcal{L}^{r}(M)$ is a prime ideal and that all Bass numbers of $H_{\alpha}^{i}(M)$ are finite for all $i \geq r$. We conclude that this statement generalizes [5, Corollary 2] (see Theorem 4.7 and its comment).

2 Arithmetic of Cohomological Dimensions

Assume that a, b are ideals of R and that X is an R-module. In this section, we study relationships between the numbers $cd(\mathfrak{a}, X)$, $cd(\mathfrak{b}, X)$, $cd(\mathfrak{a}+\mathfrak{b}, X)$, $cd(\mathfrak{a}\cap\mathfrak{b}, X)$ (= cd(ab, X)), ara(a), etc, which are interesting in themselves, and we use them to determine the artinianness and non-artinianness of certain local cohomology modules in the following sections.

Lemma 2.1 Let X be an R-module, and let t be a non-negative integer such that for all $r, 0 \leq r \leq t, H_{\mathfrak{a}}^{t-r}(H_{\mathfrak{b}}^{r}(X)) = 0$. Then $H_{\mathfrak{a}+\mathfrak{b}}^{t}(X)$ is also zero.

Proof By [14, Theorem 11.38], there is a Grothendieck spectral sequence

$$E_2^{p,q} := \mathrm{H}^p_{\mathfrak{a}}(\mathrm{H}^q_{\mathfrak{b}}(X)) \underset{p}{\Longrightarrow} \mathrm{H}^{p+q}_{\mathfrak{a}+\mathfrak{b}}(X).$$

For all $r, 0 \le r \le t$, we have $E_{\infty}^{t-r,r} = E_{t+2}^{t-r,r}$ since $E_i^{t-r-i,r+i-1} = 0 = E_i^{t-r+i,r+1-i}$ for all $i \ge t+2$. Note that $E_{t+2}^{t-r,r}$ is a subquotient of $E_2^{t-r,r}$, which is zero by assumption. Thus $E_{t+2}^{t-r,r}$ is zero, that is $E_{\infty}^{t-r,r} = 0$. There exists a finite filtration

$$0 = \phi^{t+1}H^t \subseteq \phi^t H^t \subseteq \cdots \subseteq \phi^1 H^t \subseteq \phi^0 H^t = H^t_{\mathfrak{a}+\mathfrak{b}}(X)$$

such that $E_{\infty}^{t-r,r} = \phi^{t-r} H^t / \phi^{t-r+1} H^t$ for all $r, 0 \le r \le t$. Therefore, we have

$$0 = \phi^{t+1}H^t = \phi^t H^t = \dots = \phi^1 H^t = \phi^0 H^t = H^t_{a+b}(X)$$

as desired.

The following corollary is the first application of the above lemma.

Corollary 2.2 For a finite R-module M, the following statements hold true.

- (i) $\operatorname{cd}(\mathfrak{a} + \mathfrak{b}, M) \leq \operatorname{cd}(\mathfrak{a}, M) + \operatorname{cd}(\mathfrak{b}, M).$
- $\begin{array}{ll} (\mathrm{ii}) & \mathrm{cd}(\mathfrak{a}\cap\mathfrak{b},M)\leq\mathrm{cd}(\mathfrak{a},M)+\mathrm{cd}(\mathfrak{b},M).\\ (\mathrm{iii}) & \mathrm{cd}(\mathfrak{a},M)\leq\sum_{\mathfrak{p}\in\mathrm{Min}(\mathfrak{a})}\mathrm{cd}(\mathfrak{p},M). \end{array}$

Proof (i) Assume that *t* is a non-negative integer such that $t > cd(\mathfrak{a}, M) + cd(\mathfrak{b}, M)$. We will show that $H^{t-r}_{\mathfrak{a}}(H^{r}_{\mathfrak{b}}(M)) = 0$ for all $r, 0 \leq r \leq t$. If $r > cd(\mathfrak{b}, M)$, then $H_{a}^{t-r}(H_{b}^{r}(M)) = 0$ by the definition of cohomological dimension. Otherwise, t - r > 0 $cd(\mathfrak{a}, M)$. Since $Supp_{\mathcal{B}}(H^{r}_{\mathfrak{h}}(M)) \subseteq Supp_{\mathcal{B}}(M)$, $cd(\mathfrak{a}, M) \geq cd(\mathfrak{a}, H^{r}_{\mathfrak{h}}(M))$ (see [6, Theorem 1.4]). Therefore, $H_{a}^{t-r}(H_{b}^{r}(M)) = 0$. Now, applying Lemma 2.1, we see that $H^t_{a+b}(M) = 0$, which yields the assertion.

(ii) Consider the Mayer–Vietoris exact sequence

$$0 \longrightarrow \Gamma_{\mathfrak{a}+\mathfrak{b}}(M) \longrightarrow \Gamma_{\mathfrak{a}}(M) \oplus \Gamma_{\mathfrak{b}}(M) \longrightarrow \Gamma_{\mathfrak{a}\cap\mathfrak{b}}(M) \longrightarrow \cdots$$
$$\cdots \longrightarrow H^{t}_{\mathfrak{a}+\mathfrak{b}}(M) \longrightarrow H^{t}_{\mathfrak{a}}(M) \oplus H^{t}_{\mathfrak{b}}(M) \longrightarrow H^{t}_{\mathfrak{a}\cap\mathfrak{b}}(M) \longrightarrow H^{t+1}_{\mathfrak{a}+\mathfrak{b}}(M) \longrightarrow \cdots,$$

and use part (i).

(iii) As $\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})} \mathfrak{p}$, the claim follows from part (ii).

Remark 2.3 In the above corollary, one may state more precise statements in certain cases as follows:

(ii') If $cd(\mathfrak{a}, M) > 0$ and $cd(\mathfrak{b}, M) > 0$, then

$$\operatorname{cd}(\mathfrak{a} \cap \mathfrak{b}, M) \leq \operatorname{cd}(\mathfrak{a}, M) + \operatorname{cd}(\mathfrak{b}, M) - 1.$$

(iii') If R is local and M is not \mathfrak{a} -torsion, then

$$\operatorname{cd}(\mathfrak{a}, M) \leq \sum_{\mathfrak{p}\in\operatorname{Min}(\mathfrak{a})} \operatorname{cd}(\mathfrak{p}, M) - |\operatorname{Min}(\mathfrak{a})| + 1.$$

Note that the proof of (ii') is similar to that of Corollary 2.2(ii). For (iii'), we have $cd(\mathfrak{p}, M) > 0$ for all $\mathfrak{p} \in Min(\mathfrak{a})$, since M is not \mathfrak{a} -torsion. The result follows by induction on $|Min(\mathfrak{a})|$.

For a general module *X*, not necessarily finite, we have the following result.

Corollary 2.4 Let X be an arbitrary R-module. Then the following statements hold.

(i) $\operatorname{cd}(\mathfrak{a} + \mathfrak{b}, X) \leq \operatorname{ara}(\mathfrak{a}) + \operatorname{cd}(\mathfrak{b}, X).$

(ii) $\operatorname{cd}(\mathfrak{a} \cap \mathfrak{b}, X) \leq \operatorname{ara}(\mathfrak{a}) + \operatorname{cd}(\mathfrak{b}, X).$

(iii) $\operatorname{cd}(\mathfrak{b}, X) \leq \operatorname{cd}(\mathfrak{a}, X) + \operatorname{ara}(\mathfrak{b}/\mathfrak{a})$ whenever $\mathfrak{a} \subseteq \mathfrak{b}$.

Proof The proofs of (i) and (ii) are similar to those of Corollary 2.2(i) and (ii), respectively. For (iii), let $e = cd(\mathfrak{a}, X)$ and $f = ara(\mathfrak{b}/\mathfrak{a})$. There exist $x_1, \ldots, x_f \in R$ such that $\sqrt{\mathfrak{b}} = \sqrt{(x_1, \ldots, x_f) + \mathfrak{a}}$. Now, use part (i).

We need some sufficient conditions for the isomorphism $H^s_{\mathfrak{a}}(H^t_{\mathfrak{b}}(X)) \cong H^{s+t}_{\mathfrak{a}+\mathfrak{b}}(X)$ for given non-negative integers *s* and *t*, which is crucial for the rest of the paper, *e.g.*, to determine equalities in Corollaries 2.2(i) and 2.4(i).

Lemma 2.5 Let X be an arbitrary R-module, and let s, t be non-negative integers such that

 $\begin{array}{ll} \text{(a)} & H_{a}^{s+t-i}(\mathrm{H}_{b}^{i}(X)) = 0 \text{ for all } i \in \{0, \cdots, s+t\} \setminus \{t\}, \\ \text{(b)} & H_{a}^{s+t-i+1}(\mathrm{H}_{b}^{i}(X)) = 0 \text{ for all } i \in \{0, \cdots, t-1\}, \text{ and} \\ \text{(c)} & H_{a}^{s+t-i-1}(\mathrm{H}_{b}^{i}(X)) = 0 \text{ for all } i \in \{t+1, \cdots, s+t\}. \end{array}$

Then we have the isomorphism $H^{s}_{\mathfrak{a}}(H^{t}_{\mathfrak{b}}(X)) \cong H^{s+t}_{\mathfrak{a}+\mathfrak{b}}(X)$.

https://doi.org/10.4153/CMB-2011-042-5 Published online by Cambridge University Press

Proof Consider the Grothendieck spectral sequence

$$E_2^{p,q} := \mathrm{H}^p_{\mathfrak{a}}(\mathrm{H}^q_{\mathfrak{b}}(X))_{\Longrightarrow} \mathrm{H}^{p+q}_{\mathfrak{a}+\mathfrak{b}}(X).$$

For all $r \geq 2$, let $Z_r^{s,t} = \ker(E_r^{s,t} \to E_r^{s+r,t+1-r})$ and $B_r^{s,t} = \operatorname{Im}(E_r^{s-r,t+r-1} \to E_r^{s,t})$. We have exact sequences

$$0 \longrightarrow B_r^{s,t} \longrightarrow Z_r^{s,t} \longrightarrow E_{r+1}^{s,t} \longrightarrow 0$$

and

$$0 \longrightarrow Z_r^{s,t} \longrightarrow E_r^{s,t} \longrightarrow E_r^{s,t} / Z_r^{s,t} \longrightarrow 0$$

Since, by assumptions (b) and (c), $E_2^{s+r,t+1-r} = 0 = E_2^{s-r,t+r-1}$, $E_r^{s+r,t+1-r} = 0 = E_r^{s-r,t+r-1}$. Therefore $E_r^{s,t}/Z_r^{s,t} = 0 = B_r^{s,t}$ which shows that $E_r^{s,t} = E_{r+1}^{s,t}$ and so

$$\mathrm{H}^{s}_{\mathfrak{a}}(\mathrm{H}^{t}_{\mathfrak{b}}(X)) = E^{s,t}_{2} = E^{s,t}_{3} = \cdots = E^{s,t}_{s+t+1} = E^{s,t}_{s+t+2} = E^{s,t}_{\infty}.$$

There is a finite filtration

$$0 = \phi^{s+t+1}H^{s+t} \subseteq \phi^{s+t}H^{s+t} \subseteq \dots \subseteq \phi^{1}H^{s+t} \subseteq \phi^{0}H^{s+t} = H^{s+t}_{\mathfrak{a}+\mathfrak{b}}(X)$$

such that $E_{\infty}^{s+t-r,r} = \phi^{s+t-r}H^{s+t}/\phi^{s+t-r+1}H^{s+t}$ for all $r, 0 \le r \le s+t$. Note that for each $r, 0 \le r \le t-1$ or $t+1 \le r \le s+t$, $E_{\infty}^{s+t-r,r} = 0$ by assumption (a). Therefore we get

$$0 = \phi^{s+t+1}H^{s+t} = \phi^{s+t}H^{s+t} = \dots = \phi^{s+2}H^{s+t} = \phi^{s+1}H^{s+t}$$

and

$$\phi^{s}H^{s+t} = \phi^{s-1}H^{s+t} = \dots = \phi^{1}H^{s+t} = \phi^{0}H^{s+t} = H^{s+t}_{\mathfrak{a}+\mathfrak{b}}(X).$$

Hence $H^s_{\mathfrak{a}}(H^t_{\mathfrak{b}}(X)) = E^{s,t}_{\infty} = \phi^s H^{s+t} / \phi^{s+1} H^{s+t} = H^{s+t}_{\mathfrak{a}+\mathfrak{b}}(X)$ as desired.

Now, we are able to discuss conditions under which inequalities Corollaries 2.2(i) and 2.4(i) become equalities.

Corollary 2.6 Suppose that M is a finite R-module such that $(a + b)M \neq M$. Then the following statements hold true.

- $\mathrm{H}^{\mathrm{cd}(\mathfrak{a},M)+\mathrm{cd}(\mathfrak{b},M)}_{\mathfrak{a}+\mathfrak{b}}(M)\cong\mathrm{H}^{\mathrm{cd}(\mathfrak{a},M)}_{\mathfrak{a}}(\mathrm{H}^{\mathrm{cd}(\mathfrak{b},M)}_{\mathfrak{b}}(M)).$ (i)
- (ii) The following statements are equivalent:
 - $\begin{aligned} &(\mathfrak{a}) \ \operatorname{cd}(\mathfrak{a}+\mathfrak{b},M) = \operatorname{cd}(\mathfrak{a},M) + \operatorname{cd}(\mathfrak{b},M). \\ &(\mathfrak{b}) \ \operatorname{cd}(\mathfrak{a},M) = \operatorname{cd}(\mathfrak{a},\mathrm{H}^{\operatorname{cd}(\mathfrak{b},M)}_{\mathfrak{b}}(M)). \\ &(\mathfrak{c}) \ \operatorname{cd}(\mathfrak{b},M) = \operatorname{cd}(\mathfrak{b},\mathrm{H}^{\operatorname{cd}(\mathfrak{a},M)}_{\mathfrak{a}}(M)). \end{aligned}$

Proof (i) Apply Lemma 2.5 with $s = cd(\mathfrak{a}, M)$ and $t = cd(\mathfrak{b}, M)$.

(ii) The implications (a) \Rightarrow (b) and (a) \Rightarrow (c) are clear from part (i) and [6, Theorem 1.4]. For implications (b) \Rightarrow (a) and (c) \Rightarrow (a), one may use part (i) and Corollary 2.2(i).

With a similar argument, one has the following result for an arbitrary module.

Corollary 2.7 Suppose that X is an arbitrary R-module. Then we have

- (i) $H_{\mathfrak{a}+\mathfrak{b}}^{\operatorname{ara}(\mathfrak{a})+\operatorname{cd}(\mathfrak{b},X)}(X) \cong H_{\mathfrak{a}}^{\operatorname{ara}(\mathfrak{a})}(H_{\mathfrak{b}}^{\operatorname{cd}(\mathfrak{b},X)}(X)).$
- (ii) The following statements are equivalent:
 - (a) $\operatorname{cd}(\mathfrak{a} + \mathfrak{b}, X) = \operatorname{ara}(\mathfrak{a}) + \operatorname{cd}(\mathfrak{b}, X).$
 - (b) $\operatorname{ara}(\mathfrak{a}) = \operatorname{cd}(\mathfrak{a}, \operatorname{H}^{\operatorname{cd}(\mathfrak{b}, X)}_{\mathfrak{b}}(X)).$

3 Artinian Local Cohomology Modules

In this section, we study the artinian property of local cohomology modules. For this purpose, for ideals $b \supseteq a$, we introduce the notion of cohomological dimension of an *R*-module *X* with respect to b/a.

Definition 3.1 Let $b \supseteq a$ be ideals of *R*, and let *X* be an *R*-module. Define the cohomological dimension of *X* with respect to b/a as

 $\operatorname{cd}(\mathfrak{b}/\mathfrak{a}, X) := \inf\{\operatorname{cd}(\mathfrak{c}, X) : \mathfrak{c} \text{ is an ideal of } R \text{ and } \sqrt{\mathfrak{b}} = \sqrt{\mathfrak{c} + \mathfrak{a}}\}.$

It is easy to see that $cd(\mathfrak{b}/\mathfrak{a}, X) \leq ara(\mathfrak{b}/\mathfrak{a})$ and, for a finite *R*-module *M*,

$$\operatorname{cd}(\mathfrak{b}/\mathfrak{a},M) \ge \operatorname{cd}(\mathfrak{b},M) - \operatorname{cd}(\mathfrak{a},M)$$

by Corollary 2.2(i). Note that when $\mathfrak{a} X = 0$, we have $\operatorname{cd}(\mathfrak{b}/\mathfrak{a}, X) = \operatorname{cd}(\mathfrak{b}, X) = \operatorname{cd}_{R/\mathfrak{a}}(\mathfrak{b}/\mathfrak{a}, X)$. One may notice that if $\operatorname{Supp}_R(X) \subseteq \operatorname{Supp}_R(M)$, then $\operatorname{cd}(\mathfrak{b}/\mathfrak{a}, X) \leq \operatorname{cd}(\mathfrak{b}/\mathfrak{a}, M)$.

Now we can state the following theorem.

Theorem 3.2 Let $b \supseteq a$ be ideals of R, let X be an arbitrary R-module and let n be a non-negative integer.

- (i) If $H^i_{\mathfrak{a}}(X)$ is b-torsion for all $i, 0 \le i \le n$, then $H^i_{\mathfrak{a}}(X) \cong H^i_{\mathfrak{b}}(X)$ for all $i, 0 \le i \le n$.
- (ii) If $H^i_{\mathfrak{a}}(X)$ is b-torsion for all $i \ge n$, then $H^i_{\mathfrak{a}}(X) \cong H^i_{\mathfrak{b}}(X)$ for all $i \ge n + \operatorname{ara}(\mathfrak{b}/\mathfrak{a})$.
- (iii) Assume that M is a finite R-module and that $H^i_{\mathfrak{a}}(M)$ is b-torsion for all $i \ge n$. Then $H^i_{\mathfrak{a}}(M) \cong H^i_{\mathfrak{b}}(M)$ for all $i > n + \operatorname{cd}(\mathfrak{b}/\mathfrak{a}, M)$.

Proof Let u = ara(b/a) and v = cd(b/a, M). There exist $x_1, \ldots, x_u \in R$ and an ideal c of R such that cd(c, M) = v and $\sqrt{(x_1, \ldots, x_u) + a} = \sqrt{b} = \sqrt{c+a}$. In computing local cohomology modules, we may assume that $(x_1, \ldots, x_u) + a = b = c + a$. Now, for all $i, 0 \le i \le n$ (respectively, $i \ge n + u, i \ge n + v$), apply Lemma 2.5 with s = 0 and t = i to obtain the isomorphisms $\Gamma_{(x_1,\ldots,x_u)}(H_a^i(X)) \cong H_b^i(X)$ for all $i, 0 \le i \le n$, (respectively, $\Gamma_{(x_1,\ldots,x_u)}(H_a^i(X)) \cong H_b^i(X)$ for all $i \ge n + u$, $\Gamma_c(H_a^i(M)) \cong H_b^i(M)$ for all $i \ge n + v$). Therefore all of the assertions follow.

Corollary 3.3 Let R be a local ring with maximal ideal m, let M be a finite R-module, and let n be a non-negative integer. If $\dim_R(H^i_{\mathfrak{a}}(M)) \leq 0$ for all $i, 0 \leq i \leq n$ (respectively, for all $i \geq n$), then $H^i_{\mathfrak{a}}(M)$ is artinian for all $i, 0 \leq i \leq n$ (respectively, for all $i \geq n + cd(m/\mathfrak{a}, M)$).

M. T. Dibaei and A. Vahidi

Proof Since $H_{m}^{i}(M)$ is artinian for all *i*, the assertion follows from Theorem 3.2.

Recall that a finite *R*-module *M* over a local ring (*R*, m) is called a *generalized Cohen–Macaulay* module if $H^i_m(M)$ is of finite length for all $i < \dim_R(M)$. The following result gives us a characterization for a finite module *M* over a local ring to be generalized Cohen–Macaulay in terms of the existence of an ideal a for which $H^i_a(M)$ is of finite length for all $i < \dim_R(M)$.

Corollary 3.4 Let R be a local ring with maximal ideal m, and let M be a finite R-module. Then the following statements are equivalent.

- (i) *M* is generalized Cohen–Macaulay module.
- (ii) There exists an ideal \mathfrak{a} such that $\mathrm{H}^{i}_{\mathfrak{a}}(M)$ is of finite length for all $i, 0 \leq i < \dim_{\mathbb{R}}(M)$.

Proof (i) \Rightarrow (ii). This is trivial. (ii) \Rightarrow (i). This follows from Theorem 3.2(i).

A non-zero *R*-module *X* is called *secondary* if its multiplication map by any element *a* of *R* is either surjective or nilpotent. A prime ideal \mathfrak{p} of *R* is said to be an *attached prime* of *X* if $\mathfrak{p} = (T :_R X)$ for some submodule *T* of *X*. If *X* admits a reduced secondary representation, $X = X_1 + X_2 + \cdots + X_n$, then the set of attached primes Att_{*R*}(*X*) of *X* is equal to $\{\sqrt{0}:_R X_i : i = 1, \dots, n\}$ (see [12]).

Assume that *M* is a finite *R*-module of finite dimension *d* and that \mathfrak{a} is an ideal of *R*. It is well known that $\mathrm{H}^d_{\mathfrak{a}}(M)$ is artinian. If (R, \mathfrak{m}) is local, then the first author and Yassemi in [7, Theorem A] (see also [10, Theorem 8.2.1]) showed that $\mathrm{Att}_R(\mathrm{H}^d_{\mathfrak{a}}(M)) = \{\mathfrak{p} \in \mathrm{Assh}_R(M) : \mathrm{H}^d_{\mathfrak{a}}(R/\mathfrak{p}) \neq 0\}$, which generalized the wellknown result $\mathrm{Att}_R(\mathrm{H}^d_{\mathfrak{m}}(M)) = \mathrm{Assh}_R(M)(= \{\mathfrak{p} \in \mathrm{Supp}_R(M) : \dim(R/\mathfrak{p}) = d\})$ (see [13, Theorem 2.2]). In the following remark, those ideals \mathfrak{a} for which $\mathrm{Att}_R(\mathrm{H}^d_{\mathfrak{a}}(M)) =$ $\mathrm{Assh}_R(M)$ are characterized. Denote the height support, $\mathrm{hSupp}_R(M)$, of *M* as the set of all $\mathfrak{p} \in \mathrm{Supp}_R(M)$ such that $\mathfrak{p} \in \mathrm{V}(\mathfrak{q})$ for some $\mathfrak{q} \in \mathrm{Assh}_R(M)$.

Remark 3.5 Let (R, \mathfrak{m}) be a complete local ring and let M be a non-zero finite R-module with Krull dimension d. Then the following statements are equivalent.

- (i) $H^d_{\mathfrak{a}}(M) \cong H^d_{\mathfrak{m}}(M)$.
- (ii) $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M)) = \operatorname{Assh}_R(M).$
- (iii) $V(\mathfrak{a}) \cap hSupp_{R}(M) = \{\mathfrak{m}\}.$

The proof of (i) \Rightarrow (ii) is clear. To prove (ii) \Rightarrow (iii), one may use the Lichtenbaum–Hartshorne Vanishing Theorem. For (iii) \Rightarrow (i), choose a submodule *N* of *M* such that $\operatorname{Ass}_R(N) = \operatorname{Ass}_R(M) \setminus \operatorname{Assh}_R(M)$ and $\operatorname{Ass}_R(M/N) = \operatorname{Assh}_R(M)$ to obtain $\operatorname{H}^d_{\mathfrak{a}}(M) \cong \operatorname{H}^d_{\mathfrak{a}}(M/N)$ and $\operatorname{H}^d_{\mathfrak{m}}(M) \cong \operatorname{H}^d_{\mathfrak{m}}(M/N)$. Therefore $\operatorname{Supp}_R(\operatorname{H}^i_{\mathfrak{a}}(M/N)) \subseteq \{\mathfrak{m}\}$ for all *i*. Applying Theorem 3.2(i) gives the claim. This remark shows that if *M* is equidimensional, then $\operatorname{Att}_R(\operatorname{H}^d_{\mathfrak{a}}(M)) \neq \operatorname{Assh}_R(M)$ for each ideal \mathfrak{a} with $\operatorname{ht}_M(\mathfrak{a}) < \dim_R(M)$.

Recall that an *R*-module *X* is said to be *minimax* if it has a finite submodule *X'* such that X/X' is artinian (see [15]). Note that the class of minimax modules includes all finite and all artinian modules. We close this section by showing that if m is a maximal ideal containing a, then $H_{im}^{i}(X)$ is artinian for all $i \leq n$ (respectively, for

all $i \ge n + \operatorname{ara}(\mathfrak{m}/\mathfrak{a})$ whenever $\operatorname{H}^{i}_{\mathfrak{a}}(X)$ is minimax for all $i \le n$ (respectively, for all $i \ge n$). We first present a lemma analogous to Lemma 2.1.

Lemma 3.6 Let X be an R-module, and let t be a non-negative integer such that $H_a^{t-r}(H_b^r(X))$ is artinian for all $r, 0 \le r \le t$. Then $H_{a+b}^t(X)$ is artinian.

Proof By the Grothendieck spectral sequence

$$E_2^{p,q} := \mathrm{H}^p_{\mathfrak{a}}(\mathrm{H}^q_{\mathfrak{b}}(X)) \underset{p}{\Longrightarrow} \mathrm{H}^{p+q}_{\mathfrak{a}+\mathfrak{b}}(X),$$

the proof is similar to that of Lemma 2.1.

Theorem 3.7 Let \mathfrak{m} be a maximal ideal of R containing \mathfrak{a} , let X be an arbitrary R-module and let n be a non-negative integer.

- (i) If $H^i_{\mathfrak{a}}(X)$ is minimax for all $i, 0 \leq i \leq n$, then $H^i_{\mathfrak{m}}(X)$ is artinian for all $i, 0 \leq i \leq n$.
- (ii) If $H^i_{\mathfrak{a}}(X)$ is minimax for all $i \ge n$, then $H^i_{\mathfrak{m}}(X)$ is artinian for all $i \ge n + \operatorname{ara}(\mathfrak{m}/\mathfrak{a})$.

Proof By considering Lemma 3.6, this is similar to that of Theorem 3.2.

4 Non-Artinian Local Cohomology Modules

In this section, we study those local cohomology modules that are not artinian. The following two results give us many non-artinian local cohomology modules.

Corollary 4.1 Let X be an R-module, let n be a positive integer, and let $x_1, \ldots, x_n \in \mathbb{R}$ such that $cd(\mathfrak{a} + (x_1, \ldots, x_n), X) = cd(\mathfrak{a}, X) + n$. Then $\dim_{\mathbb{R}}(H^{cd(\mathfrak{a}, X)}_{\mathfrak{a}}(X)) \ge n$. In particular, $H^{cd(\mathfrak{a}, X)}_{\mathfrak{a}}(X)$ is not artinian.

Proof By Corollary 2.4(i), $\operatorname{ara}(x_1, \ldots, x_n) = n$. By Corollary 2.7(ii) and the Grothendieck Vanishing Theorem, we have $\dim_R(\operatorname{H}^{\operatorname{cd}(\mathfrak{a},X)}_{\mathfrak{a}}(X)) \ge n$ and so $\operatorname{H}^{\operatorname{cd}(\mathfrak{a},X)}_{\mathfrak{a}}(X)$ is not artinian.

Corollary 4.2 ([2, Proposition 3.2]) Let (R, \mathfrak{m}) be a local ring, and let M be a finite R-module with Krull dimension d. Assume also that \mathfrak{a} is generated by a subset of system of parameters x_1, \ldots, x_n of M of length n. Then $\dim_R(\operatorname{H}^{\operatorname{cd}(\mathfrak{a},M)}_{\mathfrak{a}}(M)) = d - n$. In particular, if n < d, then $\operatorname{H}^{\operatorname{cd}(\mathfrak{a},M)}_{\mathfrak{a}}(M)$ is not artinian.

Proof There exist $x_{n+1}, \ldots, x_d \in R$ such that x_1, \ldots, x_d is a system of parameters of M. Set $b = (x_{n+1}, \ldots, x_d)$. As $\mathfrak{m} = \sqrt{\mathfrak{a} + \mathfrak{b} + \operatorname{Ann}_R(M)}$, we can, and do, assume that $\mathfrak{a} + \mathfrak{b} = \mathfrak{m}$. By Corollary 2.2(i), $\operatorname{cd}(\mathfrak{a}, M) = n$ and $\operatorname{cd}(\mathfrak{b}, M) = d - n$. Now, by using Corollary 2.6(ii), we obtain $\dim_R(\operatorname{H}^n_\mathfrak{a}(M)) \ge d - n$. On the other hand, we have $\dim_R(\operatorname{H}^n_\mathfrak{a}(M)) \le d - n$, since $\operatorname{Supp}_R(\operatorname{H}^n_\mathfrak{a}(M)) \subseteq \operatorname{Supp}_R(M/\mathfrak{a}M)$. Thus $\dim_R(\operatorname{H}^n_\mathfrak{a}(M)) = d - n$ as desired.

Now it is natural to raise the following question.

Question 4.3 Assume that *M* is a finite *R*-module and that $H_a^{cd(a,M)}(M)$ is not artinian. Is there an element *x* in *R* such that

$$\operatorname{cd}(\mathfrak{a} + Rx, M) = \operatorname{cd}(\mathfrak{a}, M) + 1$$
?

It is clear that the above question has a positive answer if *R* is local and \mathfrak{a} is generated by a subset of system of parameters of *M* of length smaller than dim_{*R*}(*M*).

In the rest of the paper, we study the set of ideals b of R such that $H_b^i(M)$ is not artinian for some non-negative integer *i*.

Definition 4.4 Let M be a finite R-module and let r be a non-negative integer. Define the set of ideals

$$\mathcal{L}^{r}(M) := \{\mathfrak{b} : \mathrm{H}^{i}_{\mathfrak{b}}(M) \text{ is not artinian for some } i \geq r\}.$$

Note that $\mathcal{L}^{r}(M)$ is the empty set for all $r \geq \dim_{R}(M)$. If $0 \leq r < \dim_{R}(M)$, $\mathcal{L}^{r}(M)$ is non-empty by Corollary 4.2. The following remark shows that the set $\mathcal{L}^{r}(M)$ is independent of the module structure.

Remark 4.5 Assume that L, M, and N are finite R-modules and that r is a non-negative integer. Then the following statements are true.

(i) If $\operatorname{Supp}_R(N) \subseteq \operatorname{Supp}_R(M)$, then $\mathcal{L}^r(N) \subseteq \mathcal{L}^r(M)$.

(ii) If $0 \to L \to M \to N \to 0$ is an exact sequence, then $\mathcal{L}^r(M) = \mathcal{L}^r(L) \cup \mathcal{L}^r(N)$. (iii) $\mathcal{L}^r(M) = \bigcup_{\mathfrak{p} \in Ass_R(M)} \mathcal{L}^r(R/\mathfrak{p})$.

Proof (i) Assume that a is an ideal of *R* that is not in $\mathcal{L}^r(M)$ so that $H^i_{\mathfrak{a}}(M)$ is artinian for all $i \ge r$. Therefore $H^i_{\mathfrak{a}}(N)$ is artinian for all $i \ge r$ by [1, Theorem 3.1]; that is, a does not belong to $\mathcal{L}^r(N)$. Thus $\mathcal{L}^r(N) \subseteq \mathcal{L}^r(M)$ as desired.

(ii) By (i), $\mathcal{L}^{r}(M) \supseteq \mathcal{L}^{r}(L) \cup \mathcal{L}^{r}(N)$. Assume that $\mathfrak{a} \in \mathcal{L}^{r}(M)$. There exists an integer $i, i \ge r$, such that $H^{i}_{\mathfrak{a}}(M)$ is not artinian. Now, by the exact sequence $H^{i}_{\mathfrak{a}}(L) \to H^{i}_{\mathfrak{a}}(M) \to H^{i}_{\mathfrak{a}}(N)$, the other inclusion follows.

(iii) By (i), we have the inclusion $\mathcal{L}^{r}(M) \supseteq \bigcup_{\mathfrak{p}\in \operatorname{Ass}_{R}(M)} \mathcal{L}^{r}(R/\mathfrak{p})$. Assume, conversely, that $\mathfrak{b} \notin \bigcup_{\mathfrak{p}\in \operatorname{Ass}_{R}(M)} \mathcal{L}^{r}(R/\mathfrak{p})$. There is a prime filtration $0 = M_{0} \subset M_{1} \subset \cdots \subset M_{s} = M$ of M such that, for all $j \in \{1, \ldots, s\}$, $M_{j}/M_{j-1} \cong R/\mathfrak{p}_{j}$ for some $\mathfrak{p}_{j} \in \operatorname{Supp}_{R}(M)$. For each $j \in \{1, \ldots, s\}$, there is $\mathfrak{q}_{j} \in \operatorname{Ass}_{R}(M)$ contained in \mathfrak{p}_{j} and thus, by assumption and part (i), $\mathfrak{b} \notin \mathcal{L}^{r}(R/\mathfrak{p}_{j})$. Now, by applying $\operatorname{H}^{i}_{\mathfrak{b}}(-)$ on each exact sequence

$$0 \longrightarrow M_j \longrightarrow M_{j+1} \longrightarrow M_{j+1}/M_j \longrightarrow 0,$$

it follows that $\mathfrak{b} \notin \mathcal{L}^r(M)$.

Before stating the main theorem of this section, recall the following result, which is straightforward from the fact that, for an *R*-module *X* and for each $\alpha \in R$, the kernel (respectively, the cokernel) of the natural map $X \longrightarrow X_{\alpha}$ is $H^0_{R\alpha}(X)$ (respectively, $H^1_{R\alpha}(X)$), where X_{α} denotes the localization of *X* at the set $\{1, \alpha, \alpha^2, \alpha^3, \ldots\}$.

Proposition 4.6 For any R-module X and for any $\alpha \in R$, there are exact sequences

$$0 \longrightarrow \mathrm{H}^{1}_{R\alpha}(\mathrm{H}^{i-1}_{\mathfrak{a}}(X)) \longrightarrow \mathrm{H}^{i}_{\mathfrak{a}+R\alpha}(X) \longrightarrow \mathrm{H}^{0}_{R\alpha}(\mathrm{H}^{i}_{\mathfrak{a}}(X)) \longrightarrow 0,$$

for all $i \geq 0$.

Proof See [4, Proposition 8.1.2] (see also [3, Theorem 2.5]).

The *i*-th Bass number of X with respect to the prime ideal \mathfrak{p} of R, denoted by $\mu^i(\mathfrak{p}, X)$, is defined to be the number of copies of the indecomposable injective module $\mathbb{E}_R(R/\mathfrak{p})$ in the direct sum decomposition of the *i*-th term of a minimal injective resolution of X, which is equal to the rank of the vector space $\operatorname{Ext}_{R_\mathfrak{p}}^i(k(\mathfrak{p}), X_\mathfrak{p})$ over the field $k(\mathfrak{p}) = R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}$. When (R, \mathfrak{m}) is local, we write $\mu^i(X) := \mu^i(\mathfrak{m}, X)$ and refer it the *i*-th Bass number of X.

In the following theorem, we study Bass numbers of certain non-artinian local cohomology modules.

Theorem 4.7 Assume that (R, \mathfrak{m}) is a local ring and that M is a finite R-module with Krull dimension d. Let r < d be a fixed non-negative integer. Then for each maximal element \mathfrak{q} of the non-empty set $\mathcal{L}^r(M)$,

(i) $\mu^{j}(H^{i}_{q}(M)) < \infty$ for all $j \ge 0$ and all $i \ge r$; (ii) q is a prime ideal.

Proof (i) As $H^i_{\mathfrak{m}}(M)$ is artinian for all $i \ge 0$, we have $\mathfrak{q} \ne \mathfrak{m}$. Choose an element $x \in \mathfrak{m} \setminus \mathfrak{q}$. Thus $H^i_{\mathfrak{q}+Rx}(M)$ is artinian for all $i \ge r$. Using the exact sequence

$$0 \longrightarrow \mathrm{H}^{1}_{Rx}(\mathrm{H}^{i-1}_{\mathfrak{a}}(M)) \longrightarrow \mathrm{H}^{i}_{\mathfrak{a}+Rx}(M) \longrightarrow \mathrm{H}^{0}_{Rx}(\mathrm{H}^{i}_{\mathfrak{a}}(M)) \longrightarrow 0,$$

it follows that, for each $i \ge r$, the modules $H^1_{Rx}(H^i_{\mathfrak{q}}(M))$ and $H^0_{Rx}(H^i_{\mathfrak{q}}(M))$ are artinian and so they have finite Bass numbers. It follows by [8, Theorem 2.1] that $\mu^j(H^i_{\mathfrak{q}}(M)) < \infty$ for all $j \ge 0$ and all $i \ge r$.

(ii) Assume that $x, y \in \mathfrak{m} \setminus \mathfrak{q}$ such that $xy \in \mathfrak{q}$. As $\mathfrak{q} + Rx$ and $\mathfrak{q} + Ry$ properly contain \mathfrak{q} , it follows that the modules $\operatorname{H}^{i}_{\mathfrak{q}+Rx}(M)$, $\operatorname{H}^{i}_{\mathfrak{q}+Ry}(M)$, and $\operatorname{H}^{i}_{\mathfrak{q}+Rx+Ry}(M)$ are artinian for all $i \geq r$. Applying the Mayer–Vietoris exact sequence

$$\mathrm{H}^{i}_{\mathfrak{q}+Rx}(M) \oplus \mathrm{H}^{i}_{\mathfrak{q}+Ry}(M) \longrightarrow \mathrm{H}^{i}_{(\mathfrak{q}+Rx)\cap(\mathfrak{q}+Ry)}(M) \longrightarrow \mathrm{H}^{i+1}_{\mathfrak{q}+Rx+Ry}(M),$$

we find that $H_{(\mathfrak{q}+R\mathfrak{x})\cap(\mathfrak{q}+R\mathfrak{y})}^{t}(M)$ is artinian for $i \geq r$. Note that

$$\sqrt{\mathfrak{q}} \subseteq \sqrt{(\mathfrak{q} + Rx) \cap (\mathfrak{q} + Ry)} = \sqrt{(\mathfrak{q} + Rx)(\mathfrak{q} + Ry)}$$
$$= \sqrt{\mathfrak{q}^2 + \mathfrak{q}x + \mathfrak{q}y + Rxy} \subseteq \sqrt{\mathfrak{q}},$$

and hence $\mathrm{H}^{i}_{(\mathfrak{q}+Rx)\cap(\mathfrak{q}+Ry)}(M) \cong \mathrm{H}^{i}_{\mathfrak{q}}(M)$ is artinian for $i \geq r$. This contradicts the fact that $\mathfrak{q} \in \mathcal{L}^{r}(M)$, and so \mathfrak{q} is a prime ideal.

There have been many attempts in the literature to find some conditions for the ideal \mathfrak{a} to have finiteness for the Bass numbers of the local cohomology modules supported at \mathfrak{a} . In [5, Corollary 2], Delfino and Marley showed that the Bass number $\mu^i(\mathfrak{p}, H^j_\mathfrak{a}(M))$ is finite for all $\mathfrak{p} \in \operatorname{Spec} R$ and all i, j whenever M is a finite module over a ring R and \mathfrak{a} is an ideal of R with dim $R/\mathfrak{a} = 1$.

Assume that a and b are two ideals of a local ring (R, \mathfrak{m}) with $\dim(R/\mathfrak{a}) = \dim(R/\mathfrak{b}) = 1$ such that $V(\mathfrak{a} + \mathfrak{b}) = \{\mathfrak{m}\}$. Write the Mayer–Vietoris exact sequence

$$\mathrm{H}^{j}_{\mathfrak{m}}(M) \longrightarrow \mathrm{H}^{j}_{\mathfrak{a}}(M) \oplus \mathrm{H}^{j}_{\mathfrak{b}}(M) \longrightarrow \mathrm{H}^{j}_{\mathfrak{a} \cap \mathfrak{b}}(M) \longrightarrow \mathrm{H}^{j+1}_{\mathfrak{m}}(M).$$

As $H^i_{\mathfrak{n}}(M)$ is artinian for all *i*, we find that $H^j_{\mathfrak{a}\cap \mathfrak{b}}(M)$ has finite Bass numbers if and only if both $H^j_{\mathfrak{a}}(M)$ and $H^j_{\mathfrak{b}}(M)$ have finite Bass numbers. Therefore [5, Corollary 2] is equivalent to the case where the ideal \mathfrak{a} is prime.

Comment Assume that \mathfrak{p} is a prime ideal of R such that $\dim(R/\mathfrak{p}) = 1$ and r is the smallest integer (if there is one) such that $\mathrm{H}^{i}_{\mathfrak{p}}(M)$ is not artinian. Thus \mathfrak{p} is a maximal element of $\mathcal{L}^{r}(M)$. By Theorem 4.7, $\mu^{j}(\mathrm{H}^{i}_{\mathfrak{p}}(M)) < \infty$ for all $j \geq 0$ and all $i \geq r$. As $\mathrm{H}^{i}_{\mathfrak{p}}(M)$ is artinian for all i < r, all $\mathrm{H}^{i}_{\mathfrak{p}}(M)$ have finite Bass numbers. Thus Theorem 4.7 generalizes [5, Corollary 2].

Acknowledgement The authors would like to thank the referee for the invaluable comments on the manuscript.

References

- M. Aghapournahr and L. Melkersson, *Local cohomology and Serre subcategories*. J. Algebra 320(2008), no. 3, 1275–1287. doi:10.1016/j.jalgebra.2008.04.002
- [2] K. Bahmanpour and R. Naghipour, Associated primes of local cohomology modules and Matlis duality. J. Algebra 320(2008), no. 6, 2632–2641. doi:10.1016/j.jalgebra.2008.05.014
- [3] M. P. Brodmann, S. Fumasoli, and R. Tajarod, *Local cohomology over homogeneous rings with one-dimensional local base ring*. Proc. Amer. Math. Soc. 131(2003), no. 10, 2977–2985. doi:10.1090/S0002-9939-03-07009-6
- [4] M. P. Brodmann and R. Y. Sharp, *Local cohomology: an algebraic introduction with geometric applications*. Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.
- [5] D. Delfino and T. Marley, *Cofinite modules and local cohomology*. J. Pure Appl. Algebra 121(1997), no. 1, 45–52. doi:10.1016/S0022-4049(96)00044-8
- [6] M. T. Dibaei and S. Yassemi, *Cohomological dimension of complexes*. Comm. Algebra 32(2004), no. 11, 4375–4386. doi:10.1081/ACB-200034165
- [7] _____, Attached primes of the top local cohomology modules with respect to an ideal. Arch. Math. 84(2005), no. 4, 292–297.
- [8] _____, Bass numbers of local cohomology modules with respect to an ideal. Algebr Represent. Theory 11(2008), no. 3, 299–306. doi:10.1007/s10468-007-9072-3
- [9] K. Divaani-Aazar, R. Naghipour, and M. Tousi, Cohomological dimension of certain algebraic varieties. Proc. Amer. Math. Soc. 130(2002), no. 12, 3537–3544. doi:10.1090/S0002-9939-02-06500-0
- [10] M. Hellus, Local cohomology and Matlis duality. Univ. Iagel. Acta Math. 45(2007), 63–70.
- [11] C. Huneke, Problems on local cohomology. In: Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math., 2, Jones and Bartlett, Boston, MA, 1992, pp. 93–108.
- [12] I. G. Macdonald, Secondary representation of modules over a commutative ring. In: Symposia Mathematica, XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press, London, 1973, pp. 23–43.

- [13] I. G. Macdonald and R. Y. Sharp, An elementary proof of the non-vanishing of certain local cohomology modules. Quart. J. Math. Oxford Ser. (2) 23(1972), 197–204. doi:10.1093/qmath/23.2.197
- [14] J. J. Rotman, *An introduction to homological algebra*. Pure and Applied Mathematics, 85, Academic Press, New York-London, 1979.
- [15] H. Zöschinger, Minimax-moduln.(German) J. Algebra 102(1986), no. 1, 1–32. doi:10.1016/0021-8693(86)90125-0

Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, Tehran, Iran and

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran e-mail: dibaeimt@ipm.ir

Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, Tehran, Iran and

Payame Noor University (PNU), Iran e-mail: vahidi.ar@gmail.com