(C) Canadian Mathematical Society 2011

# Artinian and Non-Artinian Local Cohomology Modules 

Mohammad T. Dibaei and Alireza Vahidi


#### Abstract

Let $M$ be a finite module over a commutative noetherian ring $R$. For ideals $\mathfrak{a}$ and $\mathfrak{b}$ of $R$, the relations between cohomological dimensions of $M$ with respect to $\mathfrak{a}, \mathfrak{b}, \mathfrak{a} \cap \mathfrak{b}$ and $\mathfrak{a}+\mathfrak{b}$ are studied. When $R$ is local, it is shown that $M$ is generalized Cohen-Macaulay if there exists an ideal $\mathfrak{a}$ such that all local cohomology modules of $M$ with respect to $\mathfrak{a}$ have finite lengths. Also, when $r$ is an integer such that $0 \leq r<\operatorname{dim}_{R}(M)$, any maximal element $\mathfrak{q}$ of the non-empty set of ideals $\{\mathfrak{a}$ : $\mathrm{H}_{\mathfrak{a}}^{i}(M)$ is not artinian for some $\left.i, i \geq r\right\}$ is a prime ideal, and all Bass numbers of $\mathrm{H}_{\mathfrak{q}}^{i}(M)$ are finite for all $i \geq r$.


## 1 Introduction

Throughout, $R$ is a commutative noetherian ring; a is a proper ideal of $R ; X$ and $M$ are non-zero $R$-modules, and $M$ is finite (i.e., finitely generated). Recall that the $i$-th local cohomology functor $\mathrm{H}_{\mathfrak{a}}^{i}$ is the $i$-th right derived functor of the $\mathfrak{a}$-torsion functor $\Gamma_{\mathfrak{a}}$. Also, the cohomological dimension of $X$ with respect to $\mathfrak{a}$, denoted by $\operatorname{cd}(\mathfrak{a}, X)$, is defined as

$$
\operatorname{cd}(\mathfrak{a}, X):=\sup \left\{i: H_{\mathfrak{a}}^{i}(X) \neq 0\right\}
$$

In Section 2, we discuss the arithmetic of cohomological dimensions. We show that the inequalities $\operatorname{cd}(\mathfrak{a}+\mathfrak{b}, M) \leq \operatorname{cd}(\mathfrak{a}, M)+\operatorname{cd}(\mathfrak{b}, M)$ and $\operatorname{cd}(\mathfrak{a}+\mathfrak{b}, X) \leq \operatorname{ara}(\mathfrak{a})+$ $\mathrm{cd}(\mathrm{b}, X)$ hold true, and we find some equivalent conditions for which each inequality becomes an equality.

In Section 3, we study artinian local cohomology modules. We first observe that over a local ring $(R, \mathfrak{m})$ if there is an integer $n$ such that $\operatorname{dim}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{i}(X)\right) \leq 0$ for all $i \leq n$ (respectively, for all $i \geq n$ ), then $\mathrm{H}_{\mathfrak{a}}^{i}(X) \cong \mathrm{H}_{\mathfrak{m}}^{i}(X)$ for all $i \leq n$ (respectively, for all $i \geq n+\operatorname{ara}(m / a)$ ) (Theorem 3.2). In this situation, if $X$ is finite, then $H_{\mathfrak{a}}^{i}(X)$ is artinian for all $i \leq n$ (respectively, for all $i \geq n+\operatorname{cd}(\mathfrak{m} / \mathfrak{a}, X)$ ), which is related to the third of Huneke's four problem in local cohomology [11]. Here, for ideals $\mathfrak{a} \subseteq \mathfrak{b}$, $\operatorname{cd}(\mathfrak{b} / a, X)$ is introduced to be the infimum of the set $\{\operatorname{cd}(\mathfrak{c}, X): c$ is an ideal of $R$ and $\sqrt{\mathfrak{b}}=\sqrt{\mathfrak{c}+\mathfrak{a}}\}$. It is deduced that $M$ is generalized Cohen-Macaulay if there exists an ideal $\mathfrak{a}$ such that all local cohomology modules of $M$ with respect to $\mathfrak{a}$ have finite lengths (Corollary 3.4).

Section 4 is devoted to the study of the non-artinianness of local cohomology modules. Note that $\operatorname{cd}(\mathfrak{a}+R x, X) \leq \operatorname{cd}(\mathfrak{a}, X)+1$ for all $x \in R$ [9, Lemma 2.5]. We

[^0]show that if there exist $x_{1}, \ldots, x_{n} \in R$ such that $\mathrm{cd}\left(\mathfrak{a}+\left(x_{1}, \ldots, x_{n}\right), X\right)=\mathrm{cd}(\mathfrak{a}, X)+n$, then $\operatorname{dim}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{\mathrm{cd}(\mathfrak{a}, X)}(X)\right) \geq n$ and so $\mathrm{H}_{\mathfrak{a}}^{\operatorname{cd}(\mathfrak{a}, X)}(X)$ is not artinian (Corollary 4.1). For each integer $r, 0 \leq r<d\left(d:=\operatorname{dim}_{R}(M)\right)$, we introduce $\mathcal{L}^{r}(M)$, the set of all ideals $\mathfrak{a}$ for which $\mathrm{H}_{\mathfrak{a}}^{i}(M)$ is not artinian for some $i \geq r$. It is evident that if $d>0$, then $\mathcal{L}^{r}(M)$ is not empty. We show that any maximal element $\mathfrak{q}$ of $\mathcal{L}^{r}(M)$ is a prime ideal and that all Bass numbers of $\mathrm{H}_{\mathrm{q}}^{i}(M)$ are finite for all $i \geq r$. We conclude that this statement generalizes [5, Corollary 2] (see Theorem4.7and its comment).

## 2 Arithmetic of Cohomological Dimensions

Assume that $\mathfrak{a}, \mathfrak{b}$ are ideals of $R$ and that $X$ is an $R$-module. In this section, we study relationships between the numbers $\mathfrak{c d}(\mathfrak{a}, X), \operatorname{cd}(\mathfrak{b}, X), \operatorname{cd}(\mathfrak{a}+\mathfrak{b}, X), \operatorname{cd}(\mathfrak{a} \cap \mathfrak{b}, X)$ $(=\mathrm{cd}(\mathfrak{a b}, X)), \operatorname{ara}(\mathfrak{a})$, etc, which are interesting in themselves, and we use them to determine the artinianness and non-artinianness of certain local cohomology modules in the following sections.

Lemma 2.1 Let $X$ be an $R$-module, and let t be a non-negative integer such that for all $r, 0 \leq r \leq t, \mathrm{H}_{\mathfrak{a}}^{t-r}\left(\mathrm{H}_{\mathfrak{b}}^{r}(X)\right)=0$. Then $\mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{t}(X)$ is also zero.

Proof By [14, Theorem 11.38], there is a Grothendieck spectral sequence

$$
E_{2}^{p, q}:=\mathrm{H}_{\mathfrak{a}}^{p}\left(\mathrm{H}_{\mathfrak{b}}^{q}(X)\right)_{\vec{p}}^{\Rightarrow} \mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{p+q}(X)
$$

For all $r, 0 \leq r \leq t$, we have $E_{\infty}^{t-r, r}=E_{t+2}^{t-r, r}$ since $E_{i}^{t-r-i, r+i-1}=0=E_{i}^{t-r+i, r+1-i}$ for all $i \geq t+2$. Note that $E_{t+2}^{t-r, r}$ is a subquotient of $E_{2}^{t-r, r}$, which is zero by assumption. Thus $E_{t+2}^{t-r, r}$ is zero, that is $E_{\infty}^{t-r, r}=0$. There exists a finite filtration

$$
0=\phi^{t+1} H^{t} \subseteq \phi^{t} H^{t} \subseteq \cdots \subseteq \phi^{1} H^{t} \subseteq \phi^{0} H^{t}=\mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{t}(X)
$$

such that $E_{\infty}^{t-r, r}=\phi^{t-r} H^{t} / \phi^{t-r+1} H^{t}$ for all $r, 0 \leq r \leq t$. Therefore, we have

$$
0=\phi^{t+1} H^{t}=\phi^{t} H^{t}=\cdots=\phi^{1} H^{t}=\phi^{0} H^{t}=\mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{t}(X)
$$

as desired.
The following corollary is the first application of the above lemma.
Corollary 2.2 For a finite $R$-module $M$, the following statements hold true.
(i) $\quad \operatorname{cd}(\mathfrak{a}+\mathfrak{b}, M) \leq \operatorname{cd}(\mathfrak{a}, M)+\operatorname{cd}(\mathfrak{b}, M)$.
(ii) $\quad \operatorname{cd}(\mathfrak{a} \cap \mathfrak{b}, M) \leq \operatorname{cd}(\mathfrak{a}, M)+\operatorname{cd}(\mathfrak{b}, M)$.
(iii) $\operatorname{cd}(\mathfrak{a}, M) \leq \sum_{\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})} \operatorname{cd}(\mathfrak{p}, M)$.

Proof (i) Assume that $t$ is a non-negative integer such that $t>\operatorname{cd}(\mathfrak{a}, M)+\operatorname{cd}(\mathfrak{b}, M)$. We will show that $\mathrm{H}_{\mathfrak{a}}^{t-r}\left(\mathrm{H}_{\mathfrak{b}}^{r}(M)\right)=0$ for all $r, 0 \leq r \leq t$. If $r>\mathrm{cd}(\mathfrak{b}, M)$, then $\mathrm{H}_{\mathfrak{a}}^{t-r}\left(\mathrm{H}_{\mathfrak{b}}^{r}(M)\right)=0$ by the definition of cohomological dimension. Otherwise, $t-r>$ $\operatorname{cd}(\mathfrak{a}, M)$. Since $\operatorname{Supp}_{R}\left(\mathrm{H}_{\mathfrak{b}}^{r}(M)\right) \subseteq \operatorname{Supp}_{R}(M), \operatorname{cd}(\mathfrak{a}, M) \geqslant \operatorname{cd}\left(\mathfrak{a}, \mathrm{H}_{\mathfrak{b}}^{r}(M)\right)$ (see 6, Theorem 1.4]). Therefore, $\mathrm{H}_{\mathrm{a}}^{t-r}\left(\mathrm{H}_{\mathfrak{b}}^{r}(M)\right)=0$. Now, applying Lemma 2.1, we see that $\mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{t}(M)=0$, which yields the assertion.
(ii) Consider the Mayer-Vietoris exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \Gamma_{\mathfrak{a}+\mathfrak{b}}(M) \longrightarrow \Gamma_{\mathfrak{a}}(M) \oplus \Gamma_{\mathfrak{b}}(M) \longrightarrow \Gamma_{\mathfrak{a} \cap \mathfrak{b}}(M) \longrightarrow \cdots \\
& \cdots \longrightarrow \mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{t}(M) \longrightarrow \mathrm{H}_{\mathfrak{a}}^{t}(M) \oplus \mathrm{H}_{\mathfrak{b}}^{t}(M) \longrightarrow \mathrm{H}_{\mathfrak{a} \cap \mathfrak{b}}^{t}(M) \longrightarrow \mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{t+1}(M) \longrightarrow \cdots,
\end{aligned}
$$

and use part (i).
(iii) As $\sqrt{\mathfrak{a}}=\bigcap_{\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})} \mathfrak{p}$, the claim follows from part (ii).

Remark 2.3 In the above corollary, one may state more precise statements in certain cases as follows:
(ii') If $\operatorname{cd}(\mathfrak{a}, M)>0$ and $\operatorname{cd}(\mathfrak{b}, M)>0$, then

$$
\operatorname{cd}(\mathfrak{a} \cap \mathfrak{b}, M) \leq \operatorname{cd}(\mathfrak{a}, M)+\operatorname{cd}(\mathfrak{b}, M)-1
$$

(iii') If $R$ is local and $M$ is not $\mathfrak{a}$-torsion, then

$$
\operatorname{cd}(\mathfrak{a}, M) \leq \sum_{\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})} \operatorname{cd}(\mathfrak{p}, M)-|\operatorname{Min}(\mathfrak{a})|+1
$$

Note that the proof of ( $\mathrm{ii}^{\prime}$ ) is similar to that of Corollary 2.2(ii). For (iii'), we have $\operatorname{cd}(\mathfrak{p}, M)>0$ for all $\mathfrak{p} \in \operatorname{Min}(\mathfrak{a})$, since $M$ is not $\mathfrak{a}$-torsion. The result follows by induction on $|\operatorname{Min}(\mathfrak{a})|$.

For a general module $X$, not necessarily finite, we have the following result.
Corollary 2.4 Let $X$ be an arbitrary $R$-module. Then the following statements hold.
(i) $\quad \operatorname{cd}(\mathfrak{a}+\mathfrak{b}, X) \leq \operatorname{ara}(\mathfrak{a})+\operatorname{cd}(\mathfrak{b}, X)$.
(ii) $\quad \operatorname{cd}(\mathfrak{a} \cap \mathfrak{b}, X) \leq \operatorname{ara}(\mathfrak{a})+\operatorname{cd}(\mathfrak{b}, X)$.
(iii) $\operatorname{cd}(\mathfrak{b}, X) \leq \operatorname{cd}(\mathfrak{a}, X)+\operatorname{ara}(\mathfrak{b} / \mathfrak{a})$ whenever $\mathfrak{a} \subseteq \mathfrak{b}$.

Proof The proofs of (i) and (ii) are similar to those of Corollary 2.2 (i) and (ii), respectively. For (iii), let $e=\operatorname{cd}(\mathfrak{a}, X)$ and $f=\operatorname{ara}(\mathfrak{b} / \mathfrak{a})$. There exist $x_{1}, \ldots, x_{f} \in R$ such that $\sqrt{\mathfrak{b}}=\sqrt{\left(x_{1}, \ldots, x_{f}\right)+\mathfrak{a}}$. Now, use part (i).

We need some sufficient conditions for the isomorphism $\mathrm{H}_{\mathfrak{a}}^{s}\left(\mathrm{H}_{\mathfrak{b}}^{t}(X)\right) \cong \mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{s+t}(X)$ for given non-negative integers $s$ and $t$, which is crucial for the rest of the paper, e.g., to determine equalities in Corollaries 2.2 (i) and 2.4(i).

Lemma 2.5 Let X be an arbitrary $R$-module, and let $s, t$ be non-negative integers such that
(a) $\mathrm{H}_{\mathfrak{a}}^{s+t-i}\left(\mathrm{H}_{\mathfrak{b}}^{i}(X)\right)=0$ for all $i \in\{0, \cdots, s+t\} \backslash\{t\}$,
(b) $\mathrm{H}_{\mathrm{a}}^{s+t-i+1}\left(\mathrm{H}_{\mathrm{b}}^{i}(X)\right)=0$ for all $i \in\{0, \cdots, t-1\}$, and
(c) $\mathrm{H}_{\mathfrak{a}}^{s+t-i-1}\left(\mathrm{H}_{\mathfrak{b}}^{i}(X)\right)=0$ for all $i \in\{t+1, \cdots, s+t\}$.

Then we have the isomorphism $\mathrm{H}_{\mathfrak{a}}^{s}\left(\mathrm{H}_{\mathfrak{b}}^{t}(X)\right) \cong \mathrm{H}_{\mathfrak{a}+\mathrm{b}}^{s+t}(X)$.

Proof Consider the Grothendieck spectral sequence

$$
E_{2}^{p, q}:=\mathrm{H}_{\mathfrak{a}}^{p}\left(\mathrm{H}_{\mathfrak{b}}^{q}(X)\right)_{\vec{p}}^{\Rightarrow} \mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{p+q}(X)
$$

For all $r \geq 2$, let $Z_{r}^{s, t}=\operatorname{ker}\left(E_{r}^{s, t} \rightarrow E_{r}^{s+r, t+1-r}\right)$ and $B_{r}^{s, t}=\operatorname{Im}\left(E_{r}^{s-r, t+r-1} \rightarrow E_{r}^{s, t}\right)$. We have exact sequences

$$
0 \longrightarrow B_{r}^{s, t} \longrightarrow Z_{r}^{s, t} \longrightarrow E_{r+1}^{s, t} \longrightarrow 0
$$

and

$$
0 \longrightarrow Z_{r}^{s, t} \longrightarrow E_{r}^{s, t} \longrightarrow E_{r}^{s, t} / Z_{r}^{s, t} \longrightarrow 0
$$

Since, by assumptions (b) and (c), $E_{2}^{s+r, t+1-r}=0=E_{2}^{s-r, t+r-1}, E_{r}^{s+r, t+1-r}=0=$ $E_{r}^{s-r, t+r-1}$. Therefore $E_{r}^{s, t} / Z_{r}^{s, t}=0=B_{r}^{s, t}$ which shows that $E_{r}^{s, t}=E_{r+1}^{s, t}$ and so

$$
\mathrm{H}_{\mathfrak{a}}^{s}\left(\mathrm{H}_{\mathfrak{b}}^{t}(X)\right)=E_{2}^{s, t}=E_{3}^{s, t}=\cdots=E_{s+t+1}^{s, t}=E_{s+t+2}^{s, t}=E_{\infty}^{s, t}
$$

There is a finite filtration

$$
0=\phi^{s+t+1} H^{s+t} \subseteq \phi^{s+t} H^{s+t} \subseteq \cdots \subseteq \phi^{1} H^{s+t} \subseteq \phi^{0} H^{s+t}=H_{a+b}^{s+t}(X)
$$

such that $E_{\infty}^{s+t-r, r}=\phi^{s+t-r} H^{s+t} / \phi^{s+t-r+1} H^{s+t}$ for all $r, 0 \leq r \leq s+t$.
Note that for each $r, 0 \leq r \leq t-1$ or $t+1 \leq r \leq s+t, E_{\infty}^{s+t-r, r}=0$ by assumption (a). Therefore we get

$$
0=\phi^{s+t+1} H^{s+t}=\phi^{s+t} H^{s+t}=\cdots=\phi^{s+2} H^{s+t}=\phi^{s+1} H^{s+t}
$$

and

$$
\phi^{s} H^{s+t}=\phi^{s-1} H^{s+t}=\cdots=\phi^{1} H^{s+t}=\phi^{0} H^{s+t}=\mathrm{H}_{\mathfrak{a}+\mathrm{b}}^{s+t}(X)
$$

Hence $\mathrm{H}_{\mathfrak{a}}^{s}\left(\mathrm{H}_{\mathfrak{b}}^{t}(X)\right)=E_{\infty}^{s, t}=\phi^{s} H^{s+t} / \phi^{s+1} H^{s+t}=\mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{s+t}(X)$ as desired.
Now, we are able to discuss conditions under which inequalities Corollaries 2.2(i) and 2.4 (i) become equalities.

Corollary 2.6 Suppose that $M$ is a finite $R$-module such that $(\mathfrak{a}+\mathfrak{b}) M \neq M$. Then the following statements hold true.
(i) $\mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{\mathrm{cd}(\mathfrak{a}, M)+\mathrm{cd}(\mathrm{b}, M)}(M) \cong \mathrm{H}_{\mathfrak{a}}^{\mathrm{cd}(\mathfrak{a}, M)}\left(\mathrm{H}_{\mathrm{b}}^{\mathrm{cd}(\mathfrak{b}, M)}(M)\right)$.
(ii) The following statements are equivalent:
(a) $\operatorname{cd}(\mathfrak{a}+\mathfrak{b}, M)=\operatorname{cd}(\mathfrak{a}, M)+\operatorname{cd}(\mathfrak{b}, M)$.
(b) $\operatorname{cd}(\mathfrak{a}, M)=\operatorname{cd}\left(\mathfrak{a}, \mathrm{H}_{\mathfrak{b}}^{\mathrm{cd}(\mathfrak{b}, M)}(M)\right)$.
(c) $\operatorname{cd}(\mathfrak{b}, M)=\operatorname{cd}\left(\mathfrak{b}, \mathrm{H}_{\mathfrak{a}}^{\mathrm{cd}(\mathfrak{a}, M)}(M)\right)$.

Proof (i) Apply Lemma 2.5 with $s=\operatorname{cd}(\mathfrak{a}, M)$ and $t=\operatorname{cd}(\mathfrak{b}, M)$.
(ii) The implications $(\mathrm{a}) \Rightarrow(\mathrm{b})$ and (a) $\Rightarrow$ (c) are clear from part (i) and 6, Theorem 1.4]. For implications $(\mathrm{b}) \Rightarrow$ (a) and (c) $\Rightarrow$ (a), one may use part (i) and Corollary 2.2 (i).

With a similar argument, one has the following result for an arbitrary module.
Corollary 2.7 Suppose that $X$ is an arbitrary $R$-module. Then we have
(i) $\mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{\operatorname{ara}(\mathfrak{a})+\mathrm{cd}(\mathfrak{b}, X)}(X) \cong \mathrm{H}_{\mathfrak{a}}^{\operatorname{ara}(\mathfrak{a})}\left(\mathrm{H}_{\mathfrak{b}}^{\mathrm{cd}(\mathfrak{b}, X)}(X)\right)$.
(ii) The following statements are equivalent:
(a) $\operatorname{cd}(\mathfrak{a}+\mathfrak{b}, X)=\operatorname{ara}(\mathfrak{a})+\operatorname{cd}(\mathfrak{b}, X)$.
(b) $\operatorname{ara}(\mathfrak{a})=\operatorname{cd}\left(\mathfrak{a}, \mathrm{H}_{\mathfrak{b}}^{\mathrm{cd}(\mathfrak{b}, X)}(X)\right)$.

## 3 Artinian Local Cohomology Modules

In this section, we study the artinian property of local cohomology modules. For this purpose, for ideals $\mathfrak{b} \supseteq \mathfrak{a}$, we introduce the notion of cohomological dimension of an $R$-module $X$ with respect to $\mathfrak{b} / \mathfrak{a}$.

Definition 3.1 Let $\mathfrak{b} \supseteq \mathfrak{a}$ be ideals of $R$, and let $X$ be an $R$-module. Define the cohomological dimension of $X$ with respect to $\mathfrak{b} / \mathfrak{a}$ as

$$
\mathfrak{c d}(\mathfrak{b} / \mathfrak{a}, X):=\inf \{\operatorname{cd}(\mathfrak{c}, X): \mathfrak{c} \text { is an ideal of } R \text { and } \sqrt{\mathfrak{b}}=\sqrt{\mathfrak{c}+\mathfrak{a}}\}
$$

It is easy to see that $\operatorname{cd}(\mathfrak{b} / \mathfrak{a}, X) \leq \operatorname{ara}(\mathfrak{b} / \mathfrak{a})$ and, for a finite $R$-module $M$,

$$
\operatorname{cd}(\mathfrak{b} / \mathfrak{a}, M) \geq \operatorname{cd}(\mathfrak{b}, M)-\operatorname{cd}(\mathfrak{a}, M)
$$

by Corollary 2.2(i). Note that when $\mathfrak{a} X=0$, we have $\operatorname{cd}(\mathfrak{b} / \mathfrak{a}, X)=\operatorname{cd}(\mathfrak{b}, X)=$ $\operatorname{cd}_{R / \mathfrak{a}}(\mathfrak{b} / \mathfrak{a}, X)$. One may notice that if $\operatorname{Supp}_{R}(X) \subseteq \operatorname{Supp}_{R}(M)$, then $\operatorname{cd}(\mathfrak{b} / \mathfrak{a}, X) \leq$ $\operatorname{cd}(\mathfrak{b} / \mathfrak{a}, M)$.

Now we can state the following theorem.
Theorem 3.2 Let $\mathfrak{b} \supseteq \mathfrak{a}$ be ideals of $R$, let $X$ be an arbitrary $R$-module and let $n$ be a non-negative integer.
(i) If $\mathrm{H}_{\mathfrak{a}}^{i}(X)$ is $\mathfrak{b}$-torsion for all $i, 0 \leq i \leq n$, then $\mathrm{H}_{\mathfrak{a}}^{i}(X) \cong \mathrm{H}_{\mathfrak{b}}^{i}(X)$ for all $i, 0 \leq i \leq n$.
(ii) If $\mathrm{H}_{\mathfrak{a}}^{i}(X)$ is $\mathfrak{b}$-torsion for all $i \geq n$, then $\mathrm{H}_{\mathfrak{a}}^{i}(X) \cong \mathrm{H}_{\mathfrak{b}}^{i}(X)$ for all $i \geq n+\operatorname{ara}(\mathfrak{b} / \mathfrak{a})$.
(iii) Assume that $M$ is a finite $R$-module and that $\mathrm{H}_{\mathfrak{a}}^{i}(M)$ is $\mathfrak{b}$-torsion for all $i \geq n$. Then $\mathrm{H}_{\mathfrak{a}}^{i}(M) \cong \mathrm{H}_{\mathfrak{b}}^{i}(M)$ for all $i \geq n+\mathrm{cd}(\mathrm{b} / \mathfrak{a}, M)$.
Proof Let $u=\operatorname{ara}(\mathfrak{b} / \mathfrak{a})$ and $v=\operatorname{cd}(\mathfrak{b} / \mathfrak{a}, M)$. There exist $x_{1}, \ldots, x_{u} \in R$ and an ideal $\mathfrak{c}$ of $R$ such that $\operatorname{cd}(\mathfrak{c}, M)=v$ and $\sqrt{\left(x_{1}, \ldots, x_{u}\right)+\mathfrak{a}}=\sqrt{\mathfrak{b}}=\sqrt{\mathfrak{c}+\mathfrak{a}}$. In computing local cohomology modules, we may assume that $\left(x_{1}, \ldots, x_{u}\right)+\mathfrak{a}=\mathfrak{b}=\mathfrak{c}+\mathfrak{a}$. Now, for all $i, 0 \leq i \leq n$ (respectively, $i \geq n+u, i \geq n+v$ ), apply Lemma 2.5 with $s=0$ and $t=i$ to obtain the isomorphisms $\Gamma_{\left(x_{1}, \ldots, x_{u}\right)}\left(\mathrm{H}_{\mathfrak{a}}^{i}(X)\right) \cong \mathrm{H}_{\mathfrak{b}}^{i}(X)$ for all $i, 0 \leq i \leq n$, (respectively, $\Gamma_{\left(x_{1}, \ldots, x_{u}\right)}\left(\mathrm{H}_{\mathfrak{a}}^{i}(X)\right) \cong \mathrm{H}_{\mathfrak{b}}^{i}(X)$ for all $i \geq n+u, \Gamma_{\mathfrak{c}}\left(\mathrm{H}_{\mathfrak{a}}^{i}(M)\right) \cong \mathrm{H}_{\mathfrak{b}}^{i}(M)$ for all $i \geq n+v$,). Therefore all of the assertions follow.

Corollary 3.3 Let $R$ be a local ring with maximal ideal $\mathfrak{m}$, let $M$ be a finite $R$-module, and let $n$ be a non-negative integer. If $\operatorname{dim}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{i}(M)\right) \leq 0$ for all $i, 0 \leq i \leq n$ (respectively, for all $i \geq n$ ), then $\mathrm{H}_{\mathfrak{a}}^{i}(M)$ is artinian for all $i, 0 \leq i \leq n$ (respectively, for all $i \geq n+\operatorname{cd}(\mathfrak{m} / \mathfrak{a}, M))$.

Proof Since $\mathrm{H}_{\mathrm{m}}^{i}(M)$ is artinian for all $i$, the assertion follows from Theorem3.2
Recall that a finite $R$-module $M$ over a local ring $(R, \mathfrak{m})$ is called a generalized Cohen-Macaulay module if $\mathrm{H}_{\mathfrak{m}}^{i}(M)$ is of finite length for all $i<\operatorname{dim}_{R}(M)$. The following result gives us a characterization for a finite module $M$ over a local ring to be generalized Cohen-Macaulay in terms of the existence of an ideal $\mathfrak{a}$ for which $\mathrm{H}_{\mathfrak{a}}^{i}(M)$ is of finite length for all $i<\operatorname{dim}_{R}(M)$.

Corollary 3.4 Let $R$ be a local ring with maximal ideal $\mathfrak{m}$, and let $M$ be a finite $R$-module. Then the following statements are equivalent.
(i) $M$ is generalized Cohen-Macaulay module.
(ii) There exists an ideal a such that $\mathrm{H}_{\mathfrak{a}}^{i}(M)$ is of finite length for all $i, 0 \leq i<$ $\operatorname{dim}_{R}(M)$.

Proof (i) $\Rightarrow$ (ii). This is trivial. (ii) $\Rightarrow$ (i). This follows from Theorem 3.2(i).
A non-zero $R$-module $X$ is called secondary if its multiplication map by any element $a$ of $R$ is either surjective or nilpotent. A prime ideal $\mathfrak{p}$ of $R$ is said to be an attached prime of $X$ if $\mathfrak{p}=\left(T:_{R} X\right)$ for some submodule $T$ of $X$. If $X$ admits a reduced secondary representation, $X=X_{1}+X_{2}+\cdots+X_{n}$, then the set of attached primes $\operatorname{Att}_{R}(X)$ of $X$ is equal to $\left\{\sqrt{0:_{R} X_{i}}: i=1, \ldots, n\right\}$ (see [12]).

Assume that $M$ is a finite $R$-module of finite dimension $d$ and that $\mathfrak{a}$ is an ideal of $R$. It is well known that $\mathrm{H}_{\mathfrak{a}}^{d}(M)$ is artinian. If $(R, \mathfrak{m})$ is local, then the first author and Yassemi in [7, Theorem A] (see also [10, Theorem 8.2.1]) showed that $\operatorname{Att}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{d}(M)\right)=\left\{\mathfrak{p} \in \operatorname{Assh}_{R}(M): \mathrm{H}_{\mathfrak{a}}^{d}(R / \mathfrak{p}) \neq 0\right\}$, which generalized the wellknown result $\operatorname{Att}_{R}\left(\mathrm{H}_{\mathfrak{m}}^{d}(M)\right)=\operatorname{Assh}_{R}(M)\left(=\left\{\mathfrak{p} \in \operatorname{Supp}_{R}(M): \operatorname{dim}(R / \mathfrak{p})=d\right\}\right)$ (see [13, Theorem 2.2]). In the following remark, those ideals $\mathfrak{a}$ for which $\operatorname{Att}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{d}(M)\right)=$ $\operatorname{Assh}_{R}(M)$ are characterized. Denote the height support, $\operatorname{hSupp}_{R}(M)$, of $M$ as the set of all $\mathfrak{p} \in \operatorname{Supp}_{R}(M)$ such that $\mathfrak{p} \in \mathrm{V}(\mathfrak{q})$ for some $\mathfrak{q} \in \operatorname{Assh}_{R}(M)$.

Remark 3.5 Let ( $R, \mathfrak{m}$ ) be a complete local ring and let $M$ be a non-zero finite $R$-module with Krull dimension $d$. Then the following statements are equivalent.
(i) $\mathrm{H}_{\mathfrak{a}}^{d}(M) \cong \mathrm{H}_{\mathfrak{m}}^{d}(M)$.
(ii) $\operatorname{Att}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{d}(M)\right)=\operatorname{Assh}_{R}(M)$.
(iii) $\mathrm{V}(\mathfrak{a}) \cap \mathrm{hSupp}_{R}(M)=\{\mathfrak{m}\}$.

The proof of (i) $\Rightarrow$ (ii) is clear. To prove (ii) $\Rightarrow$ (iii), one may use the Lichtenbaum-Hartshorne Vanishing Theorem. For (iii) $\Rightarrow$ (i), choose a submodule $N$ of $M$ such that $\operatorname{Ass}_{R}(N)=\operatorname{Ass}_{R}(M) \backslash \operatorname{Assh}_{R}(M)$ and $\operatorname{Ass}_{R}(M / N)=$ $\operatorname{Assh}_{R}(M)$ to obtain $\mathrm{H}_{\mathfrak{a}}^{d}(M) \cong \mathrm{H}_{\mathfrak{a}}^{d}(M / N)$ and $\mathrm{H}_{\mathfrak{m}}^{d}(M) \cong \mathrm{H}_{\mathfrak{m}}^{d}(M / N)$. Therefore $\operatorname{Supp}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{i}(M / N)\right) \subseteq\{\mathfrak{m}\}$ for all $i$. Applying Theorem3.2(i) gives the claim. This remark shows that if $M$ is equidimensional, then $\operatorname{Att}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{d}(M)\right) \neq \operatorname{Assh}_{R}(M)$ for each ideal $\mathfrak{a}$ with $\operatorname{ht}_{M}(\mathfrak{a})<\operatorname{dim}_{R}(M)$.

Recall that an $R$-module $X$ is said to be minimax if it has a finite submodule $X^{\prime}$ such that $X / X^{\prime}$ is artinian (see [15]). Note that the class of minimax modules includes all finite and all artinian modules. We close this section by showing that if $\mathfrak{m}$ is a maximal ideal containing $\mathfrak{a}$, then $\mathrm{H}_{\mathfrak{m}}^{i}(X)$ is artinian for all $i \leq n$ (respectively, for
all $i \geq n+\operatorname{ara}(\mathfrak{m} / \mathfrak{a})$ ) whenever $\mathrm{H}_{\mathfrak{a}}^{i}(X)$ is minimax for all $i \leq n$ (respectively, for all $i \geq n$ ). We first present a lemma analogous to Lemma 2.1 .

Lemma 3.6 Let $X$ be an $R$-module, and let $t$ be a non-negative integer such that $\mathrm{H}_{\mathfrak{a}}^{t-r}\left(\mathrm{H}_{\mathfrak{b}}^{r}(X)\right)$ is artinian for all $r, 0 \leq r \leq t$. Then $\mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{t}(X)$ is artinian.

Proof By the Grothendieck spectral sequence

$$
E_{2}^{p, q}:=\mathrm{H}_{\mathfrak{a}}^{p}\left(\mathrm{H}_{\mathfrak{b}}^{q}(X)\right)_{\vec{p}}^{\Rightarrow} \mathrm{H}_{\mathfrak{a}+\mathfrak{b}}^{p+q}(X)
$$

the proof is similar to that of Lemma 2.1 .
Theorem 3.7 Let $\mathfrak{m}$ be a maximal ideal of $R$ containing $\mathfrak{a}$, let $X$ be an arbitrary $R$-module and let $n$ be a non-negative integer.
(i) If $\mathrm{H}_{\mathfrak{a}}^{i}(X)$ is minimax for all $i, 0 \leq i \leq n$, then $\mathrm{H}_{\mathfrak{m}}^{i}(X)$ is artinian for all $i$, $0 \leq i \leq n$.
(ii) If $\mathrm{H}_{\mathfrak{a}}^{i}(X)$ is minimax for all $i \geq n$, then $\mathrm{H}_{\mathfrak{m}}^{i}(X)$ is artinian for all $i \geq n+\operatorname{ara}(\mathfrak{m} / \mathfrak{a})$.

Proof By considering Lemma 3.6 this is similar to that of Theorem 3.2

## 4 Non-Artinian Local Cohomology Modules

In this section, we study those local cohomology modules that are not artinian. The following two results give us many non-artinian local cohomology modules.

Corollary 4.1 Let $X$ be an $R$-module, let $n$ be a positive integer, and let $x_{1}, \ldots, x_{n} \in R$ such that $\operatorname{cd}\left(\mathfrak{a}+\left(x_{1}, \ldots, x_{n}\right), X\right)=\operatorname{cd}(\mathfrak{a}, X)+n$. Then $\operatorname{dim}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{\operatorname{cd}(\mathfrak{a}, X)}(X)\right) \geq n$. In particular, $\mathrm{H}_{\mathfrak{a}}^{\mathrm{cd}(\mathfrak{a}, X)}(X)$ is not artinian.

Proof By Corollary 2.4(i), ara $\left(x_{1}, \ldots, x_{n}\right)=n$. By Corollary 2.7(ii) and the Grothendieck Vanishing Theorem, we have $\operatorname{dim}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{\operatorname{cd}(\mathfrak{a}, X)}(X)\right) \geq n$ and so $\mathrm{H}_{\mathfrak{a}}^{\operatorname{cd}(\mathfrak{a}, X)}(X)$ is not artinian.

Corollary 4.2 ([2] Proposition 3.2]) Let $(R, \mathfrak{m})$ be a local ring, and let $M$ be a finite $R$-module with Krull dimension $d$. Assume also that $\mathfrak{a}$ is generated by a subset of system of parameters $x_{1}, \ldots, x_{n}$ of $M$ of length $n$. Then $\operatorname{dim}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{\operatorname{cd}(\mathfrak{a}, M)}(M)\right)=d-n$. In particular, if $n<d$, then $\mathrm{H}_{\mathfrak{a}}^{\operatorname{cd}(\mathfrak{a}, M)}(M)$ is not artinian.

Proof There exist $x_{n+1}, \ldots, x_{d} \in R$ such that $x_{1}, \ldots, x_{d}$ is a system of parameters of $M$. Set $\mathfrak{b}=\left(x_{n+1}, \ldots, x_{d}\right)$. As $\mathfrak{m}=\sqrt{\mathfrak{a}+\mathfrak{b}+\operatorname{Ann}_{R}(M)}$, we can, and do, assume that $\mathfrak{a}+\mathfrak{b}=\mathfrak{m}$. By Corollary 2.2(i), $\operatorname{cd}(\mathfrak{a}, M)=n$ and $\operatorname{cd}(\mathfrak{b}, M)=d-n$. Now, by using Corollary 2.6(ii), we obtain $\operatorname{dim}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{n}(M)\right) \geqslant d-n$. On the other hand, we have $\operatorname{dim}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{n}(M)\right) \leqslant d-n$, since $\operatorname{Supp}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{n}(M)\right) \subseteq \operatorname{Supp}_{R}(M / \mathfrak{a} M)$. Thus $\operatorname{dim}_{R}\left(\mathrm{H}_{\mathfrak{a}}^{n}(M)\right)=d-n$ as desired.

Now it is natural to raise the following question.
Question 4.3 Assume that $M$ is a finite $R$-module and that $\mathrm{H}_{\mathfrak{a}}^{\operatorname{cd}(\mathfrak{a}, M)}(M)$ is not artinian. Is there an element $x$ in $R$ such that

$$
\operatorname{cd}(\mathfrak{a}+R x, M)=\operatorname{cd}(\mathfrak{a}, M)+1 ?
$$

It is clear that the above question has a positive answer if $R$ is local and $\mathfrak{a}$ is generated by a subset of system of parameters of $M$ of length smaller than $\operatorname{dim}_{R}(M)$.

In the rest of the paper, we study the set of ideals $\mathfrak{b}$ of $R$ such that $\mathrm{H}_{\mathfrak{b}}^{i}(M)$ is not artinian for some non-negative integer $i$.

Definition 4.4 Let $M$ be a finite $R$-module and let $r$ be a non-negative integer. Define the set of ideals

$$
\mathcal{L}^{r}(M):=\left\{\mathfrak{b}: \mathrm{H}_{\mathfrak{b}}^{i}(M) \text { is not artinian for some } i \geq r\right\}
$$

Note that $\mathcal{L}^{r}(M)$ is the empty set for all $r \geq \operatorname{dim}_{R}(M)$. If $0 \leq r<\operatorname{dim}_{R}(M)$, $\mathcal{L}^{r}(M)$ is non-empty by Corollary 4.2 The following remark shows that the set $\mathcal{L}^{r}(M)$ is independent of the module structure.

Remark 4.5 Assume that $L, M$, and $N$ are finite $R$-modules and that $r$ is a nonnegative integer. Then the following statements are true.
(i) $\quad$ If $\operatorname{Supp}_{R}(N) \subseteq \operatorname{Supp}_{R}(M)$, then $\mathcal{L}^{r}(N) \subseteq \mathcal{L}^{r}(M)$.
(ii) If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is an exact sequence, then $\mathcal{L}^{r}(M)=\mathcal{L}^{r}(L) \cup \mathcal{L}^{r}(N)$.
(iii) $\mathcal{L}^{r}(M)=\bigcup_{\mathfrak{p} \in \operatorname{Ass}_{R}(M)} \mathcal{L}^{r}(R / \mathfrak{p})$.

Proof (i) Assume that $\mathfrak{a}$ is an ideal of $R$ that is not in $\mathcal{L}^{r}(M)$ so that $\mathrm{H}_{\mathfrak{a}}^{i}(M)$ is artinian for all $i \geq r$. Therefore $\mathrm{H}_{\mathfrak{a}}^{i}(N)$ is artinian for all $i \geq r$ by [1, Theorem 3.1]; that is, $\mathfrak{a}$ does not belong to $\mathcal{L}^{r}(N)$. Thus $\mathcal{L}^{r}(N) \subseteq \mathcal{L}^{r}(M)$ as desired.
(ii) By (i), $\mathcal{L}^{r}(M) \supseteq \mathcal{L}^{r}(L) \cup \mathcal{L}^{r}(N)$. Assume that $\mathfrak{a} \in \mathcal{L}^{r}(M)$. There exists an integer $i, i \geq r$, such that $\mathrm{H}_{\mathfrak{a}}^{i}(M)$ is not artinian. Now, by the exact sequence $\mathrm{H}_{\mathfrak{a}}^{i}(L) \rightarrow \mathrm{H}_{\mathfrak{a}}^{i}(M) \rightarrow \mathrm{H}_{\mathfrak{a}}^{i}(N)$, the other inclusion follows.
(iii) By (i), we have the inclusion $\mathcal{L}^{r}(M) \supseteq \cup_{\mathfrak{p} \in \operatorname{Ass}_{R}(M)} \mathcal{L}^{r}(R / \mathfrak{p})$. Assume, conversely, that $\mathfrak{b} \notin \cup_{\mathfrak{p} \in \operatorname{Ass}_{\mathcal{R}}(M)} \mathcal{L}^{r}(R / \mathfrak{p})$. There is a prime filtration $0=M_{0} \subset M_{1} \subset$ $\cdots \subset M_{s}=M$ of $M$ such that, for all $j \in\{1, \ldots, s\}, M_{j} / M_{j-1} \cong R / p_{j}$ for some $\mathfrak{p}_{j} \in \operatorname{Supp}_{R}(M)$. For each $j \in\{1, \ldots, s\}$, there is $\mathfrak{q}_{j} \in \operatorname{Ass}_{R}(M)$ contained in $\mathfrak{p}_{j}$ and thus, by assumption and part (i), $\mathfrak{b} \notin \mathcal{L}^{r}\left(R / \mathfrak{p}_{j}\right)$. Now, by applying $\mathrm{H}_{\mathfrak{b}}^{i}(-)$ on each exact sequence

$$
0 \longrightarrow M_{j} \longrightarrow M_{j+1} \longrightarrow M_{j+1} / M_{j} \longrightarrow 0
$$

it follows that $\mathfrak{b} \notin \mathcal{L}^{r}(M)$.
Before stating the main theorem of this section, recall the following result, which is straightforward from the fact that, for an $R$-module $X$ and for each $\alpha \in R$, the kernel (respectively, the cokernel) of the natural map $X \longrightarrow X_{\alpha}$ is $\mathrm{H}_{R \alpha}^{0}(X)$ (respectively, $\mathrm{H}_{R \alpha}^{1}(X)$ ), where $X_{\alpha}$ denotes the localization of $X$ at the set $\left\{1, \alpha, \alpha^{2}, \alpha^{3}, \ldots\right\}$.

Proposition 4.6 For any $R$-module $X$ and for any $\alpha \in R$, there are exact sequences

$$
0 \longrightarrow \mathrm{H}_{R \alpha}^{1}\left(\mathrm{H}_{\mathfrak{a}}^{i-1}(X)\right) \longrightarrow \mathrm{H}_{\mathfrak{a}+R \alpha}^{i}(X) \longrightarrow \mathrm{H}_{R \alpha}^{0}\left(\mathrm{H}_{\mathfrak{a}}^{i}(X)\right) \longrightarrow 0
$$

for all $i \geq 0$.
Proof See [4, Proposition 8.1.2] (see also [3, Theorem 2.5]).
The $i$-th Bass number of $X$ with respect to the prime ideal $\mathfrak{p}$ of $R$, denoted by $\mu^{i}(\mathfrak{p}, X)$, is defined to be the number of copies of the indecomposable injective module $\mathrm{E}_{R}(R / \mathfrak{p})$ in the direct sum decomposition of the $i$-th term of a minimal injective resolution of $X$, which is equal to the rank of the vector space $\operatorname{Ext}_{R_{p}}^{i}\left(k(\mathfrak{p}), X_{\mathfrak{p}}\right)$ over the field $k(\mathfrak{p})=R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}$. When $(R, \mathfrak{m})$ is local, we write $\mu^{i}(X):=\mu^{i}(\mathfrak{m}, X)$ and refer it the $i$-th Bass number of $X$.

In the following theorem, we study Bass numbers of certain non-artinian local cohomology modules.

Theorem 4.7 Assume that $(R, \mathrm{~m})$ is a local ring and that $M$ is a finite $R$-module with Krull dimension $d$. Let $r<d$ be a fixed non-negative integer. Then for each maximal element $\mathfrak{q}$ of the non-empty set $\mathcal{L}^{r}(M)$,
(i) $\mu^{j}\left(\mathrm{H}_{\mathfrak{q}}^{i}(M)\right)<\infty$ for all $j \geq 0$ and all $i \geq r$;
(ii) $\mathfrak{q}$ is a prime ideal.

Proof (i) As $H_{m}^{i}(M)$ is artinian for all $i \geq 0$, we have $\mathfrak{q} \neq \mathfrak{m}$. Choose an element $x \in \mathfrak{m} \backslash \mathfrak{q}$. Thus $\mathrm{H}_{\mathfrak{q}+R x}^{i}(M)$ is artinian for all $i \geq r$. Using the exact sequence

$$
0 \longrightarrow \mathrm{H}_{R x}^{1}\left(\mathrm{H}_{\mathfrak{q}}^{i-1}(M)\right) \longrightarrow \mathrm{H}_{\mathfrak{q}+R x}^{i}(M) \longrightarrow \mathrm{H}_{R x}^{0}\left(\mathrm{H}_{\mathfrak{q}}^{i}(M)\right) \longrightarrow 0
$$

it follows that, for each $i \geq r$, the modules $\mathrm{H}_{R x}^{1}\left(\mathrm{H}_{\mathrm{q}}^{i}(M)\right)$ and $\mathrm{H}_{R x}^{0}\left(\mathrm{H}_{\mathrm{q}}^{i}(M)\right)$ are artinian and so they have finite Bass numbers. It follows by [8, Theorem 2.1] that $\mu^{j}\left(\mathrm{H}_{\mathrm{q}}^{i}(M)\right)<\infty$ for all $j \geq 0$ and all $i \geq r$.
(ii) Assume that $x, y \in \mathfrak{m} \backslash \mathfrak{q}$ such that $x y \in \mathfrak{q}$. As $\mathfrak{q}+R x$ and $\mathfrak{q}+R y$ properly contain $\mathfrak{q}$, it follows that the modules $\mathrm{H}_{\mathfrak{q}+R x}^{i}(M), \mathrm{H}_{\mathfrak{q}+R y}^{i}(M)$, and $\mathrm{H}_{\mathfrak{q}+R x+R y}^{i}(M)$ are artinian for all $i \geq r$. Applying the Mayer-Vietoris exact sequence

$$
\mathrm{H}_{\mathfrak{q}+R x}^{i}(M) \oplus \mathrm{H}_{\mathfrak{q}+R y}^{i}(M) \longrightarrow \mathrm{H}_{(\mathfrak{q}+R x) \cap(\mathfrak{q}+R y)}^{i}(M) \longrightarrow \mathrm{H}_{\mathfrak{q}+R x+R y}^{i+1}(M)
$$

we find that $\mathrm{H}_{(\mathrm{q}+R x) \cap(\mathfrak{q}+R y)}^{i}(M)$ is artinian for $i \geq r$. Note that

$$
\begin{aligned}
\sqrt{\mathfrak{q}} & \subseteq \sqrt{(\mathfrak{q}+R x) \cap(\mathfrak{q}+R y)}=\sqrt{(\mathfrak{q}+R x)(\mathfrak{q}+R y)} \\
& =\sqrt{\mathfrak{q}^{2}+\mathfrak{q} x+\mathfrak{q} y+R x y} \subseteq \sqrt{\mathfrak{q}}
\end{aligned}
$$

and hence $\mathrm{H}_{(\mathfrak{q}+R x) \cap(\mathfrak{q}+R y)}^{i}(M) \cong \mathrm{H}_{\mathfrak{q}}^{i}(M)$ is artinian for $i \geq r$. This contradicts the fact that $\mathfrak{q} \in \mathcal{L}^{r}(M)$, and so $\mathfrak{q}$ is a prime ideal.

There have been many attempts in the literature to find some conditions for the ideal $\mathfrak{a}$ to have finiteness for the Bass numbers of the local cohomology modules supported at a. In [5] Corollary 2], Delfino and Marley showed that the Bass number $\mu^{i}\left(\mathfrak{p}, \mathrm{H}_{\mathfrak{a}}^{j}(M)\right)$ is finite for all $\mathfrak{p} \in \operatorname{Spec} R$ and all $i, j$ whenever $M$ is a finite module over a ring $R$ and $\mathfrak{a}$ is an ideal of $R$ with $\operatorname{dim} R / \mathfrak{a}=1$.

Assume that $\mathfrak{a}$ and $\mathfrak{b}$ are two ideals of a local $\operatorname{ring}(R, \mathfrak{m})$ with $\operatorname{dim}(R / \mathfrak{a})=$ $\operatorname{dim}(R / \mathfrak{b})=1$ such that $V(\mathfrak{a}+\mathfrak{b})=\{\mathfrak{m}\}$. Write the Mayer-Vietoris exact sequence

$$
\mathrm{H}_{\mathfrak{m}}^{j}(M) \longrightarrow \mathrm{H}_{\mathfrak{a}}^{j}(M) \oplus \mathrm{H}_{\mathfrak{b}}^{j}(M) \longrightarrow \mathrm{H}_{\mathfrak{a} \cap \mathfrak{b}}^{j}(M) \longrightarrow \mathrm{H}_{\mathfrak{m}}^{j+1}(M)
$$

As $\mathrm{H}_{\mathfrak{m}}^{i}(M)$ is artinian for all $i$, we find that $\mathrm{H}_{\mathfrak{a} \cap \mathrm{b}}^{j}(M)$ has finite Bass numbers if and only if both $\mathrm{H}_{\mathfrak{a}}^{j}(M)$ and $\mathrm{H}_{\mathfrak{b}}^{j}(M)$ have finite Bass numbers. Therefore [5, Corollary 2] is equivalent to the case where the ideal $\mathfrak{a}$ is prime.

Comment Assume that $\mathfrak{p}$ is a prime ideal of $R$ such that $\operatorname{dim}(R / \mathfrak{p})=1$ and $r$ is the smallest integer (if there is one) such that $\mathrm{H}_{\mathfrak{p}}^{i}(M)$ is not artinian. Thus $\mathfrak{p}$ is a maximal element of $\mathcal{L}^{r}(M)$. By Theorem4.7 $\mu^{j}\left(\mathrm{H}_{\mathfrak{p}}^{i}(M)\right)<\infty$ for all $j \geq 0$ and all $i \geq r$. As $\mathrm{H}_{\mathfrak{p}}^{i}(M)$ is artinian for all $i<r$, all $\mathrm{H}_{\mathfrak{p}}^{i}(M)$ have finite Bass numbers. Thus Theorem 4.7 generalizes [5, Corollary 2].

Acknowledgement The authors would like to thank the referee for the invaluable comments on the manuscript.

## References

[1] M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories. J. Algebra 320(2008), no. 3, 1275-1287. doi:10.1016/j.jalgebra.2008.04.002
[2] K. Bahmanpour and R. Naghipour, Associated primes of local cohomology modules and Matlis duality. J. Algebra 320(2008), no. 6, 2632-2641. doi:10.1016/j.jalgebra.2008.05.014
[3] M. P. Brodmann, S. Fumasoli, and R. Tajarod, Local cohomology over homogeneous rings with one-dimensional local base ring. Proc. Amer. Math. Soc. 131(2003), no. 10, 2977-2985. doi:10.1090/S0002-9939-03-07009-6
[4] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.
[5] D. Delfino and T. Marley, Cofinite modules and local cohomology. J. Pure Appl. Algebra 121(1997), no. 1, 45-52. doi:10.1016/S0022-4049(96)00044-8
[6] M. T. Dibaei and S. Yassemi, Cohomological dimension of complexes. Comm. Algebra 32(2004), no. 11, 4375-4386. doi:10.1081/AGB-200034165
[7] , Attached primes of the top local cohomology modules with respect to an ideal. Arch. Math. 84(2005), no. 4, 292-297.
[8] , Bass numbers of local cohomology modules with respect to an ideal. Algebr Represent. Theory 11(2008), no. 3, 299-306. doi:10.1007/s10468-007-9072-3
[9] K. Divaani-Aazar, R. Naghipour, and M. Tousi, Cohomological dimension of certain algebraic varieties. Proc. Amer. Math. Soc. 130(2002), no. 12, 3537-3544. doi:10.1090/S0002-9939-02-06500-0
[10] M. Hellus, Local cohomology and Matlis duality. Univ. Iagel. Acta Math. 45(2007), 63-70.
[11] C. Huneke, Problems on local cohomology. In: Free resolutions in commutative algebra and algebraic geometry (Sundance, UT, 1990), Res. Notes Math., 2, Jones and Bartlett, Boston, MA, 1992, pp. 93-108.
[12] I. G. Macdonald, Secondary representation of modules over a commutative ring. In: Symposia Mathematica, XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press, London, 1973, pp. 23-43.
[13] I. G. Macdonald and R. Y. Sharp, An elementary proof of the non-vanishing of certain local cohomology modules. Quart. J. Math. Oxford Ser. (2) 23(1972), 197-204. doi:10.1093/qmath/23.2.197
[14] J. J. Rotman, An introduction to homological algebra. Pure and Applied Mathematics, 85, Academic Press, New York-London, 1979.
[15] H. Zöschinger, Minimax-moduln.(German) J. Algebra 102(1986), no. 1, 1-32. doi:10.1016/0021-8693(86)90125-0

Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, Tehran, Iran and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran e-mail: dibaeimt@ipm.ir

Faculty of Mathematical Sciences and Computer, Tarbiat Moallem University, Tehran, Iran and

Payame Noor University (PNU), Iran
e-mail: vahidi.ar@gmail.com


[^0]:    Received by the editors September 27, 2008; revised November 17, 2008.
    Published electronically March 11, 2011.
    M. T. Dibaei was supported by a grant from IPM No. 87130117.

    AMS subject classification: 13D45, 13 E 10.
    Keywords: local cohomology modules, cohomological dimensions, Bass numbers.

