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Abstract

We consider the function f(n) that enumerates partitions of weight n wherein each part appears an odd
number of times. Chern [‘Unlimited parity alternating partitions’, Quaest. Math. (to appear)] noted
that such partitions can be placed in one-to-one correspondence with the partitions of n which he calls
unlimited parity alternating partitions with smallest part odd. Our goal is to study the parity of f(n)
in detail. In particular, we prove a characterisation of f(2n) modulo 2 which implies that there are
infinitely many Ramanujan-like congruences modulo 2 satisfied by the function f. The proof techniques
are elementary and involve classical generating function dissection tools.
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1. Introduction

In a recent note, Chern [2] defined the function pa,(n) to be the number of unlimited
parity alternating partitions of n with smallest part odd. Chern’s work is motivated by
work of Andrews [1] who defined a partition of n as ‘parity alternating’ if the parts of
the partition in question alternate in parity.

Chern notes in passing that pa,(n) also counts the number of partitions of n in which
each part appears an odd number of times. (Indeed, one can place the unlimited parity
alternating partitions of n with smallest part odd and the partitions of » in which each
part appears an odd number of times in one-to-one correspondence via conjugation.)

In order to simplify the notation, we let f(n) be the number of partitions of »n in
which each part appears an odd number of times. Our primary goal in this note is to
prove the following characterisation of f(2n) modulo 2.

Tueorem 1.1. Foralln >0,

1 (mod2) ifn = k? for some integer k with 3 1 k,

0 (mod 2) otherwise.

f@2n) =
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At the conclusion of the note, we will highlight infinite families of Ramanujan-like
congruences modulo 2 that are satisfied by f. We will also note how Theorem 1.1
implies a characterisation modulo 2 of a3(n), the number of 3-cores of n (see [4]).

2. An elementary generating function proof

In order to prove Theorem 1.1, we will utilise some well-known generating function
results and elementary manipulations thereof. We describe this foundation here.
We begin by setting some standard notation. In particular, we define (a; ¢)w, Which

is the usual Pochhammer symbol, to be

(@:q)s = (1= a)(1 - ag)(1 - ag’)(1 - aq’) ...
Next, we provide three important lemmas.
LemMma 2.1.
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Proor. Observe that
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The result follows.

LEMma 2.2.
(@43,

— 3n2-2n
T Z q (mod 2).

n=—oco
Proor. Working modulo 2,
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(mod 2)

As an aside, we note that Lemma 2.2 yields a mod 2 characterisation for the number
of 3-core partitions of n [4]. We will return to this observation at the end of this paper.
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Lemma 2.3. 1If, as usual,

(em)2 (¢ qH% N Gr2=n)/2
Y@= "M =220 and Tig)= ) ¢%P,
n>0 (q,Q)oa

then
w(q) =TI(g) + qu(q”).
Proor. See [3, Ch. 1]. O

We are now in a position to prove Theorem 1.1.

ProoF oF THEOREM 1.1.
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(mod 2)

= ! N 12n2~4n N 12n2~8n
) (qz;‘lz)oo(qﬁ;f)m( _Z_: 4 —q _Z q )
It follows that
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=1+gq Z q9”2_6” (mod 2) by Lemma 2.2

n=—00
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(mod 2)

by Lemma 2.3

(mod 2)

=1+¢q

=1+

(mod 2)

=1+

=1+ Z q"z.
n>0, 3tn

The result follows. |

Several comments are in order as we close.

First, note that we can now prove a variety of corollaries which provide infinitely
many Ramanujan-like congruences modulo 2 involving f(2n). We simply need to
make sure that we avoid arguments of the form 2n where n is square. So, although
not exhaustive, we provide two such corollaries here.

CoroLLARY 2.4. Let p > 3 be prime and let r be a quadratic nonresidue modulo p.
Then, forall M > 1 and n > 0,

FQM?*(pn + r)) = 0 (mod 2).

Proor. Thanks to Theorem 1.1, we need to see whether pn + r can be written as
pn + r = k* with 3 1 k. However, note that pn + r = k? implies that r = k> (mod p). This
contradicts the definition of r given in the corollary. We also know that M?(pn + r)
cannot be square because it is the product of a square and a nonsquare. The result
follows. O
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CORrROLLARY 2.5. Forall M > 1 andn >0,
F2M?(4n +2)) = 0 (mod 2).

Proor. Note that, for M = 1, the result follows because 4n + 2 is never square. (All
squares are congruent to either 0 or 1 modulo 4.) Next, we need to ask whether
M?(4n + 2) can ever be square. Clearly, this also cannot be the case given that
M?(4n + 2) is the product of a square with a nonsquare. O

Secondly, we highlight an unrelated observation about the parity of az(n), the
number of 3-core partitions of n [4]. Since the generating function for as(n) is given

by
n @)
Za3(n)q - . B
e (45 Do

it is clear that Lemma 2.2 yields the following result.

Tueorem 2.6. For alln > 0,

1 (mod2) ifn =3m?+ 2m for some integer m,
az(n) =

0 (mod 2) otherwise.

Finally, we note that a combinatorial proof of Theorem 1.1 would be very
illuminating.
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