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Abstract

The steady, axisymmetric flow induced by a point sink (or source) submerged in an
unbounded inviscid fluid is computed. The resulting deformation of the free surface is
obtained, and a limit of steady solutions is found that is quite different to those obtained
in past work. More accurate solutions indicate that the old limiting flow rate was too
high and, in fact, the breakdown of steady solutions at a lower flow rate is characterized
by the appearance of spurious wavelets at the free surface.
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1. Introduction

The flow of ideal fluid into a line or point sink has been used for many years as a
proxy for the withdrawal of water from reservoirs. The problem is of importance
for management of reservoirs and control of water quality in drinking supply [12],
and the solutions have been shown to provide a reasonable representation of the
real situation in many cases, but have led to some confusion in others; see for
example [8, 11, 13, 14, 23].

Some of this work concentrated on unsteady flows [17–19, 22, 24], but, throughout
the twentieth century, most work was done by seeking steady flow solutions that
provided some estimates of the various critical parameters in such flows [2, 3, 7, 10,
16, 20, 21], to mention but a few. More recently, some cases of supercritical steady
flows were obtained for a line sink [4, 5, 9] and for a point sink [6]. The main reason
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Figure 1. Limiting shape of the free surface F = 6.35 recomputed using the values in [3]. A uniform grid
spacing of ∆s = 0.04 and a truncation point of tr = 6.0 were used to obtain this figure.

for studying the steady flow case was the lack of computing power and the lack of
stable numerical methods for dealing with free surface hydrodynamical problems –
in particular, the formation of a singularity on the free surface after a finite critical
time that often occurs in unsteady inviscid flow (see the article by Moore [15]). More
complete historical information on this problem can be found in Stokes et al. [17, 18],
which discusses all of the relevant line sink and point sink results.

In this note, we revisit one of the fundamental solutions obtained during this
period [3]. We consider the simplest withdrawal flow with a three-dimensional aspect;
a single point sink submerged beneath a fluid surface where the fluid is unbounded
below. In this configuration, there is only one dimensionless parameter that combines
the flux into the outlet, QS , the depth of the point sink, hS , and the gravitational
acceleration, g, into a quantity known as the Froude number,

F =
QS

gh5
S

. (1.1)

Increasing the value of the Froude number corresponds to increasing the flow rate
or moving the sink closer to the surface. Forbes and Hocking [3] found that as the
Froude number was increased, a circular wave formed on the surface surrounding the
sink, and that eventually this rose up to a stagnation ring leading to the breakdown of
the solution. Also, they found the limiting Froude number to be F ≈ 6.4. A depiction
of this solution is given in Figure 1.

This solution was obtained using an integral equation formulation with an even grid
spacing, ∆s = 0.05, in the arc length, s, along the free surface and truncation of the
infinite integral at tr = 6.0. It seems surprising now that these results were limited by
the capacity of the computer – smaller grid spacing and larger computational windows
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made the length of the computations prohibitive on computers of the day. Tests were
performed to compare the accuracy of the solution by decreasing the grid spacing and
moving the truncation point further out. Given the limited capabilities, these solutions
appeared to have converged, and there was no reason to think that the solutions would
change further if longer simulations could be performed.

Given the vastly greater computer power currently available, we have revisited this
problem and obtained some surprising results. Decreasing the grid spacing over the
same computational window makes almost no difference to the solutions (using the
earlier formulation [3]), but significantly increasing the computational window makes
a dramatic difference that leads to completely different conclusions to the earlier work.
Given this fact, a second numerical scheme is developed to verify and compare with
the original scheme.

Therefore, the purpose of this note is to correct the conclusions of the earlier
paper [3] in the light of this. In some ways, these conclusions are disappointing and
far less interesting, but they are consistent with the unsteady results that have been
considered in more recent work.

2. Problem formulation

While the complete formulation was given in the earlier paper [3], we will
summarize it here for completeness. We consider the steady, irrotational, axi-
symmetric flow of an inviscid, incompressible fluid beneath a free surface. The flow
is driven by flux into a point sink of strength QS in m3 s−1 situated at a depth hS in
metres, m, beneath the undisturbed level of the free surface. Under these assumptions,
the problem can be formulated in terms of a velocity potential φ(r, z), where r is a radial
coordinate centred on the location of the point sink and z is the vertical coordinate with
z = 0 corresponding to the level of the undisturbed free surface which corresponds
to the stagnation level. The radial and vertical components of velocity are given by
u = Φr and v = Φz, respectively. The sink sits at a depth of z = −hS , and the fluid is not
bounded below.

Nondimensionalizing the potential and length with respect to QS /hS and hS

respectively, where the quantity QS is the total flux from the full point sink, the
problem is to solve

∇2Φ = 0, z < η(r), (r, z) , (0,−1),

subject to
1
2 (Φ2

r + Φ2
z ) + F−2η = 0 on z = η(r) (2.1)

and
Φrηr − Φz = 0 on z = η(r). (2.2)

The sink is now located one unit beneath the free surface and has total withdrawal flux
of 4π. These equations include the main parameter that control this flow, the Froude
number (1.1).
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In the limit as we approach the point sink at (r, z) = (0,−1), the velocity potential
should take the form

ΦS →
1√

r2 + (z + 1)2
.

A change of sign reverses the flow direction from a sink flow to a source flow.
However, in the case of steady flow, the quadratic nature of the velocity term in the
dynamic condition (2.1) means that solutions generated apply for both source and sink
flows.

3. The numerical method

To consider the full nonlinear steady flow problem, we implement a numerical
scheme identical to that of Forbes and Hocking’s [3] and another, different scheme
for the sake of comparison. In both cases, we use the same integral equation form, but
use completely different numerical methods. The flow is assumed to be axisymmetric,
and an integral equation is derived for the elevation and velocity potential on the free
surface.

3.1. Formulation We derive an integral equation for the unknown harmonic
function, Φ(r, z), and surface elevation, z = η(r). Let Q be a fixed point on the free
surface with coordinates (r, θ, η(r)) and P(γ, β, µ) be another point which is free to
move over the same surface. Since Φ is a harmonic function over the full region except
at the sink itself, we can define another function Ψ = 1/RPQ which is also analytic,
except when P and Q are the same point, that is,

Ψ =
1

RPQ
=

1
[r2 + γ2 − 2rγ cos(β − θ) + (z − µ)2]1/2 .

Invoking Green’s second identity,"
∂V

[
Φ
∂Ψ

∂n
− Ψ

∂Φ

∂n

]
dS = 0,

where n denotes the outward normal direction, and ∂V consists of the surface of the
free surface S T with the point Q carefully excluded by a small hemispherical surface,
SQ, and a small sphere about the sink, S ε .

It is not difficult to show that the contributions from all of these surfaces lead to an
integral equation of the form

2πΦ(Q) =
1

(r2 + (z + hS )2)1/2 −

"
S T

Φ(P)
∂

∂nP

( 1
RPQ

)
dSP.

Following the previous work [3], the surface integral can be specified in terms of
the variables of the problem as

2πΦ(Q) =
1

(r2 + (z + 1)2)1/2 −

∫ ∞

0
Φ(P)K(a, b, c, d) dρ,
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in which the kernel function is

K(a, b, c, d) = γ

∫ 2π

0

a − b cos(β − θ)
[c − d cos(β − θ)]3/2 dβ

and the intermediate quantities a–d are defined as

a = γηγ(P) − (η(P) − η(Q)), b = rηγ(P),
c = γ2 + r2 + (η(P) − η(Q))2, d = 2rγ.

Forbes and Hocking [3] reduced this to the form

K(a, b, c, d) =
2

√
c + d

[
ηγK

( 2d
c + d

)
+

(2ar − ηγc
c − d

)
E
( 2d
c + d

)]
,

where K and E are complete elliptic integrals of the first and second kinds as defined
by Abramowitz and Stegun [1]. At this point, we note that E is well behaved over the
interval of interest, but that K has a logarithmic singularity as P→ Q in the integral
over the free surface.

This problem was solved using a formulation based on arc length along the surface,
so that s is the distance from γ = 0 to Q, and σ is the distance along the surface to P.
The standard formula (dr

ds

)2
+

(dη
ds

)2
= 1 (3.1)

defines the arc length s in terms of r and η. We define a surface potential φ(s) and,
applying the chain rule, we find that along the surface,

∂φ

∂r
= Φr(r, η) + Φz(r, η)

dη
dr
.

Eliminating Φz from the Bernoulli equation (2.1) and the kinematic condition (2.2)
and combining leads to a single relation

1
2

F2
(dφ

ds

)2
+ η(s) = 0 (3.2)

on the free surface z = η(r).
Rewriting the integral equation in terms of arc length,

2πφ(s) =
1

[r2(s) + (η(s) + 1)2]1/2 −

∫ ∞

0
φ(σ)K(A, B,C,D) dσ, (3.3)

where

A = r(σ)η′(σ) − r′(σ)(η(σ) − η(s)), B = r(s)η′(σ),
C = r2(σ) + r2(s) + (η(σ) − η(s))2, D = 2r(s)r(σ).

In the previous work [3], the authors noted that∫ ∞

0
K(A, B,C,D) dσ = 0,
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so that

2πφ(s) =
1

[r2(s) + (η(s) + 1)2]1/2 −

∫ ∞

0
[φ(σ) − φ(s)]K(A, B,C,D) dσ (3.4)

is equivalent to (3.3). It is this form (3.4) that is used in Method I below, while Method
II uses (3.3).

This integral equation is coupled with the condition (3.1), subject to (3.2), to give
the complete formulation of the problem. The arc-length formulation allows the
method to find multiple-valued or overhanging free surface shapes should they exist.

3.2. Computational details – two methods The equations derived in the previous
section are highly nonlinear both because of the quadratic dependence on velocity of
the surface condition and the fact that the surface shape is unknown. The equations
were, therefore, solved numerically using collocation. A grid of points was chosen at
arc-length values s = s0, s1, s2, s3, . . . , sN . An initial guess for the potential function,
φ = φ0, φ1, . . . , φN , on the surface was made and used to compute the surface shape
η = η0, η1, η2, . . . , ηN from the surface condition (3.2). These values were then used
to compute the error in the integral equation (3.3). The initial guess was then updated
using a damped Newton’s method until the error in all equations dropped below 10−8.

Earlier [3], the grid of points was chosen to be uniform, but we modified this in
Method I here to have a very gradual geometric expansion of points to much greater
distances. Even with the large computational power available today, calculations with
a uniform grid become prohibitive for large computational windows. In this way,
truncation can be moved out as far as we wish, so long as sufficiently many points are
used to ensure accurate solutions.

In the previous work [3] and Method I, the integral was evaluated by extracting the
singularity as σ→ s. The correction for this can be shown to be zero if the integral
extends to infinity. Therefore, the implementation involves the modified integral
equation (3.4). Once the singular point was removed, all integrals were evaluated
using cubic spline integration. The solutions converged very well at a fixed truncation
value sN , accurate to graphical accuracy with ∆s = 0.01 in the central (nonexpanding)
region of the grid.

In Method II, a product integration scheme with quadratic segments was used to
evaluate the integral in equation (3.3), noting the logarithmic singularity in the K
elliptic integral as σ→ s. The nonsingular part was computed using cubic spline
integration. Tests showed no significant difference in the results if linear segments
were used in the product integration.

Calculations were done with both methods, and it was found that for Method I the
size of the computational window began to have a significant impact while the step size
was found to be less important. However, the variation in results as the window size
was increased was very small, partly explaining the mistaken conclusions earlier [3].
The conclusion of this is that although the omission of the extra term explained in
equation (3.4) is valid, the missing component may be significant if the window is
truncated too soon.
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Figure 2. Limiting free surface shapes as the grid spacing is reduced.

Method II was the opposite in that a sufficient computational window was found to
be approximately sN = 10, but that decreasing step size made a big difference. Thus,
using the product integration method directly removes the problem of truncation in
Method I, but dealing with the logarithmic singularity directly gives a less accurate
method in terms of grid resolution. In order to compute results for very small grid
spacing, the Jacobian was not computed fully. It was found that computing the leading
diagonal together with 40 or 50 diagonals either side provided sufficient accuracy in
the iterative scheme, but made the process run orders of magnitude faster (that is,
instead of N × N calculations to find the Jacobian there were approximately 80 × N).

However, and importantly, the effect of making both methods more accurate,
whether by increasing the computational window in Method I or by increasing the
resolution in Method II, was the same.

4. Results and conclusions

Solutions identical to those in the earlier paper by the authors [3] were obtained
using parameters matching those in that work for Method I. However, increasing
accuracy of both methods led to an increase in waviness on the free surface, which
caused the maximum Froude number that could be obtained to decrease quite
significantly.

Figure 2 shows the limiting free surface shapes as the accuracy was increased. At
∆s = 0.03, the maximum F = 5.95 looks very similar to the original solution in [3],
except that the stagnation ring is closer to the centre and the deepest dip is shallower.
This pattern continues in the case ∆s = 0.01 with limiting F = 5.15, in which the
surface ring has again moved inward, and the second ripple has become much steeper
as has the third. By the time ∆s is reduced to ∆s = 0.005, F = 4.35, the first ripple is
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Figure 3. Limiting Froude number as the grid spacing is reduced (product integration method) or the
truncation point is increased (singularity extraction method) (limiting F is plotted against 1/truncation
point). There is no reason why the truncation curve should match the grid spacing curves except as they
all approach zero on the horizontal axis.

no longer the highest, and it is the fact that the fourth local maximum has reached the
stagnation level that causes the method to fail. This trend continues as the solutions
are computed more accurately, so that when ∆s = 0.0033, the limiting F ≈ 3.64 and
none of the inner ripples reaches the stagnation level. Presumably, ripples further out
rise up to destroy the solutions. In the final surface shape shown, ∆s = 0.0029,F = 3.0,
there no longer appears to be any significant wave on the surface. It seems likely that
more accurate solutions will also converge up to this value of F, as there is no wave
on the surface to confound the solutions. Careful examination of the solution with
F = 3.0 shows tiny ripples on the surface which exist only over a short interval in r on
the upslope of the major dip, suggesting that the maximal F solution is slightly below
this value, but it was found to be impossible to compute solutions with smaller ∆s
in a reasonable time. This conclusion appears to be supported by Figure 3, in which
limiting F values are shown for increasingly accurate solutions using both Method
I, that is, Fmax versus 1/truncation and Method II, that is, Fmax versus 1/N. There
is no reason why the two curves for the product integral method and the curve for
the singularity extraction method should match, except in the limit as they approach
zero. Using both methods, a case can be made that the limiting value is just below
F = 3.0. Furthermore, a spectral method was developed (the details are not given for
succinctness) and was found to converge only for values of F < 3, again seeming to
confirm the above conclusions.

However, it is still possible that for infinitely accurate solutions there are
infinitesimal waves on the free surface for every value of F and, therefore, no steady
solution exists.
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While the solutions with a stagnation ring are the most attractive from an interest
point of view, they do not seem to be achievable as real steady flows as the accuracy
of the two schemes is increased. The only reasonable conclusion is that if significant
waves begin to form on the surface, then no steady solution is possible. Thus, the
critical value of Froude number drops from F ≈ 6.4 [3] to F ≈ 3 and the free surface
has no waves or ripples.

The solutions computed over the full range, however, can be thought of as being
very close to steady state (with only very small errors on the free surface), suggesting
that perhaps they exist as almost-steady solutions, with small, wavering ripples on an
otherwise unchanging surface. Only full unsteady simulations will be able to answer
this question. This issue and also the stability of these flows are the subject of further
work.
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