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SUMMARY

The space–time scan statistic is often used to identify incident disease clusters. We introduce a

method to adjust for naturally occurring temporal trends or geographical patterns in illness. The

space–time scan statistic was applied to reports of lower respiratory complaints in a large group

practice. We compared its performance with unadjusted populations from: (1) the census,

(2) group-practice membership counts, and on adjustments incorporating (3) day of week, month,

and holidays; and (4) additionally, local history of illness. Using a nominal false detection rate of

5%, incident clusters during 1 year were identified on 26, 22, 4 and 2% of days for the four

populations respectively. We show that it is important to account for naturally occurring

temporal and geographic trends when using the space–time scan statistic for surveillance. The

large number of days with clusters renders the census and membership approaches impractical for

public health surveillance. The proposed adjustment allows practical surveillance.

INTRODUCTION

The public health community’s interest in the prompt

detection of clusters of illnesses has increased recently

because of the need for the earliest possible detection

of bioterrorism attacks and the perceived utility of

enhanced detection of both endemic and new diseases,

the earliest manifestations of which may consist of

non-specific signs and symptoms [1, 2]. Useful cluster

detection systems should be able to identify clusters of

various size, shape, and duration, centred anywhere

within the surveillance region. In order to identify

clusters, it is necessary to take into account the size

and location of the population subject to surveillance.

Information about the population’s usual patterns of

medical care utilization for specific types of illness and

historical information about temporal variation (for

instance, by month of year and day of week) may also

be useful.

Kulldorff has proposed a statistical approach to

surveillance based on the space–time scan statistic

that meets the primary criteria noted above in being

able to identify clusters of varying size and duration,

centred anywhere in the surveillance area [3]. A soft-

ware package (SaTScan) to apply the approach is

freely available [4].

We propose here a model-based method for

adjusting the space–time scan statistic in a way that

can accommodate both temporal and geographical

variation in syndromic event rates, and examine its
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impact on syndromic surveillance. In contrast, pre-

vious work has mainly discussed adjusting the spatial

and space–time scan statistics for individual and area

level covariates such as age, gender, urbanicity and

socio-economic status, or by using historical counts as

controls [5–8]. SaTScan offers a simple adjustment for

purely temporal trends, but this approach cannot

adapt to regular periods of increased and decreased

risk as may sometimes be necessary.

We consider four possible space–time scan statistic

analyses. First, we consider using the census to define

the background population at risk for each census

tract, even though not everyone in that population

would be ‘caught ’ by our system when they go to the

doctor. Second, we consider using the number of

individuals in each census tract who are eligible to

appear in the surveillance system. Third, we adjust the

eligible population for seasonal and other temporal

patterns. Finally, we also adjust for different baseline

risks of illness in each census tract, accounting for the

possibility that different individuals may have a differ-

ent propensity to appear as cases (e.g. for going to the

doctor) depending on which census tract they live in.

METHODS

Dataset

We have previously described syndromic surveillance

based on an automated electronic medical record

system [9]. The dataset represents the ambulatory

medical encounters of insured individuals. For each

encounter, a clinician enters diagnoses, to which

diagnostic codes are attached. Diagnoses are then

grouped into syndromes. Geocoding patients’

addresses provides the census tract of residence.

Although the accuracy and utility of commercial

geocoding has been questioned [10], the addresses are

used for billing and other business purposes, so they

are likely to be accurate.

We use syndromic surveillance of lower respiratory

infection (LRI) as our example. A case of anthrax in

the initial phase would include symptoms that would

probably cause it to be classified into the LRI syn-

drome [9] so our example reflects on bioterrorism

surveillance. As would be expected, incidence rates of

LRI are much higher in the winter than summer [1].

Local baseline risk of LRI is also thought to vary due

to local variability in the proportion of individuals

with weaker immune systems or cultural propensity to

seek health care.

The dataset used for the example incorporates all

LRI encounters between 1 January 1996 and 31

October 1999. This represents the 80 643 encounters

of approximately 240 000 individuals, about 10%

of the population in the 566 census tracts with

centroids in the greater Boston area between west

longitudes 70.85 and 71.40 and north latitudes 42.15

and 42.67.

Spatial surveillance scan statistic

The space–time scan statistic can be used to detect

clusters of disease in time and space [3]. Cylindrical

risk regions are used to detect clusters. The radius

represents an area of the map, while the height rep-

resents time. The radius varies from zero to a chosen

upper bound that restricts the percentage of the

population included in the cylinder, in our case 25%

of the total population. The maximum number of

days included in the cluster can also be limited [3, 4].

We set this maximum to 1 day. These limits are

somewhat arbitrary and we chose them as relevant to

the example of surveillance for anthrax.

We simplify the space–time scan statistic by making

an initial summary within census tracts. This means

that we treat all individuals as if they live at the cen-

troid of their census tract. The entire census tract

population will be included only if the centroid is in-

cluded in the cylinder. There are two reasons we used

the census tract summed counts rather than the exact

locations. First, our privacy agreement with the

health plan that gave us the data requires we use the

exact locations only to get the grouped data. Second,

the computational time required to do the exact-

location analysis on approximately 200 000 addresses

would be prohibitive, compared with the 529 popu-

lated census tract locations. Although possibly not a

reason to summarize spatially in itself, we note that

the type of adjustment we outline below would be

difficult to apply to individual addresses.

The space–time scan procedure first calculates a

Poisson-based likelihood ratio. This is proportional

to (n=m)n[(Nxn)=(Nxm)]Nxn, where N is the total

number of visits, n is the number of visits among

those people who live within the cylinder, and m is

the expected number of visits within the cylinder. The

expected number of visits is simply N times the pro-

portion of the population across time that lives within

the cylinder. Note the central role of m in the likeli-

hood ratio and that m depends on the denominator

from which the cases develop; thus, we can alter the
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expected number of cases m by modifying the

denominator.

The value of the likelihood ratio is calculated for

every possible cylinder, and the cylinder associated

with the maximum value is the most likely cluster [11].

This maximum-likelihood ratio is the space–time scan

statistic. A P value is assigned to the cluster using

Monte Carlo hypothesis testing [12]. The number of

cases actually observed (N) is randomly re-distributed

over time and space under the null hypothesis (that

the cases are distributed proportionately to popu-

lation over time and space). This is done 999 times. In

each Monte Carlo replicate, a most likely cluster is

found and its likelihood ratio (the scan statistic) is

recorded. The proportion of the scan statistics from

all the 999+1 datasets that are larger than the scan

statistic from the one observed dataset is the P value.

In this way, the method adjusts for the multiple test-

ing inherent in the many cylinder sizes and locations

evaluated.

In prospective surveillance applications, the space–

time scan statistic will be calculated repeatedly every

day, resulting in an additional multiple testing prob-

lem. Kulldorff provides a spatio-temporal surveillance

scan routine [3]. First, in the observed data, the

space–time scan statistic among clusters that include

the study end date is found. Then, in each Monte

Carlo replication the space–time scan statistic is

found with no restriction that the clusters include the

study end date. The ‘surveillance-corrected’ P value

is the proportion of these unrestricted scan statistics

that are larger than the restricted scan statistic based

on the observed data. Instead of expecting tenP values

smaller than 0.05 in every 200 days of surveillance

under the null (as would be the case without correc-

tion), the probability is now 0.05 of observing one or

more significant P value during this 200-day period.

In the remainder of this article, all referenced P values

are of this sort.

All analyses were performed using SaTScan soft-

ware [4].

Populations and denominators

We use the terms ‘population’ and ‘denominator’ to

refer to the census and eligible populations and the

adjustments described below. The four denominators

reflect increasing amounts of information about the

population subject to surveillance that may be avail-

able. The first of these is the population residing in

each census tract as determined by the most recent

decennial U.S. census. This population is the mini-

mum available data, and might be considered if the

eligible population were all residents of an area,

although it is somewhat implausible in the example.

We call this the census population. In Figure 1, we

show the 1990 census population of our area.

The second denominator comprises subjects eligible

for surveillance. This population would be relevant if

it were possible to enumerate the population under

surveillance, as in the example. We call this the

eligible population. In Figure 2, we show the distri-

bution of the approximately 240 000 eligible subjects

in our dataset.

In contrast to the two measured populations, we

also used two model-based adjustments. The first

adjustment accounts for day of week, month of the

year, holiday status, and secular time. To calculate

the adjustment in this case, we first generated P̂t, the

estimated probability of a visit on day t based on these

factors. The method used for generating P̂t is dis-

cussed in the Appendix. Next we multiplied this by the

eligible population, popelig(i) in census tract i. We then

standardized these adjusted denominators by multi-

plying by a constant so that the apparent population

after adjustment and the eligible population are equal

over the course of a year. So, if the average daily

eligible population was 240 000 over the course of

a year, the average apparent adjusted population

was also 240 000. Thus, the first adjustment results

Population 0–2000
2001–4000
4001–6000
6001–8000
8001–10 000
10 000 +

Fig. 1. 1990 census population, by 1990 census tract,

Eastern Massachusetts.
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in denominators in tract i on day t that are

c1rP̂trpopelig(i), where c1 is the constant used to

standardize.

The adjustment makes the population bigger on

days when the model suggests that more visits are

likely and smaller on days when fewer visits are likely.

Since the SaTScan expected cases are based on the

proportional population, this adjustment to the

population input to SaTScan results in an adjustment

to the expected number of cases. The effect is that

individual visits are less likely to signify interesting

events on busy days, such as Mondays in flu season:

the proportional population is bigger on those days so

the expected number of cases is larger. Similarly, the

expected number of cases on days like Sundays in

June is smaller, and actual visits are more interesting

events. We call this the ‘date adjustment ’ ; in Figure 3

we show the apparent population after date adjust-

ment on Monday, 11 January 1999.

The second adjustment includes all the effects of the

date adjustment, but also takes into account the dif-

fering baseline risk in each census tract. To do this, we

find P̂it, the estimated probability that a person in

census tract i seeks health care on day t. The method

for obtaining P̂it is discussed in Kleinman et al. [13].

Briefly, we fit the generalized linear mixed model

version of logistic regression to the repeated counts

for each tract. The model included a random intercept

for each tract. This is similar to including an indicator

variable or dummy code for each tract, but in-

corporates plausible assumptions about how differing

amounts of information from each tract should be

incorporated. The net meaning of the model, how-

ever, is that each tract has a different intercept in the

logit scale, while all tracts share common day of week,

month, holiday, and secular time effects.

We multiplied this probability by the eligible

population in the census tract and then standardized

so that the average apparent population after adjust-

ment was the same as the eligible population over the

course of a year. This gave us a second adjustment

where the SaTScan denominator is c2rP̂itrpopelig(i),

where c2 is the constant used to standardize. We call

this the ‘date-and-tract adjustment ’ and display the

apparent population in Figures 4–6 for Sunday 10

January 1999, Monday 11 January 1999 and Monday

12 July 1999 respectively.

The intuition here is that in addition to inflating the

apparent population on days when many visits are

predicted by the model, we also make it bigger in

tracts that have a larger baseline risk. Visits in those

tracts are generally more common than visits in tracts

with reduced baseline risk. The difference between the

two adjustments is that in the date adjustment, the

probability of a visit (P̂t) is the same in each census

tract on day t, whereas in the date-and-tract adjust-

ment, the probability (P̂it) is different in each tract i.

Population 0–10
11–250
251–500
501–750
751–1000
1000 +

Fig. 3. Apparent population under date adjustment on

Monday, 11 January 1999, by 1990 census tract, Eastern
Massachusetts.

Population
11–250
251–500
501–750
751–1000
1001 +

0–10

Fig. 2. Population eligible for surveillance on Monday, 11

January 1999, by 1990 census tract, Eastern Massachusetts.
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Note that the scales are the same in Figures 2–6,

with darker regions indicating larger effective popu-

lations. The figures show the effect of the adjustments,

especially for day of week and month. The date-

adjustment and date-and-tract-adjustment maps

appear similar. Comparing the light map on Sunday

to the darker map for Monday indicates the increased

probability, under the model, of a visit to a doctor on

a Monday compared to Sunday.

Analyses

We retrospectively conducted 1 year of surveillance.

We treated each day in the year beginning 1

November 1998 as if it were the last day in the

dataset, the day for which surveillance results were

required. For each day, we used SaTScan to find

the most likely cluster for each denominator and its

P value.

RESULTS

Table 1 shows the results, reporting the number of

days when the space–time scan statistic produced a P

value smaller than 0.05, by month and denominator.

There were no significant clusters on any weekend

day, so we report the number of weekdays in each

month as well. From October to the end of February,

the census and eligible denominators resulted in sig-

nificant clusters on a majority of weekdays. In con-

trast, the date-adjusted SaTScan identifies clusters

on 13 days and the date-and-tract-adjusted SaTScan

on 7 days.

Population 0–10
11–250
251–500
501–750
751–1000
1000 +

Fig. 4. Apparent population under date-and-tract adjust-

ment on Sunday, 10 January 1999, by 1990 census tract,
Eastern Massachusetts.

Population 0–10
11–250
251–500
501–750
751–1000
1000 +

Fig. 5. Apparent population under date-and-tract adjust-
ment on Monday, 11 January 1999, by 1990 census tract,

Eastern Massachusetts.

Population 0–10
11–250
251–500
501–750
751–1000
1000 +

Fig. 6. Apparent population under date-and-tract adjust-
ment on Monday, 12 July 1999, by 1990 census tract,
Eastern Massachusetts.
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Note that the lack of a weekend cluster for the

census and eligible denominators is not surprising: the

small proportion of visits by population in these un-

adjusted denominatorsmerely suggests a daywith little

illness. Under either adjustment, a smaller number of

visits is anticipated via the model and adjusted for.

To assess the probability that the rate of clusters on

weekends differed from the rate on weekdays, we used

Fisher’s exact test for the table of weekend/weekday

by cluster/no cluster. The null hypothesis is that there

are equal probabilities of significant clusters on

weekends and weekdays. The P values for the four

denominators were 0.20 (date-and-tract adjustment)

0.02 (date adjustment) and <0.0001 (eligible and

census). There is little evidence that the date-and-tract

adjustment reduced the probability of identifying

clusters on weekends. Although the null hypothesis

would be rejected under a strict 5% error-level test,

the P value under the date adjustment is large enough

to leave some ambiguity as to whether there is truly a

reduced probability of identifying clusters on week-

ends using this adjustment, especially since this is a

post-hoc test of an unplanned hypothesis. In contrast,

there is little doubt that there is a reduced probability

of a cluster when using the census and eligible popu-

lations.

The nature of the clusters identified also differs. In

Figures 7–13, we display the most likely clusters

Table 1. Number (%) of weekdays per month between 1 November 1998 and 31 October 1999 for which

SaTScan produced surveillance P values less than 0.05, under each of four denominators

No. of

weekdays Census Eligible

Date

adjustment

Date-and-tract

adjustment

1998
Nov. 21 19 (90%) 18 (86%) 2 (10%) 1 (5%)
Dec. 23 20 (87%) 14 (61%) 0 0

1999

Jan. 21 17 (81%) 17 (81%) 4 (19%) 1 (5%)
Feb. 20 18 (90%) 16 (80%) 6 (30%) 4 (20%)
Mar. 22 1 (5%) 0 0 0

Apr. 21 0 0 0 0
May 22 1 (5%) 0 0 0
June 22 0 0 1 (5%) 1 (5%)

July 22 0 0 0 0
Aug. 22 0 0 0 0
Sept. 22 4 (18%) 2 (9%) 0 0
Oct. 21 16 (76%) 15 (71%) 0 0

Total (weekdays) 259 96 (37%) 82 (32%) 13 (5%) 7 (3%)

Total (365 days) 96 (26%) 82 (22%) 13 (4%) 7 (2%)

Census

Date
adjusted

Eligible

Date-and-tract
adjusted

Fig. 7. Clusters identified by SaTScan on Thursday, 30

November 1998 using two populations and two model
adjustments.

Census

Date
adjusted

Eligible

Date-and-tract
adjusted

Fig. 8. Clusters identified by SaTScan on Thursday, 21
January 1999 using two populations and two model ad-

justments.
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found for the 7 days when the date-and-tract adjust-

ment resulted in scan-statistic P values below 0.05.

The other denominators also generated P values be-

low 0.05, except for 1 June, when only the date-and-

tract and date adjustments had P values below 0.05.

In that year, 1 June was the day after Memorial Day;

there tend to be increased visits on the day after a

holiday, a fact not accounted for in either adjustment

model. In general, the census and eligible clusters

contain close to 25% of the population, the maximum

cluster size we allowed. This is also true for the days

when only these denominators result in P values

below 0.05 (results not shown). In contrast, the size of

clusters identified when using the adjustments varies

widely.

Table 2 provides further information about the

clusters on those 7 days. For 16 February and 1 June,

the denominators result in identical clusters. For 16

February, the expected number of cases is 50–80%

higher for the adjustments, resulting in less significant

P values. In contrast, the expected number of cases is

Census

Date
adjusted

Eligible

Date-and-tract
adjusted

Fig. 9. Clusters identified by SaTScan on Friday, 5 February
1999 using two populations and two model adjustments.

Census

Date
Adjusted

Eligible

Date-and-tract
adjusted

Fig. 10. Clusters identified by SaTScan on Wednesday, 10
February 1999 using two populations and two model
adjustments.

Census

Date
adjusted

Eligible

Date-and-tract
adjusted

Fig. 11. Clusters identified by SaTScan on Thursday, 11
February 1999 using two populations and two model
adjustments.

Census

Date
adjusted

Eligible

Date-and-tract
adjusted

Fig. 12. Clusters identified by SaTScan on Tuesday, 16

February 1999 using two populations and two model
adjustments.

Census

Date
adjusted

Eligible

Date-and-tract
adjusted

Fig. 13. Clusters identified by SaTScan on Tuesday, 1 June

1999 using two populations and two model adjustments.
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50% smaller in June, resulting in much smaller P

values. 30 November, 5 and 11 February all show the

census cluster in a completely distinct location from

the others. Thus, it may be most helpful to compare

the adjustments with the eligible population in these

cases. These cases demonstrate the impact of the sea-

sonal adjustment and the smaller but noticeable effect

of date-and-tract adjustment compared to the date

adjustment.

DISCUSSION

These results indicate that some type of temporal and

spatial adjustment is needed when using the space–

time scan statistic for syndromic surveillance. During

the influenza season, the space–time scan statistic will

detect large clusters almost every weekday without

adjustment ; corresponding results should be expected

for other diseases or syndromes with seasonal pat-

terns. This would make it unfeasible to investigate all

‘unusual ’ events, meaningfully diminishing the value

of the surveillance.

It is also worthwhile to compare the two adjust-

ments. While each represents a marked difference

from the unadjusted approaches, the simpler date

adjustment identified twice as many days as the date-

and-tract adjustment. Heuristically, the date adjust-

ment will suggest clusters too often around tracts

that have a higher baseline risk; they get more visits

than expected under this model. In addition, it will be

less sensitive to clusters in areas with a lower baseline

risk.

Table 2. P value, number of cases, and expected number of cases under four denominators for the 7 days

between 1 November 1998 and 31 October 1999 on which the date-and-tract adjusted denominator resulted in a

P value below 0.05

Date Population or adjustment
P value for
cluster*

No. of
cases in
cluster

Expected no.
of cases in
cluster area

Monday, Census 0.001 54 10.25
30 Nov. 1998 Eligible 0.001 53 9.22

Date adjustment 0.002 53 22.01
Date-and-tract adjustment 0.009 53 23.76

Thursday, Census 0.001 50 14.68

21 Jan. 1999 Eligible 0.001 56 14.95
Date adjustment 0.001 37 13.14
Date-and-tract adjustment 0.010 26 8.35

Friday, Census 0.001 67 14.56

5 Feb. 1999 Eligible 0.001 65 14.41
Date adjustment 0.001 55 17.36
Date-and-tract adjustment 0.002 55 19.13

Wednesday, Census 0.001 76 15.77

10 Feb. 1999 Eligible 0.001 64 17.52
Date adjustment 0.016 46 17.52
Date-and-tract adjustment 0.025 21 4.60

Thursday, Census 0.001 67 17.66

11 Feb. 1999 Eligible 0.001 69 17.05
Date adjustment 0.001 69 27.98
Date-and-tract adjustment 0.003 69 29.62

Tuesday, Census 0.001 53 12.86

16 Feb. 1999 Eligible 0.001 53 10.52
Date adjustment 0.001 53 17.74
Date-and-tract adjustment 0.003 53 18.64

Tuesday, Census 1.0 32 15.55
1 June 1999 Eligible 1.0 32 14.54

Date adjustment 0.018 32 9.63
Date-and-tract adjustment 0.027 32 9.77

* P values calculated based on 999 simulations, therefore 0.001 is the smallest possible value.
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Again heuristically, we might consider the question

of how the adjustments affect the identified clusters :

are they smaller or larger? Do they have more or

fewer expected cases? Do they mostly affect location?

It may be more effective to consider the question

from the other side : How does failing to adjust affect

these features of clusters? The clusters found with the

census and eligible population generally tend to be

spatially larger and to have smaller excess risk than

clusters found with either adjustment (results not

shown). Their location is not notably different from

either adjustment method. We speculate that the

effect of not adjusting is generally to make clusters

appear to be larger and with smaller excess risk than

with appropriate adjustment.

Some mention might profitably be made about edge

effects. In spatial analysis, there is often a question

about how the edge of the map is handled. Is esti-

mation as good at the edge of the map? Can clusters

include areas not appearing on the map? The spatio-

temporal scan statistic as implemented in SaTScan

treats areas off of the map as if they were water. That

is, since they are not included in the analysis, they are

treated as if no one lives there, and there is no

suggestion that the risk extends beyond the map.

Similarly, the ability to detect clusters is not necess-

arily diminished at the edge.

The generalizability of these results depends on

many things. Among these are the region of the

country, the population eligible for coverage, the

particular year examined, the use of a census popu-

lation several years removed from the observed data,

and the suitability of the adjustments. Of these, the

region of the country may attenuate differences

between months. However, weekday variability seems

likely to generalize. The eligible population con-

sidered here is generally more prosperous and better

educated than the average in the area. These differ-

ences seem unlikely to affect when people get sick. The

fact that the census results and the eligible population

results were similar suggests that the main problem

with unadjusted results is the lack of response to sea-

son, rather than the particular constant population

used. In addition, if a population shift were the source

of alarms, we would expect those alarms to appear

mainly in one area or another. This is not the case.

Thus, the temporal distance between the census data

and the example surveillance is not a likely source of

anyobservedalarmswhenusing the censuspopulation.

The year we surveyed could have had an effect on

the observed results. For example, the winter of

1998–1999 was atypical in that winter respiratory ill-

ness was particularly prevalent in late January and

February of that year. This may explain why the

adjustments produced about half of their significant

clusters in February. In a year with low prevalence

of winter respiratory illness, the differences between

the adjusted and unadjusted methods might be less

striking.

Finally, the model used for adjustment may affect

the results. Adjustments from less appropriate

models would diminish the advantages of adjusting.

Similarly, better models would improve the advan-

tages. The results point to a deficiency in the models :

they do not allow for an increased probability of a

visit on the day after a holiday. This is demonstrated

in the results for 1 June, which was the day after

Memorial Day. Improved models would remove the

significant cluster on the day after Memorial Day for

both adjustments. This change would be simple to

make, and in practice we include an indicator variable

for the day after a holiday in our predictive model.

We omitted it here for simplicity of presentation and

to help display the limitations of any model-based

approach.

One goal of surveillance such as that used in the

example is to discover instances of bioterrorist attack.

For this perspective, a failure to use an adjustment

such as those proposed here would result in so many

signals that any attack would be masked by the sea-

sonally unsurprising signals or alternatively that an

attack in the summer would go undetected through a

failure to recognize that the count should be smaller in

the summer.

We note here that surveillance for biological ter-

rorism, and indeed perhaps any type of surveillance,

implies the need for a decision to be made: whether or

not to send a team of field investigators to assess

a possible cluster of disease, for example. For this

purpose, it is convenient to have a simple metric

upon which to base the decision. We have followed

this observation in this article and used P values to

assess the unusualness of events. Our choice of a

0.05 decision level was arbitrary, but we expect that

choosing a different arbitrary level would still show

large differences between adjusted and unadjusted

approaches. We do not discuss the question of what

to do when more than one cluster is detected, i.e.

when more than one cluster exceeds the arbitrary de-

cision level. In the extreme, all clusters with excess risk

might be investigated, starting with the most extreme

and progressing down the list as time and resources
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allow. We expect that in this case, the date-and-tract

adjustment would seem even more distinct from the

simpler date adjustment. It would probably result in

different orderings of clusters and indeed altogether

different clusters than the date adjustment.

This article introduces a model-based space and

time adjustment for surveillance using the space–time

scan statistic. The modelling technique adjusts the

expected cases so that more cases are expected under

the null hypothesis when the model suggests they may

naturally occur. More generally, we demonstrate the

need for time and space adjustment in the important

context of surveillance, regardless of the statistical

method used.

In summary, for a variety of applications including

surveillance for bioterrorism, failure to adjust for

seasonality, weekly trends, and local variability can

produce so many alarms as to render the surveillance

of little use, and can mask some events, leading to

undetected true events. However, it should be noted

that the relationship between statistical signals gen-

erated from this data and aetiology of illness was not

investigated in the example. It is possible to adjust

scan-statistic-based syndromic surveillance, substan-

tially affecting cluster detection. Ultimately, such

systems generate signals that can be evaluated and

investigated using traditional epidemiological and

public health techniques.
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APPENDIX. Details of date adjustment

We fit a logistic regression model to the probability of

a case on a given day. With 1399 days of observation

between 1 January 1996 and 31 October 1999, there

were 1399 observations used to fit the model.

Covariates were characteristics of days: month, day

of week, holiday status, and secular time. The model

can be represented as: E(gyst)=ntPt and logit(Pt)=
xtb, where yst is an indicator of whether subject s is a

case on day t and the summation is across the nt
subjects eligible on day t. Since nt is approximately

240 000, it is computationally efficient to do this via

the sum than through the individual yst which all

share a probability Pt of being a case on day t under

the model. The covariate vector xt contains indicator

variables describing day t as above, plus an intercept

and a continuous term reflecting the secular time

trend.

After estimating the parameters b of the model, the

logit is inverted to get the estimated probability of

being a case on each given day=extb̂b/(1+extb̂b). Note

that this simple model excludes the possibility of

extra-binomial variation due to autocorrelation be-

tween consecutive days.
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