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ON A SYSTEM OF
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

A. SANIH BONFOH

We consider a generalised Cahn-Hilliard system with elasticity based on constitutives
laws proposed by Gurtin, with a logarithmic free energy. We obtain some results on
the existence and uniqueness of solutions.

l. INTRODUCTION

The Cahn-Hilliard equation is central to materials science. It is a conservation
law (in the sense that the average of the order parameter is conserved) and describes
very important qualitative features of two-phase systems, namely the transport of atoms
between unit cells (see [3, 4] and the references therein). Some generalisations of this
equation have been introduced by Gurtin in [5], which are based on constitutive equations
that take into account the work of the internal microforces, the anisotropy and also the
deformations of the material, which are essentially due to the displacement of atoms
in the material. These derivations are based on belief that fundamental physical laws
involving energy should account for the work associated with each kinematical process
(the order parameter in our case). Assuming that the deformations are infinitesimal and
that the displacement gradient is small, we can thus use the theory of linear elasticity.
In this paper, we consider a model of these generalisations which have been derived in
[7] and study the existence and uniqueness of solutions.

n

We set fi = n]0. £«[> Li > 0, i = 1, . . . , n, n = 2 or 3, and consider the following

system:

= -aAp + f'(p) + P^-~ TR{C{Vu + lVu}) + e2 TR(CI)(p - p0),
1

(1.1) l-^ - -div(C[Vu + (Vu]) + ediv(/>CI) = 0,

p|t=o = Po, "|«=o = «o> "aTU=o = u i i

p and u are fi — periodic;
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where a, j3,7, e > 0, p*o is a constant, 0, b G Rn, B is a symmetric positive definite tensor
with constant coefficients (23 is called the mobility tensor), C is the elasticity tensor with
constant coefficients (we assume that it is a symmetric positive linear transformation
which maps symmetric tensors onto symmetric tensors), p, is the chemical potential, p
is the order parameter (corresponding to a density of atoms) and u is the displacement
field. If y is a motion of Q, then y is a field that associates with each material point x
and time t a point y(x, t) = x + u(x,t). TR(A) and tA are the trace and the transpose
of A respectively. The free energy / : [— 1,1] —• K is given by:

(1.2) f(s) = i(l -s2) + \ [(1 + 5) ln(iji) + (1 - a) l n ( ^ ) ] , * €] - 1,

with 0 < 9 < 1.

For the mathematical setting of the problem, we denote by ||.|| and (.,.) the usual

norm and scalar product in L2(fi) (which are extended to L2(fi)n). For each p G Ll(Q),

m(p) stands for the average of p, that is, m(p) = (l/|fi|) / p(x) dx (for a vector
Jn

u = (ui,...,un) G /^(fJ)", we have m(u) = (m(ui), . . . ,m(un)) G R"). For a space
X, we denote by X the space {q G X, m(q) = 0}, and by X' the dual space of X. We
define by N = —divBV a linear, self-adjoint, strictly positive operator with compact
inverse N'1 on H%ei{Q). We set QT = nx]0,T[ and q = q - m{q). We endow (H^Sl))'

with the norm ||.||_i defined by ||5||_i = \\N-^2q\\, Vg € (H*eT{Q))'. Furthermore, there
exist cx,c2 > 0 such that ||g||_i ^ ci||g|| ^ c2||Vg||, V9 € H*(ty. We finally note that

N and ——, and thus A^"1 and -—, i = 1 , . . . , n, commute.
OXi OXi

We introduce a weak formulation of the problem:
Find

(p, n, u) : [0, T] -> H^n) x H^iQ) x ^ e r ( f i ) "

such that p(0) = p0, u(0) = u0, -^(0) = ui, and for almost everywhere t G [0,T], VT > 0,
at

( L 3 )

(/i, q) + (fi, b.Vq) = a(Vp, Vq) + (f'(p), q) + / ? ( ^ , q) - \ (TR(C[VU + 'Vu]), q)

(1.4) +e2 TR(CI)(p - po, q), V9 G H^Q);

(1.5)

noting that a.V and 6.V are antisymmetric on #per(fi), that is, (a.Vp,q) = -(p, a.Vq),

Vp,q G i/per(fi). We take q = 1 in (1.3) and observe that the average of p is conserved:

(1.6) m(p(t)) = m(po), Vi^O.
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We now take q = 1 in (1.4) and obtain

(1.7) Mn) = m(f'(p)) + e2 TR(CI)(m(p) - p0).

Setting q = N^q in (1.3), we get \i = —N'1-^ + a. VAT"1 —• + m(/j); and substituting
at at

in (1.4) by standard computations and noting that

i .Vta.VAT1^) = div((a'6 + ^ ^ V i V - 1 ^

we can reformulate problem (1.3)-(1.5) as follows:
We first look for (p,u) : [0,T] -> H±er(Q) x H*ei(Cl)n such that

| [(A^p, 9) + (BVN-'p, Vq) + (N~lp, d.Vq)] + a(Vp, Vq)

(1.8) - K T R ^ V u + 'Vu]),?) +e2TR(CI)(p-A),

Vg € H^(n)

7 ( ^ l 7 / ) + \(C(Vu + tVu),Vr1)-e(p(CI),Vr)) = O, Vr? G ^er(fi)

and then set

(1.9) M - - ^ " ^ + aVN~l% + mU'iP)) + e2TR(CI)(m(p) - p0);

where d = a + b and B = /3B — (a'6 + 6'a)/2. We proved in [2] that B is a positive tensor,
thanks to thermodynamical considerations:

/3z2 + d.yx + By.y > 0, Vx e R, Vj/ € Rn

(see [5]).
Throughout this paper, the same letter c (and sometimes Cj, i = 0,1,2, . . . ) shall

denote positive constants that may change from line to line.

2. A REGULARISED PROBLEM

We denote by ip and </> the functions

(2.1) ^ W =

and </>(s) = TA'(S), for s e] - 1,1[. We then have / (a ) = (1 - s2)/2 + V(s) and
/ '(s) = - s + ^(a).

The major difficulty in the study of problem (1.3)-(1.5) is that (f>(s) is singular at
s = ±1 and, therefore, has no meaning if p = ± 1 in an open set of non-zero mea-
sure. To overcome this difficulty, we consider a regularised problem as in [1]. The
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logarithmic free energy f(p) is replaced by the twice continuously differentiable function

fe(s) = (1 - s2)/2 + i>E(s), where e €]0,1[, and

(2.2) tfc(«) -

The monotone function </>£ = ip'e has the following properties (see [1]),

(2.3) / ; ( * ) ( r - * K / e ( r ) - / e ( 5 ) + i ( r - 5 ) 2 , V r, 5

V£<1 k-»)J<Wr)-^))(r-*), VM,

£ " 2 ' \ | ( ^ ( r ) - ^ (« ) ) 2 ^ (0« ( r ) -0 e ( S ) ) ( r - a ) , V r, 5;

for e sufficiently small, for example, if e ̂  £o = 9/8, then

(2.5) / e ( s ) > A ( [ s _ i £ + [ _ i _ s ] 2 ) _ i £ _ i V S )

where [.]+ =max{. ,0} .

We now study the corresponding regularised problem:

Find (p£, fr, ue) : [0, T] -»• ^ e r ( f i ) x //^er(fi) x i^e r ( f i )n , such that pe(0) - p0, ue(0) = «o,

—1(0) = uj, and for almost everywhere t € [0,T], VT > 0,

j t [{N-%, q) + (BVN-%, Vq) + (N'%, d.Vq)] + a(Vp£, V9)

(2.6)

(2.7) 7

and

(2.8) Me - - T V - 1 ^ - f a . V i V - 1 ^ + m(/;(p£)) +e2TR(CI)(m(p£) - p0).

LEMMA 2 . 1 . We assume that {po,uo,ui) e ^pe r (^) * -^perC^)" x ̂ 2 (
||A)IU°°(n) ^ 1) &nd that |m(po)| ^1—6, 6 e]0,1[. Tien, for all e, there exists a unique
trio of functions (p£,fi£tuE) solution of (2.6)-(2.8) such that

Pc e L°°(o,r;^er(n)) nL2(o,T;//p
2
er(f2)) nc([o,T];L2(n)), ^ e

and
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with -j^- € L2{VLT) and -^ e L°°{0,T;L2{Q)n). furthermore, we obtain uniform
estimates with respect to e, when e < EQ, for a sufficiently small EQ.

PROOF: (i) Existence. For a fixed e, the existence of solution (p£,fJ-e) of (2.6)-(2.7)
follows from standard arguments using Galerkin approximations and then passing to the

limit. In order to derive a priori estimates, we formally take q — -^- in (2.6). We note
at

that

(d.VN-lq,q) = 0, (-dw(BVN-lq),q) = HB^VB^VAr1^2, Vg G L2(Q).

Furthermore, the mapping q •-+ ||B1/2VB1/2VA^~19|| defines a norm in L2(fl) that is
equivalent to the usual L2(fi)-norm (see [2]). Therefore,

(2.9) ~ (o||Vft||» + e'TR(CI)||ftf + 2~ ( T Up,) dxj

>%( + \\%\l - |(TR[C,VU« + .Vu,)],f) . 0;

and then

(2.10) ^ a | | V p £ | | 2 + e2TR(CI)||p£||
2 +

We now take 77 = ue in (2.7) and obtain

(2.11) u£ +
 tVu£),VU£) = e(Pe(Cl),Vue).

We have (C(Vu£ + *Vu£), Vu£) = (C(Vu£ +
 JVu£), Vu£ + 'Vu£)/2 and thanks to Korn's

inequality, there exists a positive constant CQ such that

(2.12)

and therefore

We finally take 77 = -^- in (2.7) and obtain
at

We have

(2.15)

ue +
 lVue), Vu£) £ co||VU£||

2;
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and

(2.16) (p£(CI), V ^ ) = ^(ft(CI), Vu£) - ( ( C I ) ^ , Vu£).

Therefore,

(2l7) i{Awf+

for any positive real r .

We now add (2.10) and (2.17) with a proper T, and obtain an estimate of the form

(2.18)

where,

(2.19) ^ 1 ( i ) =

- 2e(pe(CI), Vu£) + a | |V P e | | 2 + e2TR(CI) | |pe | | 2 + 2 / ft(pe) dx.

We now combine (5(2.13), CT(2.18) and (2.10), {6, a > 0) and then obtain

where,

(2.21) E2(t)=-y6 f^TV

^ | | -2ea(pe(CY),Vue)+a(a

+ e2 TR(CI)((T + l)||p£||2 + 2(a •

We first fix a such that

(2.22) j (C(Vu £ + fVu£), Vu£ + *Vu£) - 2ea(pe(CI), Vu£)

where Ci > 0; and we then fix 5 such that

(2.23) w l ^ f + J(C(VB, + 'Vti,),Vu, + 'Vu.) + 7*(^,».
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where c2 > 0. Estimates (2.22) and (2.23) come from the fact that, using Poincare and

Young inequalities, we have

-(p,(CI), Vu£) > -r1/2||pe| |2 - 1/27-JlVuJI2,
It II

and „ .

for any strictly positive reals TX and r2.
Thanks to (2.21), (2.22) and (2.23), together with Poincare's inequality, there exists

ct and C2 such that

(2.24) E2(t) > d ( j ^ f + ll^ll2*..^) + Il̂ ll2«ier(n)»

We finally obtain from (2.20) an inequality of the form

(2.25) ^ + C l | | ^ | | 2 + c2||U£||^r( f l )n ^ c3E2 + c4.

Using Gronwall's lemma and noting that fe(po) ^ f(Po) for £ ^ ô> ô sufficiently small,
we deduce the following estimates:

(2.26)

(2.27) ess sup f ([p£ - l\\ + [-1 - Pe\\) dx ^ ce;
t€[0,T] Jn

(2.28) esssup - ^ +es s sup | | u e | | ^ , (n)B ^ c;
te[o,r] H ot II te[o,T] P"K '

where c is independent of s. The existence of pe and uE are deduced from (2.26) and
(2.28) using classical compactness results (see for instance [6] or [8]). The existence of
He is deduced from (2.8).

We further obtain some uniform estimates in e, for e ^ e0) £o sufficiently small. We
note that

% % %
dt II " II dt l l - i

a n d

and therefore

;
and thanks to Poincare's inequality and the regularised counterparts of (1.6) and (1.7),

we obtain

(2-29) h
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We now want to prove that m(/£(pe)) is bounded independently of E.
II l l L 2 ( n j - )

We formally take q = pe in the regularised counterpart of (1.4), and obtain

(2.30) a | |Vp£ | | 2 + (f'c(pe),Pe) = (»* - b-V/xE - ^ + | T R ( C [ V u £ + 'Vu,])

- e 2 T R ( C I ) ( p e - p o ) , p E ) .

Noting that

(f'M,Pt) = (f'M,Pe " A) + (/£(pE), A - m{Pe)), VA e R,

and using (2.3), it follows that

(2.31) (/;(pw), A - m(pe)) ^ (f.{X) - A(p£), 1) + i | |p, - A||2 + Cl||Vp£||2

||2

||Vtt,|| + | | ^ |

Choosing A = ± 1 and using (2.5) and the assumptions on p0, we deduce

(2.32) 6\Q\ \m(fa(Pe))\ ^ c[l + ||Vp£||
2

and, therefore,

(2.33) \\m(f'e(p.))|f < c[l + \\VPe\\
4

hence

(2-34) |

Taking now q = <j>e(Pe) — ^(<Ae(Pe)) in the regularised counterpart of (1.4), we obtain

(2.35) a ( # ( p e ) V p e , Vpe) + (<t>e(Pe) ~ Pe, <t>e(Pt) ~ ™{<t>e(pe)))

= (Me - b.Vve - P ^ + l TR(C[Vu +«Vti])

- e2 TR(CI)( f t - po), MPe) ~ m{<t>e{Pe))) •

We note that (t>'£(pe) ^ 0 (which follows from (2.4)), and then deduce the following
estimate

(2.36) a0||Vp£||2 + \\Upe) ~ m(4>e(Pe))f < * (l + ||M£||2
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which yields Ue(pe) - m(0£(p£)) ^ c and, therefore,
II l l l ( 2 ( f t 7 ' )

(2-37) Uc(pe)\\mnT) < c.

Finally, the uniform estimate on pE in L2(0,T;/f2
e r (f i)) follows from the estimate

(2.38) | |Ap£||£2(nT) ^ Cl

which follows from the second line of the regularised counterpart of (1.1) and the fact
that the following regular inequality

is held.

(ii) Uniqueness. Let (pi, Hi,Ui) and (p2, M2, "2) be two solutions of (2.6)-(2.8) with
the same initial data. Setting p = p\— pi and u = u\ — u2, we have p(0) = 0, u(0) = 0,

— [(N~lp, q) + (BVN~lp, Vq) + (iV~xp, d.Vq)] + a(Vp, Vq)

(2.39) - | (TR(C[Vu + *V«])>9) +e2TR(CI)(p,9)

+ (KM- fM,q) = 0, v9 € H^iny,

(2.40) 7 ( ^ , v) + \{C{Vu + «V«), Vr,) - e(p(CI), Vr?) = 0, VT, € ^ e r ( n ) n .

We take q = p in (2.39), and noting that m(p) = 0, we obtain

(2.41) I [US1/2 VB1'2 V7V- V||2 + llpllij + a|| Vp||2 - | (TR(C[VU + * Vti]), p)

+ e2 TR(CI)||p||2 + (MPi) - ^(f t ) P) = IMP

We have (^(pi) - ^e(pa),p) ^ ^IIPII2 (which comes from (2.4)) and ||p||/fier(n) ^ c||Vp||
(Poincare's inequality). Therefore,

(2.42) I

We now take q = — in (2.39) and obtain
of

| + e2TR(CI)||p||2)

(2.43) - |
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We note that <k(pi) - Mfr) = P&&P1 + (1 - OP2), with C € [0,1]; and that
<j>'e(s) ^ Oe'1, Vs, (which follows from (2.4)). We thus have

{ % ) H i ^ l | + ar2|HI' V7?>0)

and

(2.44) | ("HVp| |2 + e2TR(CI)||p||2) + C l | | ^ | 2 < c2(l + e-2)\\p\\2 + c3\\Vu\\2.

We combine a(2.42) and (2.44) with a proper positive a and obtain

I [aH^ViJ^VArVll2 + a\\9\U + a\\Vpf + e2 TR(CI)||p||a]

(2-45) + cxIbH^n, + C l | ^ | 2 < c2(£)(||p||2 + ||VU||2).

On the other hand we take 77 = u in (2.40). Proceeding as above, we obtain

We finally take 77 = ^ in (2.40) and noting that (p(CI), V ^ ) = -((CI)Vp, ^

<2-47) A n a l l +

for any strictly positive r.
We combine (2.45), <5(2.46) and (2.47) with a suitable r, and then obtain

(2.48) ^ H|fi1/2VBl/2VA^-1p||2 + allpllii + a||Vp||2 + e2 TR(CI)||p||2

+ c||V«||
II t/b II ll (_/(f II

We now fix 6 such that

(2.49) 7 | | ^ | | 2 +

where c2 > 0.
Setting

(2.50) E3(t) = aWB^VB^WN-'pW2 + a\\P\\2_x + a\\Vp||2 + e2 TR(CI)||p||2
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we find

1^3(1) if <

And therefore, we deduce an estimate of the form

(2.51) ^ ^ cE3;

and then the uniqueness of pe and ue. The uniqueness of \iE is deduced from (2.8). D

THEOREM 2 . 1 . Let the assumptions of Lemma 2.1 hold. Then, there exists a trio

of functions (p,n,u), solution of (1.3)-(1.5) such that p € L°°(0,T;i/^er(fi)) n l 2 ( 0 , T ;
i/2

er(°)) nC([0,T];I2(fi)), n 6 L2(0,T;H^er{n)), \p\ ^ 1 almost everywhere in QT,

% e L\QT), 4>{p) € L2(QT); and u € L~(0,T;^er(fi)") n C([0,r];L2(ft)"), with

-^- € L°°(0,T; L2(Q)n). Furthermore, we have the uniqueness of solution when d—0.
Ob

P R O O F : It follows from Lemma 2.1 that there exists a trio of functions (p, /i, it) and

a subsequence {p£,He,ue)e>0 (which we still denote by (p£,/ie,u£)£>o) such that

pe, Vpe —t p, Vp strongly in L2(Q,T) and almost everywhere in fi^,

^ - % weakly in L2(QT),

fie, V ^ -^ fi, Vfi weakly in L2(QT),

ue, V«£ ->• u, Vu weakly-star in L°°(0,T;L2{n)),

*JL .* ^ weakly-star in L°°(0,T;L2(Sl)),

faipe) -*• 4>{p) weakly in L2(QT).

Passing to the limit in the regularised problem, we find that (p,n,u) is a solution of
(1.3)—(1.5). The other points of the theorem also come from passing to the limit in the
uniform estimates (2.27) and (2.37), as e goes to zero.

We don't succeed in obtaining the uniqueness of solution for (1.3)—(1.5) when
a / 0 or/and 6 ^ 0 , The difficulty appears in getting an estimate of the term

\4>{Pi) — 4>{P2), -^-J as we wanted. But, when we consider the case d — 0, it is a simple

matter to obtain the uniqueness of solution (p,fj.,u). Indeed, we take q = p, T] = u,

T) = —- in the corresponding non-regularised versions of (2.39) and (2.40) respectively.
at

Combining estimates obtained as above, we get an estimate of the form (2.51), therefore
the result. D
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