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Abstract

Bargaining games have played a prominent role in modeling the evolution of social conven-
tions. Previous models assumed that agents must choose from a predetermined set of strat-
egies. I present a new model of two agents learning in bargaining games in which new
strategies must be invented and reinforced. I study the efficiency and fairness of the model
outcomes. The outcomes are somewhat efficient, but a significant part of the resource is
wasted nonetheless. I implement two forms of forgetting and restrictions to the set of strat-
egies that can be invented.

1. Introduction
Bargaining games have played an important role in models of the evolution of social
conventions, particularly with regard to norms around fairness and distributive jus-
tice (see Binmore 2005, 2014; Skyrms 2014; O’Connor 2019; Alexander and Skyrms
1999; Axtell et al. 2000). In particular, they have been used in analyses of the emer-
gence of social contracts and, furthermore, to what extent such contracts or conven-
tions will be efficient or fair toward all agents.

These games represent situations in which agents must decide how to divide a
finite resource. Such situations may arise whenever humans jointly produce or dis-
cover shareable goods and must allocate who receives what proportion. Each wants to
earn as much as possible, but they cannot collectively claim more than the resource’s
total value.

These models have generally rested on the assumption that there is a predeter-
mined, finite set of strategy options from which the agents must choose. This fixed
set of strategies is an artificial imposition: in nature, any strategy must be invented,
for example, through learning or evolution. This idea of agents inventing new strate-
gies has only recently begun to be explored, in certain game theoretic contexts like
signaling games (see Young 1993; Schreiber 2001; Alexander et al. 2012). They have
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demonstrated that different evolutionary outcomes can arise in such cases, suggest-
ing the importance of applying invention models to other situations.

Invention can serve a particularly important role in understanding how or why a
social contract or convention might evolve. We cannot suppose that agents begin with
a cooperative strategy in mind. We might imagine agents beginning in a state of con-
flict or war, in which each agent seeks to claim a resource for herself, from which
cooperative strategies may, or may not, evolve.1 Or we could imagine agents starting
from an entirely neutral position, with no initial strategies at all.

I seek to understand better whether agents can learn or evolve social conventions
naturally in a bargaining situation. Of particular interest is the extent to which
evolved social conventions will be fair or efficient in their allocation of resources.
To this end, it makes sense to relax this assumption that agents must select from
a fixed, finite set of strategies. What is needed is a model of the process of the evolu-
tion of agents interacting in which strategies must be invented, rather than handed
out to agents at the start of the game.

I present a new dynamical model of agents learning in bargaining games in which
new strategies must be invented and reinforced. I consider two starting conditions.
First, I consider an initial condition in which agents begin in a state of conflict, only
able to demand the whole value of the resource or none at all—a hypothetical“state
of nature” in which cooperation has not been learned or evolved. Second, I consider a
“neutral” initial condition, in which the agents start with no initial strategies at all
and all strategies must be invented. Such models should provide a further step toward
understanding whether, and how, agents can learn or evolve social conventions
naturally.

I use simulations to study the dynamics of the model and to test the extent to
which it leads to outcomes that are fair or efficient. On average, the players make
demands that peak a little below the fair solution, but with a moderate variation
of outcomes on any particular run. The players’ rewards are on average a little lower
than their demands, with a similar variability. The strategies are somewhat ineffi-
cient, with around 15 percent of the resource being wasted on average. I investigate
several modifications of the model by implementing three different forms of for-
getting and restricting the set of strategies that can be invented. One form of for-
getting increases the average fairness, decreases the variation, and improves the
efficiency; a second form widens the variation, with little change to the efficiency;
the third increases fairness at the expense of efficiency. I also investigate a method
of restricting the possible strategies, which has little overall effect on the fairness and
efficiency.

In section 2, I provide some background to the model. I outline some important
results in bargaining games and explain some basic models of invention and for-
getting in evolutionary contexts. In section 3, I provide a more detailed description
and present the results from running the model. In section 4, I propose three methods
by which the agent may also forget strategies as well as invent them. In section 5, I
modify the model to restrict the strategies that can be invented. In section 6, I adapt

1 One could imagine such a model representing traditional dynamical theories of the development of a
social contract from people beginning in a state of nature in the language of evolutionary game theory
(see Skyrms 2014; Binmore 2005).
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the model to a single, finite population, better suited to represent evolutionary
dynamics.

2. Background and literature

2.1 Bargaining games and divide-the-dollar
In a bargaining game, two agents compete over a resource. Each demands some frac-
tion. The Nash demand game provides a model of bargaining situations in which two
players may each demand any proportion of the resource. If their demands sum to
less than the resource’s total value, each receives her demands. If the demands exceed
the value of the resource, the players receive a fixed low payoff, often set to zero,
representing the failure to come to an agreement.2

More precisely, the agents have access to any agreements in some convex feasi-
bility set, S � R2. If agents can agree on some choice within the feasibility set, then
they get these corresponding payoffs. Otherwise, their payoffs come from a disagree-
ment point, d � �d1; d2�, where d1 and d2 are the rewards each player receives in this
case. Divide-the-dollar is a special case of this game, in which the two agents are iden-
tical, with the the same disagreement points and the same utility functions, with util-
ities proportional to the fraction of the resource earned.

Bargaining games have played a pivotal role in studies of distributive justice
(Binmore 2005, 2014; Skyrms 2014; O’Connor 2019; Alexander and Skyrms 1999;
Axtell et al. 2000). They are used in explanations of human preferences toward fair
outcomes, as well as the processes by which fairness may or may not arise. Intuitively,
one might think of a “fair solution” for two identical agents as one in which both
agents receive exactly half the reward. (This will suffice as a meaning of the fair solu-
tion in the case of divide-the-dollar. However, one might consider other ideas of fair-
ness in more complicated scenarios [for a discussion, see Sen 2009].)

Evolutionary models of bargaining have variously led to mostly fair or unfair out-
comes, depending on the modeling assumptions used (see Skyrms 1994; Young 1993;
Axtell et al. 2000; for a review, see O’Connor 2019, 89–110). The fair solution domi-
nates under replicator dynamics with a single, randomly matched population. An
entire population demanding half of a good’s value will always successfully coordinate
their demands, whereas a population playing any other strategies will sometimes mis-
coordinate, and part of the resource will be wasted. As such, the fair solution has the
largest basin of attraction (Skyrms 1994, 2014).

In contrast to the one-population case, if I divide the population into types,3 effi-
cient but unfair outcomes can arise. For example, one type of agent may learn always
to make high demands when playing the second type, who learns to demand low
against the first type. The outcome is efficient because resources are not wasted when
the two types play against each other, yet it is unfair.

2 Note that zero does not have a special meaning here. It simply represents a baseline that the actors
receive if they fail to arrive at a coordinated agreement.

3 Types, or tags, refer to observable markers with no inherent significance, by which otherwise iden-
tical agents can identify each other. In certain particular contexts, they might be used represent social
categories as class, race, or gender. If agents know which type they are playing against, they may learn to
play different strategies against different types, for example, against in-group and out-group members
(O’Connor 2019).
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2.2 Invention and learning
The model will be based on Roth–Erev-type learning and the Hoppe–Pólya model of
invention. I study the Roth–Erev model in particular because it provides an especially
natural learning dynamic to combine with an invention process. Here I briefly review
these methods. First, I introduce the Pólya model. This can be modified by adding
invention, leading to the Hoppe–Pólya model, or by adding differential reinforcement.
Models with differential reinforcement include Roth–Erev learning and the Schreiber
model of evolution for finite populations.

In the unmodified Pólya urn model, I represent objects of interest with balls within
an urn, with a finite number of colors, where each color represents a different cate-
gory of object. Each round, a ball is drawn from the urn and then returned. This pro-
cess is random, with each ball having equal probability of being drawn. Each time a
ball is drawn, a second ball of the same color is also added to the urn. All colors are
treated identically, but colors that have been drawn many times will accumulate more
balls. As a result, the probability of further reinforcement increases with the propor-
tion of balls of that color. With probability 1, the limiting probabilities of each color
will converge, although they could converge to anything.

The Hoppe–Pólya urn model (Hoppe 1984) can represent “neutral evolution,” in
which there is no selection pressure, or situations of the reinforcement learning pro-
cess, in which there is no distinction worth learning. I modify the Pólya model by
adding a process of invention. I add a “mutator” or “invention” ball to the urn.
When I draw the mutator, rather than reinforcing, I add a single ball of a new color
to the game, representing the invention of a new category. The color is randomly
generated from a uniform distribution over an infinite set of available colors. All color
choices are reinforced equally.

Roth and Erev (1995, 1998) use a model of differential reinforcement to account for
the behavior of subjects in experiments, but without invention. The probability of
choosing an action is proportional to the total accumulated rewards from choosing
it in the past. Schreiber (2001) includes differential reinforcement in a finite-
population urn model, to represent evolution in finite populations with interacting
genotypes. Each round, players are selected at random to play a game, with payoffs
representing fitness. Strategies are reinforced in proportion to the payoffs from
the game.

If we combine Roth–Erev differential reinforcement with a process of invention,
such as that used in the Hoppe–Pólya urn, then we have a model capable of invention
and reinforcement. Alexander et al. (2012) apply a model of this sort to represent
agents inventing and reinforcing new signals in the context of sender–receiver games
with reinforcement learning. I will adapt a similar model to the context of bargaining
games (see also Skyrms 2010).

2.3 Forgetting
Some models of learning and evolution also include a process of “forgetting,” by
which unsuccessful strategies become rarer or may go extinct. Forgetting may be
realistic in many contexts. It can represent the death of members of an evolutionary
population or literal forgetting in the case of individuals. I will study versions of my
model both with and without forgetting implemented.
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Forgetting may lead to more successful learning outcomes in situations where
there are suboptimal equilibria. Barrett and Zollman (2009) study three different
learning strategies in signaling games, each of which allows the agents to forget.
Significantly, they find that learning rules with forgetting outperform their counter-
parts without forgetting in such games. They do so by allowing agents to forget past
successes that would have driven them to suboptimal equilibria.

Schreiber (2001) uses the Pólya urn to model finite populations of different phe-
notypes (colors). In addition to reinforcement, all balls have a finite probability of
being removed from the urn altogether each turn. As a result, phenotypes that
are not reinforced will eventually become extinct.

Roth and Erev (1995) introduce “forgetting” by applying a discount factor that
reduces the weights of every strategy, each turn, in an urn-type model. Each weight
is multiplied by a factor �1 � x� for some x 2 �0; 1�. As a strategy is reinforced more, it
will be discounted more, in proportion to its weight. In effect, this caps the maximum
possible weight of each strategy at some value, above which it will not grow further.

Alexander et al. (2012) develop models of sender–receiver games in which two dif-
ferent forms of forgetting are implemented. In the first, with some specified proba-
bility each round, we pick an urn at random, with an equal probability for each urn,
and remove a colored ball at random, with equal probability for each color, from that
urn. In the second, with some specified probability each round, we pick an urn at
random, then pick a color represented in that urn at random, with an equal proba-
bility for each urn, with an equal probability for each color, and remove a ball of that
specific color.

3. Basic invention model without forgetting
I study a dynamical model of learning, reinforcement with invention for the the
divide-the-dollar game. I use a method of invention based on the Hoppe–Pólya urn, with
Roth–Erev-type differential reinforcement. There are two identical agents, players 1
and 2, who must share a resource.4 Both have the same utility functions, with utilities
proportional to the quantity of the resource that they win. Each player has a list of
strategies, including a mutator, with corresponding weights. They reinforce the
weights according to the rewards that they receive each turn.

More formally, I assign both agents the same utility function, u�r� � r, where r is
the quantity of the resource that they win, with the total value of the resource set
equal to 1. Each turn, t, each player, p 2 f1; 2g, has an ordered list of strategies,
Sp;t � �Mp; sp1; . . . s

p
n�, with corresponding weights, Wp;t � �wp

M;w
p;t
1 ; . . .wp;t

n �, where M
is the mutator strategy; spj 2 �0; 1� refers to player p’s jth strategy of demanding some
fraction, spj , of the total resource; and wp;t

j is the associated weight at turn t.
Each turn, each player draws a strategy, with probability proportional to its

weight:

4 The fact that there are two agents playing against each other might make the results here resemble
the two-population models discussed in section 2.1. Like the two-population models, an unfair outcome
could, in principle, be efficient here. The two players learn by always playing against each other.
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Pt�spj � �
wp;t
j

wp
M 	Pn

i�1
wp;t
i

:

If the sum of both players’ demands comes to less than or equal to 1, then the players
reinforce the strategy they just played by the amount that they demanded. I will refer
to this as a “successful reinforcement.” If the sum of the demands exceeds 1, then
neither player reinforces her strategy. Thus, if strategy spj , with weight wp;t

j , is success-
fully reinforced at turn t, then at turn t	 1, we have wp;t	1

j � wp;t
j 	 spj ; if it is not

successfully reinforced, then the weights remain unchanged, wp;t	1
j � wp;t

j .
For example, suppose that at turn t, player 1 chooses strategy s1a � 0:3 with weight

w1;t
a � 1:0 and player 2 chooses strategy s2b � 0:5 with weight w2;t

b � 1:5. Now, these
demands sum to 0:8 < 1:0, so both players successfully reinforce: the new weights of
these strategies will be w1;t	1

a � 1:3 and w2;t	1
b � 2:0, respectively. Alternatively, sup-

pose that at turn t, player 1 chooses strategy s1c � 0:7 with weight w1;t
c � 1:0 and

player 2 chooses strategy s2d � 0:4 with weight w2;t
d � 1:4. Now, these demands

sum to 1:1 > 1:0, so the players earn rewards of 0, and the weights are unchanged:
w1;t	1
c � 1:0 and w2;t	1

d � 1:4, respectively.
Each turn, each player may draw the mutator, with probability

Pt�Mp� � wp
M

wp
M 	Pn

i�1
wp;t
i

:

Then the corresponding player “invents” a new strategy by drawing from a uniform
distribution over all possible demands in the interval �0; 1�.5 Upon inventing a new
strategy, the player adds this to her ordered list of playable strategies and plays this
strategy, reinforcing the weight accordingly. The other player picks her demand and
plays the turn as usual. Thus, if, at turn t, player p has the set of n strategies,
Sp;t � �Mp; sp1; . . . s

p
n�, with weights Wp;t � �wp

M;w
p;t
1 ; . . . sp;tn �, and draws the mutator

strategy, selecting strategy spn	1, then the new set of strategies will be
Sp;t	1 � �Mp; sp1; . . . s

p
n; s

p
n	1; �, with weights Wp;t � �wp

M;w
p;t
1 ; . . .wp;t

n	1�.
The agents begin with a limited initial collection of strategies: Sp;0 � �M; 0; 1�,

Wp;0 � �1; 1; 1�; that is, the players may demand everything, relinquish everything,
or invent a new strategy. The dynamics will allow us to study agents learning to

5 Of course, the computer algorithm cannot really select from a continuous interval. The computer
algorithm chooses a double-precision floating-point number with a 53-bit significand precision, meaning
that there are 253 possible numbers in the given range (IEEE 2019). If I run the simulation for 100,000
turns, then at most, there will be 100; 002 strategies for each player (excluding the mutator). So the
number of possible strategies is many orders higher than the maximal number of strategies that could
be invented. However, for a truly continuous distribution in the interval �0; 1�, each player would never
“invent” the same strategy twice. By contrast, there would be a greater than zero, albeit tiny, probability
for the computer algorithm to draw the same number twice. In such a situation, the player would have
two identical strategies, possibly with different weights, but which would experience identical selection
pressures. I do not exclude such possibilities from the algorithm—after all, it is conceivable that in
nature, the same mutation could arise independently more than once, or different learners could inde-
pendently discover identical strategies more than once.
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negotiate by inventing compromise strategies in which they demand some fraction of
the resource.6

The mutator strategy is not reinforced, so the probability with which the mutator
is selected will decrease as the number of balls in the urn increases. Thus, in this basic
model, as new strategies are invented, or existing strategies are reinforced, the prob-
ability that the mutator is drawn will fall. At the beginning, the rate of invention will
be high, but this rate will gradually drop off.

From this small number of strategies as a starting point, one can see how the pro-
cess evolves. As with the number of balls in the Hoppe–Pólya urn model, the limiting
number of different strategies for each player will be infinite; one can further show
that the number of times each player will play each strategy diverges. I prove these
claims in Appendixes B and C.

Let us walk through the first few turns of an imagined scenario as an example.
Player 1 and player 2 each starts with just the three basic strategies. Suppose that
on turn 1, player 1 draws demand 1 and player 2 draws demand 1. The sum of the
demands exceeds 1, so neither player reinforces. Now, suppose that for turn 2, player
1 draws demand 0 and player 2 draws demand 1. The sum of these demands does not
exceed 1, so both players reinforce: player 2 reinforces that strategy by her reward of
1, Wp�2;t�2 � �1; 1; 2�, and is more likely to play it again. However, player 1’s reward
is zero, so her weights remain unchanged. In turn 3, let us suppose that player 1 draws
the mutator ball and selects a new strategy, demand 0.4. Player 2 plays demand 0. These
sum to less than 1, so again, the players reinforce. Now player 1’s strategies and
weights are Sp�1;t�3 � �M; 0; 1; 0:4�, Wp�1;t�3 � �1; 1; 1; 0:4�; player 1’s strategies
and weights are Sp�2;t�3 � �M; 0; 1�, Wp�2;t�3 � �1; 1; 2�.

3.1 Basic model: Results
I observe the results from ten thousand runs of the simulation. Each run covers one
hundred thousand turns, appropriate for an investigation of the “intermediate
dynamics” of this model. The histograms in Figure 1 show certain key results.
Shown are histograms of the average rewards and demands in each run, averaged
for both players and averaged over all one hundred thousand turns. These histograms
show how much players were demanding or receiving in reward, on average, for each
of the ten thousand simulation runs. Likewise, I show histograms, for each run, of the
mean demand differences and reward differences between the two players, averaged
over all one hundred thousand turns. These histograms indicate how much player 1
was demanding or receiving more or less than player 2, on average, for each of the ten
thousand simulation runs.

6 This initial collection of strategies might resemble agents who have learned to seize upon or
renounce a resource but have not yet learned to bargain or compromise with others by demanding some
fraction. Such dynamics might be appropriate for studying how the agents move from a situation of
conflict to one characterized by negotiation. This could perhaps be relevant for representing the emer-
gence of some social contracts, for example. However, such initial strategies may not be appropriate for
all circumstances, so it may be valuable to explore other possible choices of starting strategies. In
Appendix A, I consider a set of starting strategies in which the agents start with no strategies at all,
except for the mutator. Such a choice does not make a significant qualitative difference to the results
and only leads to small quantitative differences after one hundred thousand turns.
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The demand and reward histograms peak a little below the fair solution, indicating
that in most runs, players demand and receive rewards a little below one-half, on
average, across all one hundred thousand turns. However, in many particular runs,
players may make demands and receive rewards some way above or below this, on
average, across all one hundred thousand turns. The histograms of reward and
demand differences give some indication of the unfairness between the two players:
these histograms peak around 0, indicating that in many runs, the demands and
rewards are close to equal, averaged over one hundred thousand turns. However,
in many runs, one player or the other systemically demands or receives more than
the other, across the one hundred thousand turns.

Table 1 summarizes further results. Mean outcomes are calculated for each player
by averaging over each turn; averages are then taken over all the simulation runs.
Player mean demands are found to fall within the interval �0:4; 0:6� 49 percent of

Figure 1. Results from ten thousand runs of the simulation. (top) Frequency of runs against mean demands
and rewards over one hundred thousand turns. (bottom) Frequency of runs against mean demand and
reward differences, between players 1 and 2, over one hundred thousand turns.
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the time, and player mean rewards fall within the interval �0:4; 0:6� 46 percent of
the time.

Means and standard deviations of the player mean demands are calculated as fol-
lows. First, I find the average demands for players 1 and 2 each turn, and then over all
one hundred thousand turns, for each individual run. Then, I take the mean and stan-
dard deviation of the distribution for both players over all ten thousand runs. I cal-
culate the means and standard deviations for the player mean rewards, signed
differences, and absolute differences analogously. I define the signed and absolute
differences in player demands as follows. Let player 1’s demand in some turn be
D1, and let players 2’s demand be D2. Then, the signed difference is given by
D1 � D2. The absolute difference is defined by jD1 � D2j. Once again, I take the average
over all one hundred thousand turns for each individual run and then calculate the
means and standard deviations of the distributions of the signed and absolute differ-
ences over all ten thousand runs.

The means give an indication of average outcomes, but the standard deviations
inform us how much an individual run might typically deviate from that average.
For example, a mean demand close to 0.5 and a very narrow standard deviation would
suggest that the players typically make demands close to the fair solution. The signed
difference between the two players’ demands and rewards should always be close to
zero, providing a check that the two players are treated identically. The standard
deviation of the signed difference between the two players gives an indication of
how unequal the two players’ demands and rewards are on average. The absolute
value of the difference between the two players’ demands and rewards gives us a sec-
ond indication of how unequal the two players’ demands and rewards are on average,
given that the signed difference should be zero on average.

3.2 Basic model: Analysis
Fair outcomes are favored strongly, but by no means overwhelmingly. Mean demands
peak a little below the fair solution of 0.5; however, in a typical run, the players may
vary some way from this. Mean rewards are a little lower than mean demands. Many
runs result in outcomes quite far from the fair solution. Furthermore, the players are

Table 1. Results from ten thousand runs of the simulation

Mean Standard deviation

Demands 0.46 0.13

Rewards 0.42 0.13

Signed demand difference 0.00 0.26

Signed reward difference 0.00 0.25

Absolute demand difference 0.21 0.14

Absolute reward difference 0.20 0.15

Note. Each run covers one hundred thousand turns. Mean demands and rewards are shown for each player, as are the
signed and absolute differences in the demands and rewards. Outcomes are averaged for each player, over one hundred
thousand turns for each run; the means and standard deviations are then taken for the distributions of both players over all
ten thousand runs.
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somewhat, but not completely, efficient. Even after one hundred thousand turns,
around 1=15 of the resource is wasted on average each turn. Sometimes the players
overshoot, making collective demands that sum to greater than 1; at other times they
undershoot, with demands that sum well below 1. The mean rewards have a lower
peak than the demands due to overshooting in particular.

The distributions of the differences between the rewards and demands reveal that
the two players are symmetric, as expected. The standard deviation and mean signed
difference suggest that in any particular run of the simulation, the players are close
together in their demands, but not wholly balanced in a typical run. Outcomes are
somewhat, but not wholly, fair.

It seems that certain factors may be favoring fair outcomes but are not sufficiently
strong to guarantee that a wholly fair outcome will result. In the early turns, players
generally start by opting for 0 or 1 but soon invent and deploy new strategies. The
rate of mutations is high, and strategies are not yet highly reinforced. After a large
number of turns have taken place, both players generally settle on either a single
strategy or a cluster of similar strategies (in which the player demands a similar pro-
portion of the resource each turn). The sum of the two players’ typical demands is
usually a little below 1.

Why does a degree of inequality persist under these dynamics? Luck plays an
important role, especially early on, when strategies have not been highly reinforced
and when the rate of invention is still high. Suppose that player 1 has a few lucky
successes with a high-demand strategy early, let us say, demand x; then this strategy
may be highly reinforced. In response to this strategy, player 2 will only positively
reinforce strategies that demand 1 � x or less. Over time, the rate of invention
decreases, and both players settle into this unfair outcome.

However, the resultant rewards for both players may be low. Player 2’s low-reward
strategies will be reinforced, but by a small amount. As a result, the probability of
choosing the mutator may remain relatively higher than it would otherwise, so player
2 may also continue to experiment with other strategies for longer. If player 1’s
demands are very high, there is a high chance that the players will overshoot in their
demands, especially when player 2 is experimenting, resulting in both players earning
no reward. As a result, player 1’s very-high-demand strategy may not continue to
receive further high rewards, and the player may eventually settle on a lower demand
strategy.

The persistence of unfairness is unsurprising. Given that the model involves two
interacting agents, it is possible (in principle) for the two agents to coordinate on an
unfair equilibrium that is still efficient. For example, player 1 might demand 0:75
almost always, and player 2 might demand 0:25, resulting in an efficient outcome.
This could be compared to the two-type dynamics I explained in section 2.1. Of course,
in practice, given that the strategies are drawn from a random, uniform distribution,
the players will almost never perfectly coordinate after a finite number of terms. One
should expect some inefficiency to persist. However, with time, agents might adopt
strategies that reduce this inefficiency.

The combination of these factors leads to average demands peaking a little below
the fair division, but with a wide spread of possibilities. Likewise, the two players’
rewards after one hundred thousand turns sum only to around 0.85 on average,
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revealing a moderate degree of inefficiency. A significant proportion of the resource
is wasted, granted to neither player.

4. Invention model with forgetting
In section 2.3, I argued that some models of evolution or learning should perhaps
include the possibility of strategies being forgotten or even going extinct.
Furthermore, there is some evidence that forgetting can promote learning in games
that have suboptimal equilibria (Barrett and Zollman 2009). Let us adapt the three
forms of forgetting suggested by Alexander et al. (2012) and Roth and Erev (1995).
Using the analogy of balls in urns, first, we might imagine that with some finite prob-
ability each turn, nature picks a ball at random of any color and removes it from the
urn. Second, we might imagine that with some finite probability each turn, nature
picks a color at random and removes a ball of that color. That is, the natural process
might reduce the weight of each strategy with equal probability or in proportion to
the weight assigned to that strategy. Finally, we might imagine a form of forgetting in
which nature simply discounts the weight of every strategy every turn by some
amount proportional to its weight.

Each method of forgetting takes place, for each player, at the start of each turn. For
the first two, I have some assigned probability of forgetting pf , set equal for both play-
ers. A second parameter, rf , determines the quantity by which the forgetting reduces
a chosen strategy’s weight. I label the two types of forgetting as follows:

Forgetting A. One of the player’s strategies is chosen at random, with probabil-
ity proportional to its weight. The weight assigned to this strategy is reduced by
rf . If the strategy’s weight is already less than rf , then the strategy’s weight is set
to 0.

Forgetting B. One of the player’s strategies is chosen at random, with equal
probability assigned to each strategy. The weight assigned to this strategy is
reduced by rf . If the strategy’s weight is already less than rf , then the strategy’s
weight is set to 0.

The third type of forgetting depends on a single parameter, df : Roth–Erev
discounting. The weight of each strategy (except for the mutator) for each agent
is multiplied by the discount factor, �1 � df �, each turn.

4.1 Forgetting A: Results
I observe the results from ten thousand runs of the simulation of this model, each
over one hundred thousand turns, with forgetting method A implemented and
pf � 0:3 and rf � 1 for both players. In Figure 2, I show the mean demands and
rewards for each player, averaged over all turns, as well as the differences between
the average demands and the average rewards for the two players. I summarize the
results, averaged for the two identical players, in Table 2. Player mean demands fall
within the interval �0:4; 0:6� 66 percent of the time, and player mean rewards also fall
within this interval 66 percent of the time significantly higher than in the
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no-forgetting case. With forgetting method A implemented, many more runs lie close
to the fair solution, and the results are more efficient.

4.2 Forgetting A: Analysis
Interestingly, introducing forgetting A changes the distribution shape significantly as
compared to the case in which no forgetting takes place. Mean demands for each
player are a little higher than in the case of no forgetting, but with a clearly
right-skewed distribution. Mean rewards average significantly higher than the no-
forgetting case, but this distribution is left-skewed, with a long tail. Large differences
between the two players’ rewards or demands are significantly more rare.

Forgetting method A provides a more ruthless evolutionary environment, red in
tooth and claw, for successful strategies especially. Strategies that are reinforced are

Figure 2. Results from running ten thousand runs of the simulation, for one hundred thousand turns each,
with forgetting method A, pf � 0:3, rf � 1, for each player. (top) Frequency of runs against mean demands
and rewards over one hundred thousand turns. (bottom) Frequency of runs against mean demand and
reward differences, between players 1 and 2, over one hundred thousand turns.
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also more likely to experience some forgetting, in proportion to their weight. As a
result, only strategies that can be reinforced faster than the rate at which they
are forgotten will continue to survive and flourish. Low-demand strategies are par-
ticularly punished: they can rarely reinforce fast enough to overcome the rate of for-
getting. High-demand strategies are also punished, but they may survive more often.
These strategies can lead to a high enough rate of reinforcement, as long as the other
player does not also reinforce high-demand strategies. This results in the skewed
shape of the distributions seen.

For example, suppose that player 2 has highly reinforced the strategy demand 0.75.
Then, player 1 will be most rewarded with a strategy of demanding something close to
0.25; let us suppose that she begins to reinforce the strategy demand 0.2, and this
becomes her highest-weight strategy. However, under forgetting method A, player
1 is also most likely to forget this strategy: if it is her only strategy, then she has
a pf � 0:3 chance to forget this strategy each turn, reducing it by rf � 1. In the limit
that this were player 1’s only strategy, it would have an expected net decrease in
weight of 0:1 each turn, so the strategy would in fact be slowly forgotten. Nor should
player 2 expect to benefit from this strategy in the long run: if player 2 plays demand
0.75 and player 1 demands greater than 0.3, then the players will overshoot, and nei-
ther will receive any reward.

In general, demands of less than pf × rf or greater than 1 � pf × rf cannot become
dominant in the long run, as they will be forgotten faster than they are reinforced. We
see this effect in play in the shape of the distributions: average demands are above 0.3
in all runs and below 0.7 in nearly all runs for both players.7

Players are more likely to continue experimenting rather than settling into a low-
demand strategy; as a result, the rewards for players who keep making high demands
are also lower due to the possibility of overshooting. As a consequence, it is more

Table 2. Results from running ten thousand runs of the simulation, for one hundred thousand turns each,
with forgetting method A

Mean Standard deviation

Demands 0.48 0.09

Rewards 0.47 0.09

Signed demand difference 0.00 0.18

Signed reward difference 0.00 0.18

Absolute demand difference 0.15 0.09

Absolute reward difference 0.15 0.10

Note. Mean demands and rewards are shown for each player, as are the signed and absolute differences in the demands and
rewards. Average outcomes are calculated for each player, over one hundred thousand turns for each run; the means and
standard deviations are then taken for the distributions of both players over all ten thousand runs.

7 If we set pf × rf 
 0:5, then no strategy will be successful for long. Strategies of demand x, x � 0:5,
will be forgotten faster than they are reinforced. Strategies of demand x, x > 0:5, will not fare any better
in the long run, as they require an opposite player demanding less than 1 � x or will otherwise overshoot.
They, too, are forgotten faster than they can be reinforced, on average. Thus players will continually
invent new strategies, resulting in extremely low average rewards.
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likely that players will settle close to the fair distribution. The low-reward tail (seen in
the mean reward, top right, plot of Figure 2, roughly those cases for which the mean
reward 0:3) represents cases in which the players still have not settled on a single or
close cluster of highly reinforced strategies, even after one hundred thousand turns.
However, they do not represent cases in which the players settle on very uneven out-
comes: these almost never happen (as seen in the lower two plots of Figure 2). Rather,
in such cases, both players are still “experimenting” with a wide variety of strategies.

One can build an intuition for why the low-reward tail persists with a simple exam-
ple. Suppose that player 1 forgets the demand 1 strategy in the first few turns, before
she has invented another strategy. Then, the only strategy available to player 1 is to
keep playing demand 0. In response, the strategy of player 2 most likely to get rein-
forced is demand 1. Once the demand 1 outcome is highly reinforced for player 2, player
2 is likely to keep playing it. However, now, it will be hard for player 1 to successfully
reinforce any newly invented strategy: any such strategy will give player 1 a reward
of 0 if player 2 keeps playing demand 1. Thus any new strategies of player 1 will rarely
be reinforced. However, player 2 will often also receive 0 reward whenever player 1
plays any strategy other than demand 0.

The result is that in a few unlucky cases, a highly inefficient outcome will result in
which neither player settles on a successful strategy, leading to the low-reward tails.
One can gain more information by studying the results of individual simulation runs. I
show the results for the first one thousand turns of one such simulation run in
Appendix D.

4.3 Forgetting B: Results
I observe the results from ten thousand runs of the simulation of this model over one
hundred thousand turns, with forgetting method B implemented and pf � 0:3 and
rf � 1 for both players. In Figure 3, I show the mean demands and rewards for each
player, averaged over all turns, as well as the differences between the average
demands and the average rewards for the two players. I summarize the results, aver-
aged for the two identical players, in Table 3. Player mean demands fall within the
interval �0:4; 0:6� 42 percent of the time, and player mean rewards also fall within this
interval 46 percent of the time. More runs result in outcomes far from the fair solu-
tion than with forgetting method A or the no-forgetting case.

4.4 Forgetting B: Analysis
Introducing forgetting B does not change the distribution shape as much as forgetting
method A. In section 4.2, we saw that forgetting method A is particularly likely to
punish low-demand strategies because they cannot keep up with the rate of for-
getting. By contrast, method B is not so likely to punish low-demand strategies: even
if they are highly reinforced, a player is just as likely to forget any other strategy.

Averaging over all the simulations, player average demands with forgetting B are
similar to those with forgetting A, and so are the average rewards. However, the dis-
tribution is wider: the rewards are often further from the fair distribution. The
increase in the standard deviations for the demands and rewards reflects the fact that
it will usually take longer for players to settle on a cluster of successful strategies. The
result is that typical outcomes are less fair than the no-forgetting case.
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4.5 Roth–Erev discounting: Results
I observe the results from ten thousand runs of the simulation of this model over one
hundred thousand turns, with forgetting Roth–Erev discounting implemented and the
same values of df for both players. I consider values of df of 0.00, 0.005, 0.01, 0.05, 0.10,
0.50, and 1.00. In Figure 4, I show the mean demands and rewards for each player for
the value of df � 0:01, averaged over all turns, as well as the differences between the
average demands and the average rewards for the two players. I summarize the
results, averaged for the two identical players, in Table 4.

In general, Roth–Erev discounting leads to results that are significantly fairer, yet
less efficient, than the no-forgetting case. Furthermore, there is a trade-off: higher
values of df result in outcomes that are more fair, but less efficient.

Figure 3. Results from running ten thousand runs of the simulation, for one hundred thousand turns each,
with forgetting method B. (top) Frequency of runs against mean demands and rewards over one hundred
thousand turns. (bottom) Frequency of runs against mean demand and reward differences, between players
1 and 2, over one hundred thousand turns.
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Table 3. Results from running ten thousand runs of the simulation, for one hundred thouand turns each,
with forgetting method B

Mean Standard deviation

Demands 0.46 0.15

Rewards 0.46 0.16

Signed demand difference 0.00 0.31

Signed reward difference 0.00 0.31

Absolute demand difference 0.26 0.18

Absolute reward difference 0.26 0.18

Note. Mean demands and rewards are shown for each player, as are the signed and absolute differences in the demands and
rewards. Average outcomes are calculated for each player, over one hundred thousand turns for each run; the means and
standard deviations are then taken for the distributions of both players over all ten thousand runs.

Figure 4. Results from running ten thousand runs of the simulation, for one hundred thousand turns each,
with Roth–Erev discounting, df � 0:01. (top) Frequency of runs against mean demands and rewards over
one hundred thousand turns. (bottom) Frequency of runs against mean demand and reward differences,
between players 1 and 2, over one hundred thousand turns.
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I also observe the results of adding a small error rate in combination with the
Roth–Erev discounting. Each agent has a small probability each turn of selecting strat-
egies with uniform probability, rather than in proportion to their weights. I consider
three different error probabilities, 0.01, 0.05, and 0.1, for each of the preceding values
of df . However, the effects of these error rates are small after one hundred thousand
turns, changing the mean demands by less than 1 percent and slightly decreasing the
mean rewards, by less than 5 percent.

4.6 Roth–Erev discounting: Analysis
As Roth and Erev (1995) noted, this form of discounting will effectively put an upper
limit on the total weight that can be assigned to any particular strategy. Suppose that
some strategy, i, has weight wt

i at turn t and earns a maximal reward of rmax and an
expected reward of rµ each turn. The strategy weights are discounted by a quantity
wt
i × �1 � df �. Once a strategy is reinforced by sufficiently high weight such that

wt
i × �1 � df � � rmax, it cannot be reinforced further. Moreover, we should expect

the strategy no longer to increase average weight after reaching wt
i × �1 � df � � rµ.

Of course, given that I allow infinitely many possible strategies, this does not pre-
vent the invention of a new strategy arbitrarily close to the strategy that has reached
its maximum weight. However, the invention of such a strategy will depend on ran-
dom draws of the mutator, which may take some time. The result is that the total
amount of reinforcement is lower, and so the relative probability of drawing the
mutator does not decrease to zero as quickly. The two players will keep inventing
new strategies for longer, even after having discovered a highly effective strategy.
On one hand, this prolonged experimentation helps the players to find strategies that
are more fair on average, rather than being trapped in a highly unfair strategy pair.
On the other hand, this also leads to a continued high rate of experimentation, caus-
ing a considerable degree of overshooting to take place for longer. This results in
lower efficiency when the discounting factor is larger.

When the discounting parameter is very large, highly equal outcomes are ensured,
because both players will continue to experiment with many strategies. The result is
very low efficiency; however, even with very small discounting parameter values, I
attain more equal outcomes than the no-forgetting case, with only a small loss in

Table 4. Results from running ten thousand runs of the simulation, for one hundred thousand turns each,
with Roth–Erev discounting

df

0.00 0.005 0.01 0.05 0.10 0.50

Mean demands 0.46 0.47 0.47 0.48 0.49 0.49

Mean rewards 0.46 0.45 0.43 0.23 0.19 0.18

Mean absolute demand difference 0.26 0.19 0.15 0.01 0.00 0.00

Mean absolute reward difference 0.26 0.19 0.14 0.00 0.00 0.00

Note. Average outcomes are calculated for each player, over one hundred thousand turns for each run; the means and
standard deviations are then taken for the distributions of both players over all ten thousand runs.
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efficiency. In such cases, the increase in fairness arises from the increased experimen-
tation, allowing players to escape being trapped in unfair strategy pairs.

5. Invention with a restricted number of strategies
In many situations, when deciding how to divide a resource, there may be a limited
number of possible, or most natural, ways to do so. For example, physical currency
has a smallest possible unit. When playing divide-the-dollar with actual currency, it is
natural that both players will claim an integer number of cents. When deciding how
to divide a presliced pizza, each person might tend to claim an integer number of
slices. There is empirical evidence that economic contracts tend to split goods accord-
ing to simple fractions and that these are resilient under changing circumstances. For
example, this has been observed in the records of sharecropping data over long time
periods (Young and Burke 2001; Allen and Lueck 2009).

The model can be modified by restricting the set of strategies that may be
invented. Previously, once the mutator is drawn, the player draws randomly from
a uniform distribution over the interval �0; 1�. I will investigate a case for which
the strategy is chosen from the set fx=20 : x 2 N ; 0 � x � 20g. As I explain in section
3, I allow the same strategy to be “invented” anew multiple times. Multiple copies of
the same strategies are reinforced separately. I will refer to this process as restricted
invention.

5.1 Restricted invention: Results
I observe the results from ten thousand runs of the simulation of this model over one
hundred thousand turns, with restricted invention. I show the results with no for-
getting in Figure 5. I summarize the findings with all types of forgetting in
Table 5, with parameters pf � 0:3, rf � 1, and df � 0:01.

With restricted strategies but no forgetting implemented, player mean demands
fall within the interval �0:4; 0:6� 49 percent of the time, and player mean rewards fall
within this interval 46 percent of the time, approximately the same as with no restric-
tion in place. With forgetting method A implemented, player mean demands fall
within the interval �0:4; 0:6� 65 percent of the time, and player mean rewards fall
within this interval 63 percent of the time, slightly lower than with no restriction
in place. With forgetting method B implemented, player mean demands fall within
the interval �0:4; 0:6� 43 percent of the time, and player mean rewards fall within this
interval 41 percent of the time, similar to the no-restriction case. All these differences
are fairly small: this restriction of strategies does not greatly alter the proportion of
runs that fall close to the fair solution.

5.2 Restricted invention: Analysis
One might expect that the restriction of the strategies in this way that could be
invented would have relatively little effect on the average demands and rewards.
After all, the possible strategies are still evenly spaced between 0 and 1, and a variety
of compromises are possible. As expected, the restriction of strategies in this way
does lead to only small changes in the average demands and rewards for each player
and has little overall effect on the standard deviations. The overall fairness and
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efficiency of the results are not significantly affected by this particular restriction of
the strategies. This applies to the no-forgetting case, as well as when the three meth-
ods of forgetting are applied.8

However, the shape of the histograms seen in Figure 5 looks strikingly different.
We can discern a pattern of sharp peaks above a smoother shape; this is not due to a

Figure 5. Results from running simulation for one hundred thousand turns. No forgetting is implemented,
and invention is restricted to twenty strategies. (top) Frequency of runs against mean demands and rewards
over one hundred thousand turns. (bottom) Frequency of runs against mean demand and reward differen-
ces, between players 1 and 2, over one hundred thousand turns. The shape of the peaks is discussed in
section 5.2.

8 Naively, one might expect this restriction of strategies to have a significant effect under Roth–Erev
discounting. After all, if only a finite number of strategies can be reinforced, a finite number of times,
then one might expect that this would prevent the rate of mutation from ever falling below some lower
bound. However, recall that I allow the same strategy to be reinvented multiple times in this model. In
consequence, the number of strategies rises indefinitely over time (including many repeated strategies),
and so the mutation can continue to fall.
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Table 5. Results from running ten thousand runs of the simulation, for one hundred thousand turns each
with two methods of forgetting and with no forgetting and possible strategies restricted to the set
fx=20 : x 2 N ; 0 � x � 20g

Mean Standard deviation

No forgetting

Demands 0.47 0.14

Rewards 0.44 0.14

Signed demand difference 0.00 0.27

Signed reward difference 0.00 0.26

Absolute demand difference 0.22 0.16

Absolute reward difference 0.22 0.15

Forgetting A

Demands 0.49 0.10

Rewards 0.48 0.10

Signed demand difference 0.00 0.20

Signed reward difference 0.00 0.19

Absolute demand difference 0.16 0.10

Absolute reward difference 0.16 0.11

Forgetting B

Demands 0.46 0.16

Rewards 0.46 0.16

Signed demand difference 0.00 0.31

Signed reward difference 0.00 0.31

Absolute demand difference 0.26 0.18

Absolute reward difference 0.26 0.18

Roth–Erev discounting

Demands 0.47 0.10

Rewards 0.43 0.10

Signed demand difference 0.00 0.19

Signed reward difference 0.00 0.18

Absolute demand difference 0.19 0.15

Absolute reward difference 0.19 0.15

Note. Mean demands and rewards are shown for each player, as are the signed and absolute differences in the demands and
rewards. Average outcomes are calculated for each player, over one hundred thousand turns for each run; the means and
standard deviations are then taken for the distributions of both players over all ten thousand runs.
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choice in rounding or binning. The sharp peaks correspond to cases in which just one
of the restricted strategies is almost wholly dominant. For example, the players may
have quickly settled on an outcome in which demand 0.45 is highly reinforced for
player 1 and demand 0.55 is highly reinforced for player 2. If the players make these
demands almost every turn, so the average demands and rewards will be close to
these values.

6. Single, finite population model
The model can be adapted to represent the dynamics of a large (finite or infinite)
population, from which pairs of agents are randomly selected. Such a model could
better represent evolutionary dynamics in which agents from a population may ran-
domly encounter and compete against each other for resources (as in Schreiber 2001).
One might anticipate that such a model would lead to different dynamics: for exam-
ple, strategies that are efficient between just two players might be expected no longer
to be efficient if pairs of agents are chosen at random. Such results could also provide
a robustness check against evolutionary models of bargaining in finite population or
replicator dynamics, in which the assumption of a fixed, finite set of strategies is
dropped.

I adapt the model to represent a single, finite population. Now, all strategies are
drawn from the same single collection. There is an ordered list of strategies at each
turn (t), St � �M; s1; . . . sn�, with corresponding weightsWt � �wt

M;w
t
1; . . .w

t
n�, whereM

is the mutator strategy. The weights can be thought of as representing the population
with a particular strategy assigned.

Each turn, two strategies are drawn with probability proportional to their weights
(Pt�sj� � wt

j=�wt
M 	Pn

i�1 w
t
i�) and played against each other. If the sum of both

demands comes to less than or equal to 1, then I reinforce each strategy by the
amount that they demanded. If the sum of the demands exceeds 1, then neither strat-
egy is reinforced. Thus, if strategy sj, with weight wt

j , is successfully reinforced at turn
t, then at turn t	 1, we have wt	1

j � wt
j 	 sj; if it is not successfully reinforced, then

the weights remain unchanged, wt	1
j � wt

j . If the mutator is drawn, a new strategy is
added, drawing from a uniform distribution over all possible demands in the interval
�0; 1�, and then played.

6.1 Single, finite population: Results
I consider the cases with no forgetting, forgetting A and forgetting B, and Roth–Erev
discounting, with parameters pf � 0:3, rf � 1, and df � 0:01. I run the simulations
over one hundred thousand turns, and I run ten thousand simulations for each set
of parameters. Histograms for the no-forgetting case are shown in Figure 6.
Results are summarized in Table 6.

6.2 Single, finite population: Analysis
The single, finite population dynamics result in much narrower peaks, much closer to
the fair solution than the two-player dynamics. However, the overall effect of each
type of forgetting is qualitatively similar. Forgetting method A narrows the variation
of the outcomes and leads to outcomes closer to the fair solution, on average.
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Forgetting method B has the opposite effect, widening the variation and leading to
outcomes slightly further from the fair solution, on average. Forgetting method A
increases the efficiency significantly, whereas forgetting method B has little overall
effect on the efficiency. Roth–Erev discounting leads to fairer outcomes than the no-
forgetting case, with very little variation. Like the two-player case, this also leads to a
decrease in the efficiency of the solutions, arising from a continued higher rate of
mutation; however, the decrease in efficiency is much lower. In the single-player case,
outcomes just below the fair solution are likely to be relatively efficient also, as there
is a lower chance of overshooting in such cases.

It is unsurprising that the single-population results overall lead to fairer and more
efficient outcomes than the two-player case. In principle, only one strict Nash equi-
librium is possible in the single-population case: the fair solution. This stands in con-
trast to the two-player model discussed previously: here, at least in principle,
infinitely many possible mixed equilibria could be reached. In this sense, the two-
player game model is comparable to a two-type population (see Axtell et al. 2000;
O’Connor 2019).

Significantly, in this model, strategies of demand x, x > 1=2, never become domi-
nant across the population. Such agents would be guaranteed always to play against
each other and to receive zero rewards, so these strategies can always be defeated by
mutant strategies that demand less than 1=2. As a result, average demands and aver-
age rewards are very similar. Agents are much less likely to “overshoot,” resulting in
demands that collectively sum to greater than 1.

However, some unfairness continues to persist. Given that the model involved two
interacting agents, it is possible (in principle) for the two agents to coordinate on an
unfair equilibrium that is still efficient. For example, player 1 might demand 0:75
almost always, and player 2 might demand 0:25, resulting in an efficient outcome.
This could be compared to dynamics in two populations or with two types. This is

Figure 6. Results from running ten thousand runs of the single-population dynamics, for one hundred thou-
sand turns, with no forgetting. Shown is the frequency of runs against mean demands and rewards, over one
hundred thousand turns, averaged over all ten thousand runs.

328 David Peter Wallis Freeborn

https://doi.org/10.1017/psa.2022.33 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2022.33


no longer the case under the single-population dynamics in the current model. In
effect, we have dynamics with just a single type, and agents who demand greater than
1=2 are likely to be heavily punished, while strategies closer to 1=2 lead to higher
overall reinforcements. As a result, it is unsurprising that the results are closer to
the fair solution and more efficient.

7. Conclusions
I have studied a dynamic model of learning in a resource-division game in which the
players must invent new strategies and reinforce them. I considered two settings: two
agents learning to interact with one another and a randomly mixing finite population.
The models here contribute toward answering a couple of related questions. First, can
agents learn or evolve social conventions in resource-division settings in which strat-
egies must be invented, rather than handed out to agents at the start of the process?
Second, to what extent will the outcomes be efficient in their allocation of resources
and fair toward all participants in the process?

In all cases, fairer outcomes are favored over unfair outcomes, but the extent of
this varies greatly, depending on the assumptions of the model. Inevitably, given the
infinite number of possible strategies, outcomes are rarely wholly efficient, but the
proportion of the resource wasted again depends on the particular assumptions of
the model.

The results here broadly fit the results established by other studies that use finite
sets of strategies, and considering other learning dynamics, such as replicator dynam-
ics and fictitious play (e.g., Skyrms 2014; O’Connor 2019; Alexander and Skyrms 1999;
Vanderschraaf 2018). Across a range of dynamics, fair solutions have been found to

Table 6. Results from running ten thousand runs of the simulation, for one hundred thousand turns each
with two methods of forgetting and with no forgetting

Mean Standard deviation

No forgetting

Demands 0.43 0.05

Rewards 0.43 0.05

Forgetting A

Demands 0.45 0.02

Rewards 0.45 0.02

Forgetting B

Demands 0.40 0.04

Rewards 0.40 0.04

Roth–Ereth discounting

Demands 0.49 0.00

Rewards 0.46 0.00

Note. Mean demands and rewards are shown for each player. Average outcomes are calculated over one hundred thousand
turns for each run; the means and standard deviations are then taken for the distributions over all ten thousand runs.
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have the largest basin of attraction, but other equilibria are possible. As the number of
strategies increases, it becomes more and more likely that the dynamics will not set-
tle on the fairest equilibrium. In this study, with infinitely many possible equilibria,
we see that fairer solutions are favored over unfair solutions, but in general, the
dynamics may end some way from the fair solution. Furthermore, inevitably, the out-
come will have some inefficiency, as agents will not generally settle on exactly com-
plementary strategies. Thus egalitarianism and efficiency are favored, but only so far.

Two starting conditions were considered. First was one in which the agents begin
in a state of conflict and can only demand or relinquish the entire value of a resource.
Second was one in which the agents begin with no strategies at all and all strategies
must be invented. After a large number of turns, the effects of the starting strategies
are washed out by the dynamics. New strategies are invented and reinforced based on
their degree of success. The results are also only changed slightly by reducing the
possible strategies from infinitely many to a restricted set of twenty strategies.

I studied three methods by which agents could forget strategies, in addition to
reinforcing them. The forgetting method A leads to outcomes that are typically fairer
and more efficient than with the other methods. This method creates a more punish-
ing evolutionary environment for low-demand strategies in particular. The forgetting
method B has a smaller effect. It leads to a wider distribution of demands, typically
further from the fair division, but with a similar efficiency and a similar efficiency to
the no-forgetting case. Finally, Roth–Erev discounting leads to a trade-off between
fairness and efficiency, depending on the value of the discounting parameter.
However, in the case of a single finite population, this method of discounting leads
to results that are significantly fairer, with only a small loss of efficiency. All methods
of forgetting prolong the time taken for agents to settle on a small cluster of highly
reinforced strategies. The type of forgetting that is most appropriate or natural is
likely to vary from one scenario to another. It is therefore important to note that
each type of forgetting has very different effects in terms of fairness and efficiency
after a finite number of terms, and indeed, these effects sometimes pull in opposing
directions.

The comparison of the two-player and single-finite population studies meshes with
results in the literature using finite strategies and other learning dynamics (see Axtell
et al. 2000; O’Connor 2019). It is well known that evolutionary dynamics for a popu-
lation with two or more types are less likely to lead to the fair solution. The two-
player game is analogous to a two-type population in that many equilibria are possi-
ble in principle. This leads to results that are further from the fair solution, on aver-
age.9 In the one-population model, only one strict Nash equilibrium is possible in
principle; however, in the two-player model, infinitely many suboptimal mixed equi-
libria could be reached (although in practice, exact equilibrium strategies are unlikely

9 However, invention will typically lead to less precise coordination in the two-player model studied
here, as compared to two-type models without invention studied by Axtell et al. (2000). Imperfect coor-
dination can lead to greater inefficiency in the outcomes, as compared to two players with precisely
coordinated strategies. On the other hand, this can also lead to more sustained periods of exploration,
ultimately resulting in more fair (and therefore potentially more efficient) outcomes than in a model
without invention.
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to evolve). A more detailed study on the relationship between finite-player models
and typing could prove to be a valuable direction for future research.

The model provides a flexible framework, offering rich opportunities for further
study. Possible variations of the modeling choices provide obvious targets that would
merit further investigation. It would be of great interest to investigate alternative
models of forgetting, such as forms that selectively penalize the least-used strategies.
These might be more realistic for representing certain contexts, such as human mem-
ory. A full dynamical analysis of these models has not been performed; however, I
demonstrate some limiting results. For example, the total number of strategies will
increase indefinitely if forgetting is not implemented, as will the number of times that
each strategy is played. However, there is room for a more systematic analysis of the
models’ long-run effects.

Finally, it should be noted that the work here has explored one dynamical model,
based on reinforcement learning. This model provides a natural method for including
the invention of new strategies using the mutator. It would be of interest to discover
whether an analogous model could be developed with other dynamics, such as ficti-
tious play, and if so, whether the same general results would apply. This could prove
to be a promising route for future research.

The parameter space has not been thoroughly sampled. For example, it would be
instructive to better understand how the model behaves over larger turn numbers
and a greater variety of starting strategies. Little can be said so far about how robust
or generic the observed properties are within this parameter space, nor is it known
whether different models of invention would reveal similar results. Finally, it would
be natural to extend this framework to other games, such as asymmetric Nash
demand games. Notably, the two-player model could be naturally extended to games
in which the players are not identical, either through their reward functions or
through their starting strategies. Likewise, such dynamics could be adapted to a mul-
tiplayer model. These cases present additional avenues for further research.
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Appendix A: Other starting strategies

In the main examples studied, I start the agents with the strategies Sp;0 � �M; 0; 1� and weights
Wp;0 � �1; 1; 1�. This might represent a situation in which the agents have learned how to seize or avoid
a reward but have not learned anything about how to negotiate or cooperate with other agents. However,
one might want to consider other possible starting points. For example, as a neutral starting point, one
might suppose that the agents begin with no strategies at all, except for the mutator, Sp;0 � �M�,
Wp;0 � �1�. Results are summarized in Table A.1 (compare to the results in Figure 1 and Table 1).
The dispersions are marginally wider, suggesting more unpredictability in the outcomes, although these
differences are small. The mean outcomes are very similar in value. Overall, the effect after one hundred
thousand turns is extremely small.
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Appendix B: Proof that the number of strategies for each player
diverges

Let F n denote the history of the process up to the nth trial, and let ω denote the entire infinite history of
a specific realization of our reinforcement process, that is, it represents an infinite sequence of demands
and rewards for each player. Let An be the event that, on the nth trial, a new strategy is invented (i.e., the
mutator ball is selected). Let

P�AnjF n�1��ω�

notate the conditional probability that An occurs up to step n � 1, given some particular realization, ω, of
the whole process.

To show that the number of strategies diverges almost surely, one must show that the mutator ball is
drawn infinitely often almost surely for each player. First, by the martingale generalization of the second
Borel—Cantelli lemma (see Durrett 1996, 249; for a similar application of the lemma, see Alexander et al.
2012), the following two events are the same, up to a set of probability zero:

1. The mutator ball is drawn infinitely many times for a player; that is, the player has infinitely
many strategies:

fω : ω 2 AN infinitely ofteng: (1)

2. The sum, over infinite steps, of the probability of selecting the mutator ball each turn is
infinite:

fAninfinitely ofteng �
X∞
n�1

P�AnjF n�1� � ∞
( )

: (2)

Thus, to show that the number of strategies diverges almost surely, it would be sufficient to show that

P ω :
X∞
n�1

P�AnjF n�1� � ∞
( ) !

� 1: (3)

Table A1. Results from running ten thousand runs of the simulation, for one hundred thousand turns each,
with starting strategies Sp;0 � �M� and weights Wp;0 � �1�

Mean over 100,000 turns Standard deviation

Player demands 0.46 0.14

Player rewards 0.43 0.14

Signed demand difference 0.00 0.27

Signed reward difference 0.00 0.26

Absolute demand difference 0.22 0.15

Absolute reward difference 0.21 0.15

Note. Shown are the mean demands and rewards for each player, as well as the difference in the demands and rewards,
defined by the player 1 demand – player 2 demand and player 1 reward – player 2 reward.
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I will show something stronger, namely, that for every history, ω,

X∞
n�1

P�AnjF n�1� � ∞ : (4)

Recall that at the first turn, there are three strategies, each with weight 1, one of which is the mutator.
Each turn, either a new strategy is drawn and reinforced or an existing strategy is reinforced, with a
weight between 0 and 1. Consequently, each turn, the total weight is increased by at most 1 (at most
one ball is added into the urn), either for a new strategy or for an existing strategy. The mutator ball
is not reinforced. So at the nth turn, the following inequality must hold for the probability of drawing the
mutator ball:

P�AnjF n�1� ≥
1

n	 2
:

Summing over all turns,

X∞
n�1

P�AnjF n�1� ≥
X∞
n�1

1
n	 2

�
X∞
n�3

1
n
� ∞ ;

proving equation (4) and thus condition (1).

Appendix C: Proof that the number of times each strategy is chosen
diverges

Let us use Bn to denote the event that any particular strategy is chosen on turn n. Upon being invented
for the first time on turn i > 0, every strategy has an initial weight 1=�N 	 2�, and each time it is chosen,
it is reinforced by weight w, 0 � w � 1. Then, by the same reasoning as for the mutator ball, the proba-
bility of choosing the strategy at turn n is given by

P�BnjF n�1� ≥
1

n	 2
:

Let us suppose that the strategy was first selected at some finite turn number k. Then, summing over all
turns,

X∞
n�1

P�BnjF n�1� ≥
X∞
n�k

1
n	 2

�
X∞

n�k	2

1
n
� ∞ :

The number of times each strategy initially will be played and reinforced will diverge.

Appendix D: Individual simulation from the “low-reward tail” with
forgetting A

Figure D.1 shows the results from running the simulation a single time, for the first one thousand turns,
with forgetting method A implemented. The run chosen was a typical instance of the low-reward tails
seen in Figure 2. Here player 1 forgets the demand 1 strategy almost right away and, for the first few turns,
plays only demand 0. In consequence, player 2 highly reinforces the strategy demand 1 and keeps playing
this. As a result, player 1 is unable to settle on a successful strategy and continues to invent a variety of
strategies, usually with little success. Only toward the end of the one thousand turns do the players begin
to find an alternative settlement, in which player 2 makes a demand close to 0.6 and player 1 a demand
around 0.25, but even this is inefficient. Over the course of the one thousand turns, both players receive a
reward of 0 most of the time.
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Figure D.1. Heat maps for player demands and rewards from running the simulation once for the first one
thousand turns, with forgetting method A, probability 0.3 for each player, showing the relative densities of
demands and rewards for players 1 and 2. The player demands are divided into twenty bins of width 0.05,
and the turns into one hundred bins, each of width ten turns. The color shows the frequencies with which
strategies are selected.
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