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HARMONIC MAPPINGS ONTO CONVEX DOMAINS 

YUSUF ABU-MUHANNA AND GLENN SCHOBER 

1. Introduction. Let D be a simply-connected domain and w0 a fixed 
point of D. Denote by SD the set of all complex-valued, harmonic, 
orientation-preserving, univalent functions / f r o m the open unit disk U 
onto D with f(0) = w0. Unlike conformai mappings, harmonic mappings 
are not essentially determined by their image domains. So, it is natural to 
study the set SD. 

In Section 2, we give some mapping theorems. We prove the existence, 
when D is convex and unbounded, of a univalent, harmonic solution / o f 
the differential equation 

fi = afz, z G U, 

where a is analytic and \a\ < 1, such that f(U) c D and 

f(elt) = lim f(relt) e dD a.e. 
>~»i 

General bounded domains with locally connected boundaries were 
considered earlier in [7]. We show also that if D is convex and unbounded 
and if / e SD, then f + AP(- , t) is a. univalent, orientation-preserving 
mapping onto a convex domain for suitable constants A and t. Here, and 
in what follows, P denotes the Poisson kernel 

1 r^' + zl 
P (z , / ) = - R e - . 

Z7T le — Z\ 

In Section 3, we choose D to be a wedge W. We determine the extreme 
points for the closed convex hull of Sw. As an application, we estimate the 
Fourier coefficients. In Section 4, D is chosen to be a half-plane, and we 
carry out a parallel development. 

In Section 5, we give an application to nonparametric minimal surfaces 
over D when D is a wedge, a half-plane, or a strip. In particular, we give 
lower bounds for the Gaussian curvature of the surface over a point 
inZ>. 

2. Mapping theorems. Recall that / belongs to the space hx if / is 
harmonic in U and 
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1490 Y. ABU-MUHANNA AND G. SCHOBER 

/ , 
2" \f(re") \dt 
0 

is bounded as r —» 1. Since we admit complex-valued functions, this 
implies (cf. [3] ) that 

f(z) = PJ P(Z9 t)dii(t) 

where (i is a complex-valued measure of finite variation. Furthermore, the 
radial limits 

f{e") = lim f(re") 

A 

exist a.e., and / is equal a.e. to the Radon-Nikodym derivative of d\i. 
The following lemma asserts that, under certain hypotheses, the 

absolutely continuous part of a limit measure is the limit of the absolutely 
continuous parts, at least for a subsequence. Its proof was suggested to us 
by J. G. Stampfli. 

LEMMA 2.1. Let gn and g belong to L [0, 2TT], 

lim gn = g a.e., and 

r-
J o 

' J \gn(x) \dx ^ M for all n = 1, 2, 3, . . . . 

Then there is a subsequence {gn } of {gn } such that gn dx converges in the 
weak * topology as k —> oo to gdx -f ds, where ds is a singular measure on 
[0, 277] with respect to the Lebesgue measure dx. 

Proof. Alaoglu's theorem implies that there is a subsequence {gn } of 
{gn} and h e L][0, 2TT] SO that 

gn dx —» h dx -f ds as k —> oo 

in the weak * topology, where <& is singular with respect to Lebesgue 
measure. For each € > 0 there is, by Egoroff s theorem, a compact subset 
A€ of [0, 277] with measure 277 — e such that gn —> g uniformly on A £ as 
k -* oo. Since the restriction of /iJx + <& to ^4€ is also the weak * limit of 
gn on Av we may conclude that h = g a.e. on Ac Let € —> 0. Then h = g 
a.e. on [0, 2T7]. 

The following application of Lemma 2.1 will be useful in our mapping 
theorem. 

LEMMA 2.2. Assume that 

/

2TT A 

0 P(z, t)fn(e
lt)dt and that 
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lim fn = g a.e. 
n—>oo 

A , 

where Jn, g G L and 

J 0 \fn(e
lt) \dt ^ M for all n = 1, 2, 3, . . . . 

If fn converges locally uniformly on U to a function f G h , //zerc f — g 
a.e. 

Proof Lemma 2.1 implies that there is a subsequence fn that converges 
for each Z G [/to 

/ • • 

y ( 
* P(z, /Mg(c")* + A] 

where ds is singular. On the other hand, 

fnk(
z) -> f(z) as k -» oo, 

and so 

0 P(z, 0[g(*")* + * ] for all z e C / . 
A 

Hence f = g a.e. 

The following is our mapping theorem. The linear space of analytic 
functions on U is denoted by H(U). 

THEOREM 2.3. Let D be a convex domain. Fix w0 e D, and let a e H(U) 
satisfy a(U) c U. Then there exists a univalent, harmonic, orientation-
preserving mapping f with the following properties. 

(a) f(U) c D, / (0 ) = w0, andfM > 0; 
(b) / is a solution of fj = afz\ 
(c) f/*£ //ra/to lim f(relt) exist and belong to dD for a.e. t. 

Proof Case 1. If Z) is convex and bounded, then 8Z) is locally connected 
and this theorem is a special case of [7, Theorem 4.2]. 

Case 2. If D is convex and unbounded, but neither a strip nor a 
half-plane, then there is an infinite wedge containing D. Since the 
mapping w —» aw + /? preserves the convexity of the domain, harmonicity, 
and the form of the equation, we may assume without loss of generality 
that D is contained in the wedge bounded by the rays L+:tem and 
L_:te~ia, t ^ 0, where a is fixed and 0 < a < IT/2. 

Let <]P be the univalent analytic mapping from U onto D with <p(0) = w0 

and <p'(0) > 0. Let 

Dn = <p( \z\ < n/(n + 1) ) and 
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an(z) = a(nz/(n -f 1)). 

Since Dn is bounded and convex, there exists by Case 1 a univalent, 
harmonic, and orientation-preserving mapping fn satisfying (a), (b), and 
(c) with D and a replaced by Dn and an. Furthermore, since Hfljloo < 1, the 
prime-end theory for quasiconformal mappings implies that fn extends to 
a homeomorphism of U onto Dn. 

Write fn = hn + ~g~n where hn and gn are analytic, hn(0) = w0, 
and gw(0) = 0. Since Dn is contained in the wedge, the analytic 
functions 

Ff = e^'i-'X + e±/(a-"/2)gn 

satisfy 

Re Ff = Rc{e±,^,2'a)flt} > 0 and 

/ f (0) = ^«^-«V 
By Montel's theorem there is a subsequence F ~ converging uniformly on 
compact subsets, say to F~. Now 

/„. = [e-ia Re{F+} + e'a Re{F,;} ]/sin(2a) 

converges in a similar fashion to 

/ = [e~ia Re{F+} 4- eia R e { F - } ]/sin(2a) 

and f(0) = w0. To see that / is not constant, we use the fact from 
[2, Theorem 2.1 ] that 

\fn~ W<)]/[(/A(0)] 

omits some point on the circle \w\ = 1.72. Hence 

(/.MO) s ^ 

where Ô! is the distance from w0 to dD}. Consequently, 

/M ^ A. > o, 
1.72 

and so / i s not constant. This and Lemma 3.1 in [7] imply that / is a 
univalent, orientation-preserving, harmonic mapping and that / satisfies 
the equation 

fi = «/z-

It is clear that f{U) a D since / i s open, Dn c Z>, and D is convex. 
It remains to show part (c). We use the Helly selection theorem as in 

[7, Theorem 3.2] to find a further subsequence fn , call it fk, such that 
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<P~ o fk is bounded and converges a.e. on dll to a function 17 on dU 
with |T)| = 1. Since <p is continuous on U with respect to the spherical 
metric, it follows that fk —» <p o TJ a.e. on 3£/ in that metric. If we 
write fk = uk + /v&> ^ e n 

\vk\ ^ (tan a)w^ 

since Dk lies in the wedge. Hence 

/ r l A ( ^ ) I* ^ 0 + tan a) / * * i / ^ V 

= 2TT(\ + tan a)Re{w0}. 

This and Fatou's lemma give 

Fj W o V(eu) \dt ^ lim F" \fk(e
lt) \dt 

J u k-^00 J u 

^ 2ir(\ + tan a)Re{w0}. 

Thus <p o T] is finite a.e., and it follows from Lemma 2.2 that / exists and 
equals <p o 17 a.e. Since <JP o T] e 82), part (c) is proved. 

Case 3. If D is a half-plane, we may suppose without loss of generality 
that D is the right half-plane. An explicit representation for the solution 
will be given in Remark 4.4. 

Case 4. If D is a strip, then an explicit representation was given earlier 
in [8, Section 2]. 

We remark that Case 3 of the proof remains valid for any domain D that 
is contained in a convex wedge and has a locally connected boundary. 
Secondly, uniqueness of the mapping with the properties of Theorem 2.3 is 
not known in general. However, for the cases where D is a strip or 
half-plane the explicit representations for / show that the correspondence 
between / a n d a is one-to-one. 

It is possible to represent univalent, harmonic, orientation-preserving 
mappings / = h -f g of U onto convex domains in various ways. For 
example, J. Clunie and T. Sheil-Small [2, Lemma 5.11] showed that there 
are real constants X and /x such that 

p = (e~llxW + elY)(eiX ~ e'iXz2) 

satisfies Re p ^ 0. If a = g'/h', this implies that 

P(£)d£ 
m = /(Q) + / ; (e!X _ e_lX{ ?Xe-* + J^aiS)) 

/ : 
a(to>(m 

This representation was sufficient for Clunie and Sheil-Small [2] to obtain 
some sharp coefficient estimates. 
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Let us consider another representation. If f is a univalent harmonic 
mapping onto a bounded convex domain, then 

f(z) = fj P(z, t)f(e")dt 
and, moreover, / has unrestricted limits at the boundary except possibly 
at points of a countable set at which the cluster sets are straight line 
segments [7, Theorem 4.3]. The following theorem concerns the 
unbounded case. 

THEOREM 2.4. Let f be a univalent, harmonic, orientation-preserving 
mapping from U onto an unbounded convex domain D which is neither a strip 
nor a half-plane. Then 

( a ) / £ / » ' ; 
(b) there is only one point el that corresponds to oo; 

(c) f(z) = fj P(z, t)f(e")dt + AP(z, X) 

for some constant A G C; 
(d) there is a countable set E c dU\{el } such that 

(i) the unrestricted limit lim f(z) exists as z —» e , z <E U, and is 
continuous for all points el e dU\[E U {el } ], 

(ii) lim f(elt) and lim f(elt) 
tp tie 

exist and are different for e1 G E, 
(hi) and the cluster set of f at e1 e E is the line segment joining 

lim f(elt) to lim f(elt); 
tp tie 

(e) the cluster set at el is either the point at oo, a half-line, or two parallel 
half-lines. 

By correspondence in (b), we mean that there is a sequence {zk } c U so 
that 

lim zk = ê and lim f(zk) = oo. 
/c—>oo k—*oo 

Proof Since D is neither a strip nor a half-plane, there is a convex wedge 
that contains D inside it. Use an affine transformation 

w —» s/(w) =aw -h bw 4- c 

to map this wedge onto the first quadrant. Then s/ o f is harmonic, 
Re J / o / ^ 0 , l m ^ o / ^ 0, and sos/ o f ^ hx. Since the inverse of J / is 
also affine and h is closed under affine transformations, part (a) of the 
theorem is proved. 
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The existence of a point el corresponding to oo is clear because / i s 
open. To show uniqueness, choose two points el0L and e1^ on 8 U at which / 
has finite radial limits. Denote the union of the radii to em and e1^ by L. 
Then L divides U into two disjoint sectors U] and U2. Suppose that 
e' e 8 Ux. Then f(L) is a finite Jordan arc that divides D into two disjoint 
domains, one bounded and the other unbounded. Necessarily, f{Ux) is 
unbounded and f(U2) is bounded. But / has radial limits almost 
everywhere, and so we can choose el0i and e1^ arbitrarily close to e1 and on 
either side. Hence el is the only point that corresponds to oo. 

Next, consider part (c). The function stf o / , defined earlier, belongs to 
h , and so it has the representation 

se o f(z) = j j P(z, t)sfof(e")dt + fj P(z, t)ds(t) 

where ds is singular with respect to dt. Since Re ^ o / ^ 0 and 
Im stf o f i? 0, we may write ds = dsx + ids2 where ds} and ds2 are non-
negative singular measures. 

Suppose that ds-, for some j , is not zero, and let E- denote its closed 
support. Then it is known [4, p. 77] that 

lim —S:( (t - e, t + c) ) = -hoc 
e^o 2e J 

r 
JO 

adia 
of 

r 
Jo 

for ^-almost all t G EJ. This, in turn, implies [3, p. 4] that 

2J P(z, t)dSj(t) 

has radial limit +oo at such points. Since the real and imaginary 
parts of 

J P(z, t)st o f(elt)dt 

are nonnegative, it follows that 

lim stf o f(relt) = oo 

for s.-almost all t e E-. But only el corresponds to oo by part (b). This 
implies that E- = [el }. Therefore ds is a point mass at el . This proves 
part (c) of the theorem for stf o / and, consequently, for / . 

The proof of (d) is the same as in [7, Theorem 4.3]. The boundary of D is 
locally connected since D is convex, and the hypothesis in [7, Theorem 4.3] 
that / is bounded can be replaced by the properties (a), (b), and 
(c) above. 

To prove (e) we use the representation (c). First suppose that A = 0. 
Since P(z, t)dt is a probability measure for each fixed z, it follows that D is 
the open convex hull of the radial boundary values / . If / is unbounded 
from both sides of el , then an argument as in part (b) shows that the 
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cluster set at ê is only the point at oo. Similarly, if / is bounded from one 
side and unbounded from the other, then the cluster set must be a 

A \ 

half-line. In this case, / cannot be bounded from both sides of el , for then 
D would be bounded. 

Finally, assume that A ¥= 0 so that P(z, X) plays a role. If f is bounded, 
then by approaching el along circular arcs tangent to 3 U at ë , one sees 
that the cluster set contains two parallel half-lines. Since D is convex, that 
is all it contains. If f is bounded from one side of ë and unbounded from 
the other, then by approaching ë along the same circular arcs, but only 
from the bounded side, it follows that the cluster set contains one 
half-line. The convexity of D and an argument as in (b) implies that the 
cluster set is no larger. If / is unbounded from both sides, then an 
argument as in (b) shows that the cluster set is just the point at oo. 

Remark 2.5. It is a property of the Poisson integral representation (c) 
and part (d) (iii) that the radial limit of / exists for points ë e E and 
equals 

lim f(elt) + lim /(*") 
f\o tie 

1 

21 

Therefore the radial limit / exists at every point of dU\{elX}. 

A question arises as to whether there is a univalent, harmonic, 
orientation-preserving mapping / onto a convex domain D so that A ¥= 0 
in part (c) of Theorem 2.4. The next theorem answers this question 
affirmatively. 

THEOREM 2.6. Let f be a univalent, harmonic, orientation-preserving 
mapping from U onto an unbounded convex domain D. Choose X and a so 
that there are points zk Œ U for which 

zk -> e ' \ \f(zk) | -> oo, and 

Rzk)/\f{zk)\-*em ask-* cxi. 

Then for each r > 0 

/ + re'aP( •, A) 

is a univalent, harmonic, orientation-preserving mapping of U onto an 
unbounded convex domain contained in D. 

Proof Write / = h + g where h and g are analytic, and define 

H(z) = h(z) + ^ - e ' a t ^ and 

G(z) = g(z) + -e-'ae-x . 
4TT e — z 
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Then F = H + G satisfies 

F(z) = f(z) + reiaP(z, A). 

By [2, Theorem 5.7], the harmonic function F is univalent, orientation-
preserving, and maps onto a convex domain if and only if for each 
0 e [0, 77) the function 

$ = ie~i0[H - e2l6G] 

is univalent and maps onto a domain that is convex in the vertical 
direction. This is the case [13, Theorem 1] if and only if <I> is nonconstant 
and there are parameters /x e [0, 2m) and v e [0, 77] such that 

(1) Re{-ie^[\ - (2 cos v)e~*z + e>~2//xz2]0'(z) } ^ 0. 

Choose ju and v so that (1) is satisfied for the function 

<P = ie~l\h - ell6gl 

which does map onto a domain convex in the vertical direction because / 
is convex. Since 

r eiX + z 
* = <P - —- sin(a - 0) -% , 

ATT e — Z 

it is sufficient to verify that 

elX ) 

( ^ - z ) 2 , 
(2) Rej/V^l - (2 cos v)e lfXz + e 2 , V ] sin(a - 0) 

is nonnegative. It is known [13] that the point ë^^v) corresponds to 
inf^ Re <p and that e'^~v"> corresponds to sup^ Re <p. We consider two 
cases. 

If 

Re{i*- 'V a} ^ 0, 

then the point ë corresponds to sup^ Re <p because 

Re cp = Re{ie~ief). 

In this case 

and (2) reduces to 

f <?* 
sin(a - 0) Re / -

te-v) _ z 

m (1 - lz|2)sin v 
= sm(a - 0) ¥) _ 2 , 

k>— " - zr 
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which is nonnegative. Similarly, if 

Re{/e~''V"} < 0, 

then the point e1 corresponds to miv Re <p, and so 

In this case (2) reduces to 

f e"4 - eivz \ 
sin(« - 0) Reji^-H^ _ J 

^ (1 - [2l2)sin y 
= S m ( a ~ *> | ^ ( M ^ ) _ 2 |2 ' 

which is nonnegative. 
To see that $ is nonconstant, choose zk as in the hypothesis. Then 

F(zk) = / ( 2 , ) + réaP(zk, X) 

approaches infinity in the direction el0L as k —> co. For this reason 

Re $ - Re{z>~ZV} 

could be constant only if 

Re{i>" ,Va} = 0. 

However, in this case 

Re * = Re{ie~iaf} 

is not constant because fis open. 
Finally, the domain F(U) is contained in Z) since the addition of 

reiaP(z, X) to f(z) is a translation along a ray in the convex domain D. In 
addition, F(U) is unbounded since the points F{zk) mentioned earlier 
approach infinity. 

Except at the point e1 the Poisson kernel P(z, À) has boundary values 
zero. Therefore, in Theorem 2.6, the only place where the boundaries of D 
and F(U) can differ is at the cluster sets of / a n d F at elX. 

3. Mappings onto a convex wedge. In this section, we consider the set 
Sw of all univalent, harmonic, orientation-preserving mappings f of U 
onto the wedge 

W = {w:|arg w\ < 77/4}, 

with normalization / (0 ) = 1. Let Sw denote the closure of Sw in the 
topology of locally uniform convergences. If iT is any convex wedge, then 
there is an affine transformation that maps iV onto W. So the properties 
of Sw will be representative. 
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By Theorem 2.4, every / G SW is in h and can be expressed in 
the form 

(3) f(z) = fj P(z, t)f(ei!)dt + AP(z, X) 
A 

where the radial limit values f(e' ) are finite and belong to 8 W for every 
point elt ¥= el . The following theorem shows that this representation and 
other properties persist for Sw, and it identifies some degeneracies. 

THEOREM 3.1. Iff G SW, then 

(a) f <= h\ f(U) c W, f is not constant, andf{elt) G dWfor almost 
allt; _ 

(b)fj = afz for some analytic function a with a(U) c U; 
(c) / / \a\ 3É 1, then f is univalent and orientation preserving, f(U) is 

convex, and f has the representation (3); 
(d) if\a\ == 1, thenf(U) is either a line segment or half line through the 

point 1 with endpoint(s) on dW. 

Proof Let {fn } c Sw converge locally uniformly to / . Since the real 
and imaginary parts of (1 + i)fn are positive and normalized, the same is 
true for (1 + / ) / , and it follows that /belongs to h . Next, it is clear that 
f(U) c W and, moreover, that f(U) c W since / (0) = 1 is an interior 
point of W. In addition, we have 

|/z(0) | è — 
1.72 

where 8 = \/\fl is the distance from fn(0) = 1 to dW as in the proof of 
Theorem 2.3. Hence fis not constant. 

A • 

In order to show that fie1 ) G 8 W for almost all t, consider the 
functions <p o fn where 

is a conformai mapping from U onto W. Then <p o /w maps 3f/ into 
dU, is orientation-preserving, and, by Helly's selection theorem as in the 
proof of Theorem 2.3, part (c), has a subsequence that converges almost 
everywhere to a function 77 with |TJ| = 1. Since <p is continuous from U into 
the Riemann sphere, a subsequence of {fn} converges to cp o 17 almost 
everywhere. Therefore, / = <p o 17 by Lemma 2.2, and so the values of / 
belong almost everywhere to dW. This completes the proof of part (a). 

Since fis nonconstant [7, Lemma 3.1] implies t h a t ^ = afz for some 
analytic function a with a(U) c U9 and if \a\ ^ 1 then fis univalent and 
orientation preserving. 

First, assume that \a\ =£ 1. To show that fis convex, we write 
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fn = K + Sn and / = h + g 

with hn(0) = A(0) = 1 and g„(0) = g(0) = 0. Since the z and z derivatives 
of /w converge to those of / , it follows by integration that hn —» A and 
g„ —» g as n —> oo. Each /w is convex, and so the function 

%, = ur\hn - e2iegn) 

is convex in the vertical direction [2]. Thus wn satisfies a condition of the 
form (1) [13]. By passing through appropriate subsequences, it follows 
that 

<P = ie~l\h - e2Wg) 

also satisfies a condition of the form (1). Moreover, <p is not constant 
because 

Re <p = Rt{iel0f}. 

Therefore <p is convex in the vertical position for all 6 [13]. Hence / is 
convex [2]. Now Theorem 2.4 implies that / has the representation (3). 
As a result, parts (b) and (c) are proved. 

If \a\ =_1, then a(z) = el1^ for some constant cf>, and the differential 
equat ion^ = afz can be written as 

( I m { ^ / } )? = 0. 

Thus \m{e f} is constant, and the values of / lie on a straight line. 
Since f(U) c W, / (0 ) = 1, and the boundary values of / a r e almost 
everywhere on dW, only the indicated segments and half-lines are 
possible. 

By Theorem 2.6 the functions 

/„(*) = - V P ^ + t1 -1)2^P(z,0) 
« v 1 — z \ «/ 

belong to Sw. Their limit f(z) = 2TTP(Z, 0) maps £/ onto the positive real 
axis. Therefore some degeneracy, as in part (d) of Theorem 3.1, can occur 
in Sw. 

For a function / G SW\SW the only possibilities for f(U), beside 
segments and half-lines, are triangles, quadrilaterals, and unbounded 
polygons with three, four, or five sides. All cases actually occur. We shall 
make use of the triangles and some of the others. 

Choose a, ft, and y so that a < / ? < y < 2 7 7 - 4 - a , and let 

Ix = {elt\a < / < 0} and I2 = {elt:y < / < 2TT -h a}. 

The lengths of these arcs are \I}\ = fi — a and \I2\ = 2TT + a — y. Next, 
consider the harmonic functions 
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£/,(z) = 
- 1 1 elj 

P(z, t)dt = 1 arg — 

2 |/,| V 
and 

-277 1 1 
U?(z) = — J P(z, t)dt = —- + — arg 

2 \h\Jy 2 |/2| 

e — z 
Jy - T 

where the branches of the arguments are chosen so that 

17,(0) = U2(0) = -^ 

Clearly, the boundary values of JJ- are ir/\I\ on l- and zero on dU\If. 
Finally, define 

(4) T(<*Ay) 
T h e n T(a,/3,y)(0ï = l a n d 

(1 + i)Ux + (1 - /)I/2. 

nd 

(i + *> 

W . Y / " ie") 

I/, 
He" 

( 1 - ' > nV< 
|/2 

L 0 if e" G 8 t / \ [ 7 , U 72]. 

^a,^,v) i s a univalent, harmonic, orientation-preserving mapping of U onto 
the open triangle with vertices at the origin and the points 

(1 + / > , (1 - *> 
and . 

I/, I |/2I 
The cluster sets of ^ a ^ r ) at the points e / a , £ , and e /y are the respective 
sides of the triangle. 

We extend the definition of T^a^y) by continuity so that 

(5) W z ) 
"(1 + i)Ux{z) + (1 - i)U2(z) ila < fi = y < a + 2<n 

(1 + i)Ux(z) + (1 - />P(z , a) if a < 0 < y = a + 2?7 

(1 + />/>(z, a) + (1 - i)U2(z) iîa = f3<y<a + 2>ïï 

1 -f z 
(1 - i)irP(z9 a) 

1 - i 
(1 + />P(z , a) + 

_2<77P(z, a) 

i f a < / ? = Y = a-f-277 

f a = /? = Y < a + 27r 

f a = ) 8 < y = a + 277' 
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lîa<fî = y<a + 2TT, then Ta o yx maps U onto the open segment with 
endpoints 

(1 4- z > t (1 - *> 
and . 

\îa<fi<y = a + 27roT'\îa = fi<y<a + 2, then T^a^y) is a 
univalent mapping of U onto an unbounded open triangle with vertices at 
the origin and either at 

(1 + i)ir (1 - z > 
or at . 

\IX I | / 2 I 
The unbounded sides are parallel, and one of them coincides with one side 
of 3 W. If a < /? = y = a -f lir or if a = fi = y < a + 277, then 7^ ^ y) 

maps U onto the open half-line through 1 with initial point either 
(1 + i)/2 or (1 - Ï)I2. Finally, if a = j8 < y = a + 2T7, then TMy)(U) is 
the positive real axis. 

THEOREM 3.2. For a ^ / ? ^ y ^ É a + 277 the functions T^a^y) belong 
to Sw. 

Proof. Since the other cases were defined by limiting processes, we may 
assume that a < / ? < y < a + 2TT. Set 

2 

Approximate the characteristic function X/ay8] of the interval (a, /?] by 
continuous, strictly decreasing functions on on (a, 8] in such a way that 

lim aM(0 = oo, an(S) = 0, / a„ ( / )^ = UU and 

f 
J a 

• fa°*< 

X(a,p}\dt -* 0 as « -> oo. 

Similarly, approximate the characteristic function X[Y,«+27r) °f t n e interval 
[y, a + 277) by continuous, strictly increasing functions rn on [8, a + 277) 
in such a way that 

T„(8) = 0, lim T / I(0 = oo, / " T M ( / )A = | / 2 | , and 

/

« + 27T 

5 kn - X[7,« + 2*)l<# "^ ° as « -^ oo. 

Define 

(1 + /> P 
(t)dt 
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(1 -_0fl" fa + 2" 
1 J S P(Z, t)7,,(t)dt. 

Then Jn is a homeomorphism of dU onto dW U {oo}, and the proof of 
the Rado-Kneser-Choquet theorem [10, 1] applies to it. Therefore fn is a 
univalent, harmonic, orientation-preserving mapping of U onto W. Since 
fn(0) = 1, the function fn belongs to Sw. As n —» oo, the functions / ? 

converge locally uniformly to 

(1 + z > /"£ (1 - z> f"*2" 
— / P(z, t)dt + - — / P(z, /)<// 

= (1 + i)I/,(z) + (1 - i)U2(z) = 2^Ay)(z). 

Consequently, ^ a ^ r ) belongs to S^. 

Let ^ denote the set of all functions / of the form 

f ~ JK T(«Ay ly)d^i(a, /?, y) 

where \i varies over all probability measures on the compact, convex set 

K = { (a, /?, y) : 0 ^ a ^ 2T7, a ^ /? ^ y ^ 2TT + a ) . 

Let / /S^/ denote the closed convex hull of Sw. 

THEOREM 3.3. HSW = X 

Proof. Since T(apy) e Sm it is clear that $~ c / / S ^ . To verify that 
//S^z C ^7 it is sufficient to show that each / e Sw belongs to ZT. 

Fix / e S^, and choose a and /? so that the values f(elt) are on 
the ray arg w = 77/4 for a < t < ft and on the ray arg w = — 7r/4 for 
ft < t < a + In. Then the representation (3) becomes 

/ ( z ) = (1 + />i(z) + (1 - *>2(z) + ^ ( ^ «) 

where 

Wi(z) = in^a p(z' ° l/A(^zY) '*' 
" 2 ( z ) = 7 5 / r 2 7 7 p(z' ° |/A(^} idt>and 

|arg v4| ^ m I A. 

H b = Wj(0) and c = u2(0), then the normalization / (0 ) = 1 and 
restriction on arg A imply 

A 1 
— = (1 - b - c) + i(c - b) and 0 â 6, c ë - . 
2-7T 2 
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It is possible that a = /?, in which case b = 0, or that /? = a -f 27r, in 
which case c = 0. 

First, we want to approximate ux. We may assume that b > 0, for 
otherwise ux = 0. Partition the interval [a, /J] into n equal parts, and let 

Imnb for a ta t < a + 
08 - a)/ 

vy(0 = (fi ~ «)j 

_0 

for y = 1,. . . , n. Then 

f v:(t)dt = 2-nb. 
J a J 

Define also 

(P - a)j 
for a + ^ / ^ p 

n ra + ((P-«)j/n) A .̂  

^ = >/2(i8 - a) ^ «+((i8-«)(./-i)/«) " ^ ) ' ' 

and dw + 1 = 0 . Since |/(e / f) | is nonincreasing on (a, /?), the numbers 

os - «y 
* lirnb 

are nonnegative and 

(dj - dj + x) 

7 = 1 
7 ——77 2 i ' ( 4 - rfy+i) 

2-nnb y=i ^ 

' - " 2 * - ' 2-nnb 7 = i 7 2-\/2-!Tb 
e")|J/ = 1. 

Next, define 

n 

y = i • 

if 

, (j8 - a)(fc ~ 1) ^ ^ , (jS ~ a)/c 
a: -f ^ / < a + , 

then 
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In addition, 

Vn(t)dt = 2wb. r 
J a 

Since 

Vn(t) -> ux(e
lt) for a.e. /, 

it follows from Lemma 2.1 that there is a subsequence such that 

V„ (z) = / P(z, t)V„ (t)dt 

converges locally uniformly to ux. 
Similarly, to approximate u2 we may assume that c =£ 0 and define 

MO 

0 f or y8 ^ / < /? H  

27TA76' ( « + 2 7 7 - /?)(£ - 1) 

L(a + 2<n - p)(n - k + 1) 

for /c = ! , . . . , « . Then we can construct nonnegative numbers ik with 

2 ** = 1, 

functions 

A: = l 

and their Poisson convolutions 

W£(z) = Jl+27r P(z, t)Wnif)dt 

such that 
Ca + lir 

J fi Wn(t)dt = 2T7C 

and a further subsequence 

W„ (Z) -> K2(Z) 

locally uniformly. 
For 1 ^j,k^n, let 

7^(z) = (1 + i)vj(z) + (1 - i 'K (z ) + ^P(z , a) 

where v (z) and wk(z) are the Poisson convolutions of v (/) and wA(7). 
Then 
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/„(z) = (1 + i)K(z) + (1 ~ i)Wn(z) 4- ^P(z , a) 

= 2 yA-^(*) 
.M = I 

has a subsequence that converges to / Consequently, if we show that 
^ f o r ally and k, then it will follow that / e ^7 

To see that T-k e J^ recall that 
^A 

2TT 
= (1 - b - c) + i(c - b) where 0 S b, c S - . 

If m = max{6, c}, then 

7~A = 2(ft + c - m) (1 + 0 — + (1 
2b 

0: 

4- 2(ra — c) 

4- 2(m - 6) 

(1 0 ^ + (l 
2* 

2c J 

/)TTP(Z, a) 

(1 4- />P(z , a) 4- (1 
2c 

(1 - 2m)[27rP(z, a ) ] 

is a convex decomposition of T-k into functions of the form T^a^y) that 
appear in (4) and (5). If b = 0 or c = 0, the ambiguous terms are 
omitted. 

In the proof of Theorem 3.3 the points a and fi remained fixed. 
Therefore we proved also the following corollary. For A ^ K ̂  A 4- 2-77, let 
SW(K, A) consist of those functions fin Sw such that the cluster set of / a t 
elK contains the origin and the cluster set of / a t el contains infinity. That 
is, SW{K, A) contains those functions in Sw for which elK and é correspond 
to 0 and oo, respectively. As before, HSW(K, X) denotes the closed convex 
hull of SW(K, X). Next, let $\K, X) denote the set of all functions / o f the 
form 

/- f cM TiKfry)drtK A y) 

where fi varies over all probability measures on the compact, convex set 

K(K, X) = { (A, 0, y) : A g £ â K ^ y - 2TI 4- A}. 

COROLLARY 3.4. / / % ( * , A) = ^(/c, A). 

We shall add the prefix E to denote the set of extreme points. 
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THEOREM 3.5. 

EHSW = {T(aAy) : 0 ^ a < 2TT, a ^ fi ^ y ^ a + 2TT) 

and 

EHSW(K, X) = {TMy) : X ^ P ^ K ^ y ^ \ + 2TT}. 

Proof. That EHSW and EHSW(K, X) are contained in the indicated sets 
is an immediate consequence of Theorem 3.3 and Corollary 3.4. For the 
opposite inclusions, it is sufficient to show that each T^a n y) is an extreme 
point of HSW, for if it belongs also to the subset HSW(K, À), it will 
necessarily be an extreme point there, too. 

Fix an arbitrary T^a ^ y y and denote it more simply by T. Assume 
that 

T = JK T(«Ay)dtia> ft Y) 

for some probability measure JU, where 

K = { (a, 0, y) : 0 ë a < 2TT, a ^ 0 ë y ^ a + 2TT}. 

We shall show that /A is a unit point mass at (a0> ft), Yo)- We m aY assume 
0 S a0 < 2?7. 

First, we shall show that a = a0, ao = fi — A)' an(^ Yo — Y = ao ~*~ ^77 

for ju-almost all points in K. Write 

T = (1 + /)£/, + (1 - /)I/2 and 

W,y) = 0 + *>i + (1 - *>2-

Then 

(6> ^ = I , «/*» + X X £ / < ^ <*)* 
where £j consists of those points in K with a ¥= ft, E2 consists of those 
points in K with y ^ a -f 277-, and we have suppressed the dependence of 
the functions Uj and the measure \x on («, /?, y). 

The integrands in (6) are nonnegative, and so Fatou's lemma implies 

£,(<-") ^ J^ û^dfJL. 

If <x0 < /?0, then 

Ûx(e
lt) = 0 for £0 < t < a0 + 2TT, 

and it follows that u\(en) = 0 for a dense set of fs in the same interval for 
jLt-almost every point in Ex. Thus a0 ^ a < y8 ̂  ft0 for jU-almost all points 
in E}. In addition, 

x K\El "P(Z> « > * 
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tends uniformly to zero on each subarc of {elt:fi0 < t < a0 + 277}. 
Therefore a0 ^ a i j80 for ju-almost every point in K\EX. If a0 = /?0, 
then 

Ux = TTP(Z, a0) = j K uxd\x,, 

in which case ju-almost all ux satisfy 

ux(e
lt) = 0 for / # «o-

The only ux's with this property are the Poisson kernels. Thus 

P(z, a0) = JK P(z, a)rf/x, 

which implies that a = a0 for jit-almost all points of K. In all cases we have 
a0 â a â jS g j80 for ju-almost every point of K. 

Similarly, by considering U2, one concludes that y0 ^ y ^ a + 277 ^ 
a0 + 2TT for ju-almost all points of K. Taken together, these and the 
previous inequalities imply also a = a0. 

Now, (6) can be rewritten as 

Uj = J Ujdfi + irP( • , « 0 K ^ \ ^ ) . 

Consider the case where a0 < f}0. Then £/j is bounded, and so both 

f 
JE, 
JE 

are bounded. Hence 

uxdfx and P( •, « ( ^ ( ^ X i ^ ) 

= X, «t ti(K\Ex) = 0 and t/j = / uxd\i. 

For jit-almost every point of Ex we may write 

ux(z) = - / P ( z , 0 * -

In this form it is easy to see that the functions ux have a uniform bound 
when z is near e'^°. Therefore 

t>,(^°) = JEt ^(e'^dti = Û^UK,) 

where 

A", = { («o, J80, y) : j80 g y g a0 + 2*}. 

Since 

[7,(^0) = * ^ o, 
2(A) - a0) 

we conclude that JLI(ATJ) = 1. That is, /? = fi0 for ju-almost all points. 
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In case a0 = /?0, we have 

f/,(z) = itP(z, «0). 

Then (6) and Fatou's lemma imply 

0 = 7rP(el\ a0) è JE ux(e
lt)dii for all / * a0. 

This, in turn, implies that 

",(<?") = 0 

for a dense set of fs for ju-almost all points of Ex. However, there are no 
functions ux with this property corresponding to points of Ex\ that is, 
li(Ex) = 0. Consequently, /? = a = a0 = fi0 for /x-almost every point. 

Finally, a similar treatment of the function U2 leads to the conclusion 
that y = y0 for jix-almost all points. As a result, ju is (equivalent to) a unit 
point mass at (a0, /?0, y0), and the proof is complete. 

As applications of the extreme point theory, we shall obtain coefficient 
bounds for functions in Sw. The following lemmas will be useful for that 
purpose. Define 

sin x 
s(x) = for x > 0 and s(0) = 1. 

x 
LEMMA 3.6. The function 

1 2 1 2 
G(x,y) = -s(x) + -s(y) - s(x)s(y) sin(x + y) 

satisfies 0 ^ G(x, y) ^ 1 for all x, y ^ 0, #«d G(x, j ) = 1 ow/y w/iefl 
JC = y = 0. 

Proof. Since |sin(x + j ) | ^ 1, it follows that 

G(x,y) ^ [ | * ( x ) | - \s(y)\f S O . 

To derive the upper bound, we first selectively bound the absolute values 
of the s and sine functions by 1 to obtain 

G(x, y) ^ —, + - + - for x ^ 0. 
2x 2 x 

Hence, G(x, y) < 1 for x > 1 + \ /2 . By symmetry, the same is true 
whenever >; > 1 4- \pL. 

Next, assume 77/2 ^ x, _y ^ 1 + \ /2 . Since 5 is decreasing for this 
range, we have 

G(x,y) ^ -S(TT/2)2 + -S(TT/2)2 + s (77/2)^(77/2) = 8/T72 < 1. 
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Now, suppose that 77/2 ^ x ^ 1 4- \ /2 and 0 ^ y ^ 77/2. Then 

— sin(x + y) ^ — sin(x + 77-/2) = sin(x — 77-/2) = x — TT/2 

and 

G(x , j ) < * + ! + ! ( * - 77/2). 
2x 2 x 

The latter expression is less than 1 when 

|JC - 77-/2I < V (TT /2 ) 2 - 1. 

Fortunately, this is the case when TT/2 ^ x ^ 1 4- \/2. In summary, we 
have shown that G(x, y) < 1 whenever x ^ 77/2 and, by symmetry, 
whenever^ ^ 77/2. 

Finally, if 0 ^ x, y = 77/2, then 

G(*. .y) S ^ ( x ) 2 + ^ ( ^ ) 2 â 1, 

and G(x, jy) = 1 is possible only when x = y = 0. 

LEMMA 3.7. For x, _y = 0, the function 

H{x,y) = ^s(x)2 + ^ (^y) 2 + * ( x > ( j ) sin(x + y) 

is nonnegative and assumes its maximum at a unique point (x0, x0). In 
particular, 

sup H(x, y) = max H(x, x) = H(x0, x0) ~ 1.7114 
JC,V^0 (77 /8 ) ^X^ (77 /4 ) 

where x0 « 0.5875. 

Proof. As before, 

/ / ( x , 7 ) ^ [ k ( x ) | - \s(y)\]2 § 0 . 

If x = IT, then 

//(*, >̂ g -L + 1 + -, 
277 2 77 

which is less than the given //(x0 , x0), and so we may restrict attention to 
0 ^ x ^ 77. In fact, since s(x) is decreasing it follows that 

//(x, >0 = " sin2(l) 4- - + sin(l) = 1.6955 . . . 
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for 1 ^ x ^ 77. This bound is also less than H(x0, x0), and so by symmetry, 
we may further restrict attention to 0 ^ x, y < 1. 

Now restrict (x, y) also to the line segment x + y = c, 0 ^i x, y < 1, 
and parametrize x = / and 7 = c — t. Then C = sin c = 0 and 

+ c[j"(*M.y) - 2 y ( i K ( 7 ) + ^ ( i y ^ ) ]. 

By considering power series, one observes that s(x) > 0, s'(x) < 0, 
s"(x) < 0, and [s(x)2]" < 0, at least for 0 < x < 1. Therefore H is strictly 
concave on the line segment x + y = c, O ^ x , y ta 1. Since i / is 
symmetric, the maximum of H on this segment occurs only when x = y. 
This is true for each line segment x + y = c, 0 ^i x, y ^ 1. Therefore 

max H(x,y) = max //(x, x) = max s(x) [1 4 sin(2x) ]. 
x,y^0 O ^ x ^ l O ^ x ^ l 

Since sin(2x) and s(x) are decreasing for 77/4 < x ^ 1, the maximum 
cannot occur there. Similarly, if 0 ^ x ^ TT/8, we have 

H(x, X) ^ 1 4- - L 
V 2 

which is less than H(x0, x0). Therefore the maximum of //(x, x) occurs in 
the interval 77/8 ^ x ^ 77/4. 

The derivative of H(x, x) is 

2s(x){s'(x)[\ 4- sin(2x)] + s(x) cos(2x) }. 

This can be zero only if 

w(x) = s'(x)[\ 4- sin(2x)] 4 s(x) cos(2x) 

is zero. Since W(TT/8) > 0, w(77/4) < 0, and the first two terms of 

H/(X) = *"(*)[ 1 4- sin(2x)] - 2s(x) sin(2x) 4- 3s'(x) cos(2x) 

are negative and the third is nonpositive, the equation w(x) = 0 has a 
unique solution x0 in [77/8, 77/4]. We conclude that 

max H{x,y) = i/(x0, x0) = s(x0)
2[\ 4 sin(2x0) ]. 

Numerical computations give x0 « 0.5875 and max H « 1.7114. 

THEOREM 3.8. Let f belong to Sw, and suppose that 

f(z)=\ + 2 a„z" + 2 b„z". 
n = I « = 1 
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Then 

\an\ ^ \/H(x^ x0) ~ 1.3082 for all n ^ 1 

where H(x0, x0) is defined in Lemma 3.7. Equality for any n is possible 
for the functions T^a^ where 

2x 2x 
fi = a + — and y = a + 2TT - —^. 

n n 

In addition, \bn\ ^ 1 for all n â 1. Equality in this case for any 
possible only for the functions 2tnP( • , a). 

Proof It is sufficient to consider the extreme points 

TMy)(z) = 1 + 2 Anz" + 2 Bnz". 
n=\ n=\ 

Ua<B<y<a+ 2T7, then formula (4) can be rewritten as 

(1 + i) ép - z (1 - i) e'a - z 

= - 1 + 

I/, 
(1 - /) «# 

I 2|/, 
log 

z |/2 

z (1 + /) 
2|/2 

log 

(1 + /) e ^ - z (1 - /) 
log — - ——— log 2U, 2|/2 

Therefore 

(1 - i)(e~ina - e~",/?) (1 + i)(e~iny - e-"m) 

2«|/, | 2«|/2 | 

and 

- ( 1 + i)(e-"m - e~",fi) (1 - 0(^~'"Y - *"''"") 

2/i | / , | + 2/i|/2 | 

Consequently, 

(7) ^„ = e- '" a [(1 + i) _,-, (1 - /) lV ' 
<? six) + e s(y) 

[ 2 2 \ 

and 

(8) B„ = e-'"a e six) + e si y) 
2 2 J 
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where 

x = w|/,|/2, y = /i|/2 |/2, 

sin x 
s(x) = for x > 0, and s(0) = 1. 

x 
In the other cases for (a, /?, y) the functions T,aoy) were defined by 
continuity. Therefore formulas (7) and (8) remain valid in the general 
case. 

It follows from (7) and (8) that 

\Af = H(x9y) and \Bn\
2 = G(x, y) 

where G and H are defined in Lemmas 3.6 and 3.7. These lemmas give the 
desired estimates and equality for the indicated functions. If / is any 
function in Sw for which \an\ is a maximum, then this function provides 
the maximum of R e { e ' \ } f o r some 6. However, only one of the indicated 
extreme points solves this problem. Therefore fis this extreme point. In 
other words, the indicated extremal functions are the only ones for the 
|aJ-problem. A similar statement holds for the |6J-problem. 

For application to minimal surfaces we shall see in Section 5 that it will 
be useful to have estimates for \ax\ from below. We saw already in the 
proof of Theorem 3.1 that 

for all / e Sw. This bound is not sharp; however, the following one is. 

THEOREM 3.9. Iff = h + g belongs to Sw, then 

\h\0) | ^ 2/77. 

Equality occurs only when 

f = 2(«,a + ir,a + ,r)> 0 ^ « < 2<77. 

Proof If / = h + g belongs to Sw, then /belongs also to S(K, X) for 
some K and X with 0 ^ X < lir and X ^ K ̂  X + 2TT. As a result, Corollary 
3.4 and formula (7) imply that 

(9) |A'(0) | = 

I C ,\(] 4- A n — n . 
WtiP, y) e~lX (1 + 0 -ix ( , , (1 - 0 iy ( , 

e s(x) + e s(y) \f 2 2 

2 I JK(K,X) 
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where 

j8 - A A + 2TT 
x = — ~ — > y = r ~ 

y , and A ^ /? ^ K ^ y ^ A + 2T7. 

Let 

Then 0 ^ x ^ a and 0 ^ ^ = 77 — a, and it is sufficient to restrict 
0 ^ a ^ 77/2. 

First, we shall show that |/i'(0) | > 2/77 when 0 ^ a < 77/8. In this 
case 

12 
2|/*'(0)|2 = J [(sinjcMx) + (cos y)s(y)W 

4- / [ (cos x)s(x) + (sin jy>?(.)/) ]̂ M 

[ f l2 [ f s i n 2 ; c , 
^ / (cos x)s(x)dfi\ = I dfi 

> [/ sin 77/4 ] 2 

77/4 J 
8/77Z 

2/77. So from now on, we may assume that In other words, \h'(0) | 
77/8 ^ O ^ 77/2. 

Let Cx and Cy denote the curves 

Cx : ie~lxs(x), 0 ^ JC ^ a, and 

Cy : ^ ( ^ ) , 0 ^ j ^ 77 - a. 

These curves lie in the upper half-plane and are at least as far from the 
origin as the line segments Lx and Ly joining their endpoints. Therefore 
the convex average in (9) has modulus at least as large as that obtained 
from sums of points on Lx and Ly. The set of sums of points on Lx and Ly 

is a parallelogram IT with vertices 

V} = ie~ias(o) + el(,ïï~a)s(7T - a), V2 = i + ei(7r~o)s(7T - a), 

V3 = ie~los(o) + 1, V4 = i + 1. 

We shall show that Vx is the nearest point of II to the origin. One easily 
verifies that 

| ^ | 2 ^ |J£|2 for j = 2 , 3 , 4 , 

and so the nearest point of II to the origin is either on the segment joining 
V} to V2 or on the segment joining Vx to V3. Therefore it is sufficient to 
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show that the angle between the vectors OVx and VXV is at most 77/2 for 
j = 2, 3. This is equivalent to showing that 

M {Vj - VX)VX) ^ 0 for7 = 2, 3. 

First, we compute 
R e { (v2 ~ V\W\) = .s(a)[cos a - s(o) ] + s(ir - a) sin a 

= n°) a cot a — 1 + 

We use the expansion 

a cot a - 1 = - 2 2 Ç(2k)(o/7r)2k, \a\ < 77, 
k = \ 

in terms of the function 

« = 1 

Since f(f) ^ f(2) = 772/6 for / S 2, it follows that 

2 oo 

a cot a — 1 

Therefore 

3 * = i 
2 (a/77)2* = 

— 77 a 

3(w2 - a2)' 

for 

— a2?(a)2 

77 — a 

1 < a < 77. 

L 3 
+ 77 + a > 0 

This includes the interval 77/8 ^ a ^ 77/2. 
Next, consider 

R e { (*3 - V\W\) = -s(* - ^)[cos a + (̂77 - a) ] + s (a) sin a. 

This is the same expression as for Re{ (V2 — VX)VX) with a replaced by 
77 — a. Since the expression for Re{ (V2 — V\)V\} was proved to be posi
tive for an interval containing 77/2 ^ o < 77, it follows that 

Re{ (V3 - VX)VX} ^ 0 for 0 ^ a ^ 77/2. 

Now we shall show that \VX\ is a minimum when a = 77/2. Let 

<p(a) = \VX\Z = 5(a)2 + s(ir - a)2 = (sin a)' + La <" 
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for 77/8 ^ a ^ mil. First, we use the fact that s(o) is decreasing to see 
that 

<p(a) > s(o)2 g S(TTI4)2 = 8/TT2 = <P(TTI2) for 77/8 ^ a ^ 77/4. 

Next, since s(77 — a) is increasing, there is a a, > 77/4 such that for 
77/4 < o < O] one has 

<p(a) > s(oY + si 77 - - I ^ <p(77/2). 

The number o] satisfies the equation 

s{ox) + s 77 — - cp(77/2). 

That is, 

or 

2 64 

j ( a , ) 

Since s (a) is a decreasing function, one easily approximates ox 

Finally, using the inequality 
.975. 

(COS T)2 ^ 1 - T2, 

we have 

*\l " T) (cos T) 

L(i-o 2 + ( i -rJ 
(1 - T2) 1 1 

id-Y (,+<n <2 / \ 2 

It is easy to verify directly that the latter is larger than 

77 /12 — 772 

<P(T7/2) = 8/77z when 0 < |T| < x/ 9 . 
2 M + 7T 

That is, 

<p(a) > 9(77/2) for .955 « 
1 2 - 7 7 2 1 

4 + 772 < a < 
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In any case, it follows that 

<p(o) > <pO/2) for 77/8 ^ o < mil. 

In summary, we have shown that 

2|/z'(0) |2 ^ y(w72) = 8/TT2. 

Equality can occur only when JU is a measure concentrated so that x = y = 
o = IT/2. In other words, equality in the estimates occurs only for 
functions in Sw that arise from a unit mass at a point (a, /3, y) with 
/} = y = a + 77. 

The bounds for | /Ï '(0) I m Theorems 3.8 and 3.9 can be improved if we 
assume in addition that g'(0) = 0. In the applications of Section 5, this 
will mean geometrically that the tangent plane at a corresponding point of 
a certain minimal surface is horizontal. For that reason let Sw be the subset 
of Sw consisting of functions f = h + g for which g'(0) = 0. 

THEOREM 3.10. Iff = h + g belongs to S^, then 

4 4 
— — ^ |A'(0) | ^ - . 
77 + 2 77 

The lower bound is sharp only for the functions 

77 477 

/ = -—-W*,«+W) + - x ^ P ( ' 'a)' ° = a < 2"> 
77 + 2 77 + 2 

and the upper bound is sharp only for the functions 

f = T(a,a + ir/2,a + ir/2)> 0 ^ « < 277. 

Proof We shall continue to use some of the notation from the proof of 
Theorem 3.9. In particular, we may represent 

n - n . 
<WA y) *'<°> = J L > *"* I 2 2 J 

and, similarly, 

^ ° ) = X(K,x, e_A 
I 2 2 J 

where 
j8 - \ 

x = — - — , y = • *
 + 2 " " Y, A ë K ^ A + 2 . , 

dKP, y) 

2 ' ' 2 

K - A 
0 2= x ^ a, and 0 ^ y ^ w — o. 
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The additional restriction g^O) = 0 is equivalent to 

(10) J ie~lxs(x)dn = J eiys(y)dii, 

and so 

(11) |/i'(0)| = ^ \ j elxs(x)dii\ = y/l\j éys(y)dyL 

If 0 ë a ë 777/16, then 

|/z'(0)| = V2 f é/(*~7w/32)j(jc)dJ ^ v ^ c o s f a - — )s(a) 

^ V2cosf^),p) = .780...> A 
^32/ \16/ 77 + 2 

A similar estimate holds for 977/16 ^ a ^ 77. Therefore, to derive the lower 
bound we may assume 7T7/16 < a < 977/16. 

Since s\x) < 0 and J"(JC) < 0 for 0 < x < 9TT/16, the left side of (10) 
lies in the closed convex region Rx bounded by the curve 

Cx : ie~ixs(x), 0 ^ x ^ a, 

and the line segment LY joining its endpoints. Similarly, the right side of 
(10) lies in the convex region R bounded by the curve 

Cy : ëys(y), 0 ^ y ^ 77 - a, 

and the line segment L joining its endpoints. The constraint (10) restricts 
us to the intersection of these regions, and for arbitrary probability 
measures JU each point of Ra = Rx Pi Ry is attainable. The expressions in 
(11) involve the distance of points in Ra from the origin. Thus we need to 
find the nearest point of R0 to the origin for all a. 

It is evident that the nearest point of R0 to the origin is on one of 
the segments Lx or Ly. We shall observe that it is at their intersection 
Ia = Lx n Lv, at least for the minimizing value of a. (The reader may find 
it useful to make a sketch.) If p is a point of (Lx n Ra)\Ia, then/? belongs 
to the interior of Ra+€ for c positive and sufficiently small; that is, p 
cannot be the nearest point of Ra to the origin for all a. Similarly, if p is a 
point of (Lv n R0)\Ia, then/? belongs to the interior of Ra-e for e positive 
and sufficiently small; that is, p does not minimize. Thus the solution to 
the minimum problem is 

min V2IU 
77T/16̂ â 977/16 

A straightforward computation yields 

(sin a){s(a)[l + (cos a — sin a)s(77 — a) ] 
L 

1 — s(a)s(77 — a) — (cos o)[s(o) — s(m — o) ] 

is(7T — a)[l — (cos a + sin o)s(o) ] } 

1 — s(o)s(7T — a) — (cos o)[s(o) — (̂77 — a) ] 
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After substituting 

s(o) = (sin o)/o and (̂77 — a) = (sin O)/(TT — a), 

we may write 

\lf = N(o)/D(of 

where 

N(o) = (sin a)4{ (77 - 2a)(sin 2a) 

- 2(77 - l)(sin of + a2 + (77 - a)2} 

and 

2 1 Z)(a) = O(TT — a) — (sin a) — -(77 — 2a)(sin 2a). 

The function D is positive over the indicated interval, and since 

D'(o) = (TT - 2a)(l - cos 2a), 

it follows that D is largest when a = 77/2. In other words, 1/D" is a 
minimum when a = 77/2. Next, we have 

N'(o) = -2(77 - 2a)(sin a)4(l - cos 2a) 

— 2(sin 2a)(sin a) [ (377 — 2)(sin a) 

- (77 - 2a)(sin 2a) - a2 - (77 - a)2]. 

On the interval 7T7/16 ^ a ^ 9T7/16, the factor 

(3T7 - 2)(sin of - (IT - 2a)(sin 2a) - a2 - (77 - of 

is bounded below by the positive number 

= 1.98 

It follows that N has its minimum also at a = 77/2. As a result, we 
conclude that 

min V2|/ff| = V5|/w / 2 | = ~^— 
777/16^a^9v7/16 77 + 2 

and that this number is the minimum of \h'(0) |. 
Equality in the minimum problem occurs only when a = 77/2 and the 

expressions in (10) equal Im/1. The measure ju must be concentrated at 
the points corresponding to the endpoints of Cx and Cr That is, in the 
(x, ^-coordinates the measure /x has mass 2/(77 + 2) — t at (0, 0), mass 
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77-/(77 H- 2) — t at ( (TT/2), (77/2) ), and mass / at each of the points 
(0, (77/2)) and ((77/2), 0), for some /, 0 ^ t ^ 2/(77 + 2). The 
corresponding functions are 

_|_ ff _i_ /T7 

Because of the identity 

(«,«,« + 277-) ' ±(a,a 4- 7r,a + IT) (a,a,a-\-7r) (a,«4-77,o: + 27r)' 

these are the functions given in the theorem. 
The upper bound for \hf(0) | is obtained more easily. Since the curves Cx 

and Cv move toward the origin, it is apparent that the point of Ra farthest 
from the origin occurs at the intersection of the curves Cx and Cv when 
o ^ 77/4 and x = y = 7T/4. That is, we have 

|A'(0) I ^ Vly(77/4) = 4/77. 

Equality occurs only when the measure [x is concentrated at a point 
corresponding to x = y = 77/4. These functions are given in the statement 
of the theorem. 

4. Mappings onto a half-plane. Let R = {w:Re w > 0}, and denote by 
SR the set of all univalent, harmonic, orientation-preserving mappings / o f 
U onto R with normalization / (0 ) = 1. There are functions in SR9 such as 
(1 + z) /( l — z), that do not belong to h] and cannot be written in a form 
similar to that of Theorem 2.4 (c). Consequently, the treatment of SR must 
differ from that of Sw. Instead of using radial limits, we shall focus 
attention on the behavior inside the unit disk as in [8] in order to obtain a 
representation theorem. 

LEMMA 4.1. If f G SR, then Re / = 277P( • , A) for some X, 0 ^ 
X < 277. 

Proof Since f = h + g maps onto a convex domain, it follows from 
[2, Theorem 5.7] that h ± g are univalent. Therefore h ± g, h, g, and / a l l 
have finite radial limits almost everywhere. Just as in the proof of 
Theorem 2.4, we conclude that there is exactly one point el which 
corresponds under / to 00. 

Since Re / > 0, we have Re / G h1 and 

/

2TT 

Except for the point el , the radial limits of Re / all exist and are zero. 
Therefore /x is equivalent to a point mass at / = À. 
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For / e SR write 

/ = H g = 2TTP( • , A) + zv 

where /z(0) = 1 and g(0) = v(0) = 0. Then, by differentiation, we have 

W(~\ - L c r Y " ^ ArrrPt- \ \ 
2e'v 

(e - z) 

and h' — g' = 2ivz. So, if 

v - g' 

then we find that 

v(z) = Im[/* [*'(?) - g ' t f l g f A 2e'Vf) 1 

The orientation-preserving property of / implies that |g7/z'| < 1 and, 
hence, that Re p > 0. Therefore, by the Herglotz formula, there is a 
probability measure /A so that 

f2« elt + z 
(12) p(z) = b - dix(t) + ic 

^ u e — z 
where /? (0) = b + /c. By substitution, we have 

= /0
2w />/c(z, t, Wit*) + 2c R e { ^ r 3 7 } 

where 

A/ Jt 
^,>,x)- im(f 0 ,A

2 g ( e ' ;y } « i 

can be integrated explicitly. The following representation is a conse
quence. 

THEOREM 4.2. 7/"/ e SR, then there are a probability measure ju and real 
numbers A, b > 0, and c so //ia? 

(13) f(z) = 2mP{z, A) 
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+ i [/f bK(z, t, \W{t) + 2c ReJ^i—j]. 

Let JT denote the set of all functions of the form (13) for real numbers 
X, b ^ 0, and c and probability measures \x. Then J f is closed, but not 
compact since b and c are not bounded. However, the following is true. 

THEOREM 4.3. Iff e JT with b > 0, f/zeft / is a univalent, harmonic, 
orientation-preserving mapping of U onto a convex domain. 

Proof If / G JT and 

<p(w) 
w + 1 

then fis harmonic and / o <p maps vertical lines in R into themselves. For 
u0 > 0, consider the vertical line 

Ltl : Un + /v, — oo < v < oo. 

Reversing some of the steps above, we obtain 

— I m { / o <P} = Re{/7 o <JP} 
dv 

where p has the form (12). Since Re p is positive, / o ep maps each line 
Lw into itself in an increasing fashion. Hence / o <p is one-to-one and 
orientation preserving in R. Thus the same properties hold for / in U. 

To see that f(U) is convex, we substitute 

0 = ie~l0(h - e2i6g) 

into expression (1) with ji = X and v = 0. We obtain 

R e { - i V \ l - e ~ A z ) V ( z ) } - 2(cos 0)Re{/?(z) }. 

This is positive for — 7T/2 < 0 < 77/2, and it follows from [13, Theorem 1] 
that O is univalent and maps U onto a domain that is convex in the 
vertical direction. For 0 = mil, the function 

elX + z 
*(z) = h{z) + g(z) = -X 

e — z 

obviously has the same properties. Since O is convex in the vertical 
direction for all 0, it follows from [2, Theorem 5.7] that f(U) is convex. 

Remark 4.4. Given a function a G H(U) with #(£/) c £/, one obtains 
from (12) a measure /x representing 

p = (1 - fl)/(l + a). 

Since Z> = Re{/?(0) } > 0, the function (13) satisfies the conclusion of 
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Theorem 2.3 in case D = R. Part (c) of the theorem is clearly satisfied 
because Re / t ends to zero at every point of dU\{el }. The normalizations 
in (a) may be achieved by composing / w i t h elementary mappings. 

Using an argument similar to that in [8, Lemma 2.6 and Theorem 2.7], 
one obtains the following result. We omit the proof. 

THEOREM 4.5 J f = S£. 

In the remaining part of this section, we shall study the subclasses SR 

and JT° of SR and X> respectively, of functions / = h -f g that satisfy the 
additional condition 

/F(0) = gxo) = o 

or, equivalently, p(0) = 1. 
It is clear from the definitions that 

S% c j f ° and s | = JT°. 

Since b = 1 and c = 0 in (13), it is also clear that J f ° is compact. Next, we 
characterize the extreme points of Jf° . 

THEOREM 4.6. EJf° = {2TTP( •, A) + iK( •, t, X) : 0 ^ /, A < 2TT}. 

Proof. If / e £ j f ° , then the probability measure /x in (13) must be a 
unit point mass. That is, the extreme points must have the given form. On 
the other hand, suppose that 

2<JTP( • , X) + iK( • , t, X) = xfx + (1 - x ) / 2 

for some / , / 2 e J f ° and 0 < x < 1. Then 

Re / = Re f2 = 2TTP( • , X) 

simply by a comparison of singularities. Finally, the map 

from the set ^ of probability measures is linear and one-to-one. Since the 
extreme points of 0> are unit masses, we conclude that Im / = Im f2 = 
K(- , t, A), also. 

Example 4.7. The function 

/ ( z ) = 2>nP(z, X) + /X(z, A, A) 

= Re 
elX 

ielX 
+ 2i Im A 

( , A - z ) 2 J 

is an extreme point of J f and belongs to SR since it maps U onto i£. Its 
boundary values are all zero except at the point el , which corresponds to 
the entire imaginary axis. Note that this function does not belong to h . 
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Example 4.8. Suppose that e" ¥= e ' \ and set 

jt = e»(X-0> o < | < 2*r. 

Then 

f{z) = 2wP(z, X) + iK(z, t, À) 

= Re 
eiX + z] 
.e'X-z\ 

/ f e'X — z 
= Re 

eiX + z] 
.e'X-z\ 

(s in-) 
le'X -•e*z\ 

+ 2/1 cot -1 Re f
 Z 

is an extreme point of J f °. It maps U onto the intersection of R with an 
inclined infinite strip. The boundary values of / o n one open arc between 
el and elt are all equal to 

. è - sin £ 
P\ = i- 1 

1 — cos £ 
and on the complementary open arc they equal 

.£ — 77 — sin £ 
Pi = i-

1 — cos £ 

The cluster set of / at elt is the closed segment of the imaginary axis 
joining/?! and/?2- The cluster set of / a t el contains the rest of df(U). It 
consists of the half-lines 

Pj + rie~m, r ^ 0, j = 1, 2. 

Finally, we give the following application of Theorem 4.6. 

THEOREM 4.9. 7/" 

/(z) = 1 + 2 *„*" + 2 V 
W = l « = 2 

belongs to JT°, */H?« |a,| = 2, |a j ^ AI + 1, AAK/ \bn\ ^ n - \ for n ^ 2. 
Equality in either of the inequalities occurs only for the functions from 
Example 4.7. 

Proof It is sufficient to estimate the coefficients of the extreme points in 
Theorem 4.6. For these functions we have 

2 nanz
n x = 2TTPZ(Z, X) + iKz(z, t, X) 

« = i 

https://doi.org/10.4153/CJM-1987-071-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-071-4


HARMONIC MAPPINGS 1525 

+ 
el\elt + z) 

and 

(eiX - zf (eiX - z)\e" - z) 

2 nbnz" ' = 2irPz(z, A) - /Xz(z, /, X) 
n = 2 

e'V' + z) 
j A (e'A - z)z (*'A - z)\e" - z) 

It follows that 

n 

nan = 2e~int 2 kelk(t~X) and 
A: —̂= 1 

nbn = -2e~mt 2 ^ ( ' " A ) . 
A : = l 

From this one has 

n 

\a}\ = 2, n\an\ ^i 2 2 & = n(n + 1), and 
A: = 1 

w - 1 

"l*J = 2 2 A: = n(n - 1) for >? ^ 2. 

Equality in these inequalities occurs only if elt = el , that is, the extreme 
point is of the form of Example 4.7. Finally, to see that equality occurs 
only for an extreme point, one argues as in the last paragraph of the proof 
of Theorem 3.8. 

5. An application to minimal surfaces. Let S denote a nonparametric 
surface in R over a domain D in C. Suppose that S is the graph of the 
function J*" = !F{u, v) where u + iv e D. Then S is a nonparametric 
minimal surface if F belongs to C and satisfies the differential 
equation 

i 
d& 
3v 

2\iï<2r 

I du2 \ 3w 3v / 3«3v \ 

d& 

du hv2 

in D [12, p. 17]. Proofs of the following proposition are indicated in [11, 
p. 120] and [12, p. 30]. 
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PROPOSITION 5.1. S is a nonparametric minimal surface over a 
simply-connected domain D ¥= C if and only if there are analytic functions 
$ , , <E>2> ^ 3 in U such that 

(a) $i + $2 + $3 = 0 J« I/, 
(b) |$2(Z) | + |$2 ( z ) | + | 0 2 ( z ) | ^ 0 / o r fl// z G ^ 

(c) the mapping 

z -> Re J §xdz + / Re J 02dz 

is harmonic and univalent from U onto D, and 

(d) S = {(Re J O^z, Re J $2<fc, Re J $3</z):z e u\. 

Of course, in (c) and (d) appropriate constants of integration must be 
chosen for the antiderivatives / <!> dz. 

If S is given as in (d), then the mapping 

I Re j $}dz, Re J ®2dz, Re j ®3dz) 

of U onto S is conformai, that is, angles are preserved, and z is an 
isothermal parameter. In other words, arc length on S can be obtained by 
ds = p\dz\ where p > 0. In fact, one has 

P2 = ^(i^,i2 + m2 + I*3I2)-

We are interested in the univalent harmonic mapping of U onto D that 
is given in (c). Denote 

/ = Re J <&xdz + / Re J $2dz. 

It is no loss of generality to assume that / is orientation-preserving. 
Hence, if we write f = h + g, then a = g'lh' satisfies \a(z) | < 1 for 
z e U and we also have 

$! = h' + g\ <D2 = ~i(h' - g% and 

<&\ = -4/*'g' = -4a(h')2. 

The latter shows that a has a single-valued square root in U. For our 
purposes the following is a useful restatement of Proposition 5.1. 

PROPOSITION 5.2. S is a nonpar ametric minimal surface over a 
simply-connected domain D ¥= C if and only if there is a univalent, harmonic, 
orientation-preserving mapping f — h + g of U onto D such that a = g//hf 

has a single-valued square root in U and 

S = j I Re / ( z ) , Im / ( z ) , 2 Im J ^~ah'dz\ : z G U\. 

https://doi.org/10.4153/CJM-1987-071-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-071-4


HARMONIC MAPPINGS 1527 

In terms of / = h + g, the conformai factor p becomes simply 

P = W\ + \g\. 

Therefore the Gaussian curvature of S is 

(14) k = 
-Alogp -\h'g" - h"g'\2 -\af 

p2 |AV| ( \h'\ + |g'| )4 \a\ (1 + H )4|Af 

where # = g1'/h''. We summarize as follows. 

LEMMA 5.3. Let S be a nonparametric minimal surface over a 
simply-connected domain D ¥= C. Let f = h + g and a be as in Proposition 
5.2. Then for z e U the Gaussian curvature of S at the point 

I Re / ( z ) , Im / ( z ) , 2 Im J V**'<k 

— i / i i x i 

k(z) ,a(2)|(l + K z ) | ) V ( z ) | 2 ' 

/« addition, one has 

(15) |*(z) | 

and 

(16) |*(0) | 

4(1 - | a (z ) | ) 2 

(1 - |z|2)2(l + \a(z) | )4|fc^) I2 

4 

(1 - |z|2)2( Ig'(z) | + \h'(z) | ) 2 

( Ig'(O) | + \h\0) | )2 Ig'(O) |2 + \h'(0) |2 |A'(0) |2 ' 

Proof. Since the function a has a single-valued analytic square root, 
which is bounded by one, the invariant form of Schwarz's lemma 
implies 

W\ ^2Vffl(i - M)/(i - kl2)-
Use this estimate in (14) to obtain the first inequality in (15). The second 
inequality in (15) follows from 

1 - \a\ ^ 1 + \a\. 

The inequalities in (16) are simple consequences. 

Remark 5.4. If D is a convex domain, then the analytic part h of 
f = h -\- g maps U homeomorphically onto a domain Œ [2, Theorem 5.7]. 
Hence, the function F = f o h~l is a univalent harmonic mapping of Œ 
onto Z), and in terms of F, the surface S has the attractive conformai 
parametrization 
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Re F(w), Im F(w), 2 Im j ^dw\ : W E Q 

where A = F-/Fw has a single-valued analytic square root and \A\ < 1. 
Furthermore, the Gaussian curvature becomes 

-\A' i2 

\A\{\ + \A\f 

For the rest of this section, we shall estimate the Gaussian curvature k 
for nonparametric minimal surfaces over certain domains D. E. Heinz [6] 
proved that if D = {w:\w\ < R}, then the curvature of S at the point P 
above the origin satisfies 

\k\ ^ 4TT2/(3R2). 

Improvements were considered by E. Hopf [9] and many others. This 
estimate can be improved to 

\k\ ^ \6TT2/(27R2) 

by combining R. Hall's [5] determination of the "Heinz constant", which 
implies 

Ig'(O) |2 + |A'(0) |2 ^ 21R2/(4TT2), 

and inequality (16). Unfortunately, this curvature estimate is still not 
sharp. However, if in addition, S has a horizontal tangent plane at P, then 
at this point 

M ^ 772/(2#2) 

and this estimate is sharp [12, p. 108]. Furthermore, for a general domain 
D it is known [12, p. 108] that if S has a horizontal tangent plane at P, 
then 

\k\ ^ 64/(9d2) 

where d is the distance along the surface from P to dS. This is also known 
to be sharp for a certain domain D. 

Suppose, in the framework of Proposition 5.2, that the surface S has a 
horizontal tangent plane at the point P above f(0). Then we have 

dx I 
2 Im / ^fah'dz = — 2 Im / \[ah'dz = 0 

at z = 0. This implies that ^a(0)h'(Q) = 0 and, consequently, that 
g^O) = 0. The following theorem is the result of combining the estimates 
for \h'(0) | from below in Theorems 3.9, 3.10, 4.9 and [8, Theorem 2.3] with 
inequality (16) in Lemma 5.3. 
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THEOREM 5.5. Let S be a nonparametric minimal surface in R that lies 
above a domain D in C. Let k denote the Gaussian curvature of S at a point P 
that lies above w0 e D. 

(a) If D = W = {w : |arg w\ < 77/4} and w0 = 1, then \k\ ^ IT2. In 
addition, assume that S has a horizontal tangent plane at P. 

(b) IfD = Wand w0 = 1, then \k\ ^ (TT + 2)2/4. 
(c) IfD = R = {w : Re w > 0} awrf w0 - 1, then \k\ ^ 1. 
(d) IfD = fi = {w : |Im w| < TT/4} ^«J W0 = 0, then \k\ ^ 4. 

The estimate (16) that we have used in proving Theorem 5.5 is sharp 
only when 

a(z) = elCLz for some a. 

Therefore the curvature estimates in this theorem are sharp only if the 
lower bounds for \h'(0) | arise from harmonic mappings / = A 4-g with 

g\z)/h\z) = eiaz2. 

This is not the case in (a) or (b). For (c) equality occurs for the surface 

N 1 + z] 

1 - zl 
, Im 

1(1 - zf\ 

Re Z 

+ larg 1 + z 

1(1 -zfl 

and for (d) equality occurs for the surface 

LI - z\ 

Il + z 
log 

11 — z 

):,eu) 

" { ( Re 
z 1 

9 2 a r g 

'1 4- z 

.1 - z. 
, Im [ z2 1 

.1 - z 2 . l i - z2\ 
1 

9 2 a r g 

'1 4- z 

.1 - z. 
, Im [ z2 1 

.1 - z 2 . ) : 2 e 4 
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