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On the Failure of Heilermann's Theorem.
By Haripapa Datra, Research Student, Edinburgh University.
(Read 9th March 1917. Receiwved Tth June 1917.)
The theorem of Heilermann* can be stated thus:—

If the series

is converted into a continued fraction of the form

(] ay ag
..................... 2
z+b B T zeb T 2)

then the elements of the continued fraction are

b _1Kn—l I'Kn
" Kn—l_ Kn
Kn—an

"KL

where

®Xan a’2n+l' reene g Xy

and "K, is obtained from this determinant by deleting the (r +1)™
column and the last row. Moreover, if f,(x) and ¢, (x) are
respectively the denominator and the numerator of the »*™ con-
vergent, then

!K SK ”K
—_—a B am—] B n-? _ ”n n
LA S A A N 3)

and
Paa (@) =y 2"+ Y a4 L+ 2+

* Journal fiir Math, 33 (1845), p. 174.
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where
! n EK'" "_IK”
78’“ =0y, - Kn Oy o+ ILT" Cpg — + ( 1)"_1 : oy
X, 2K,
Y = g — 5 R gt e, +(-1)"2 oy
K, K,
........................................ r @
K,
Ynle=0p — '?n‘ O
YR =g

The successive convergents to the continued fraction (2) have the
property that if the »™ convergent is expanded as a power-series in

1
oy the first 2n terms of this expansion will be, term for term, the

same as the first 2n terms of the series (1).

1. Now if any of the a’s be zero (say a,, = 0), then the continued
fraction terminates at the =n™ convergent. And from the
recurrence-formulae connecting three successive convergents it
would appear that all the convergents after the (n - 1)* are then
equal to one another. But if the numerators and denominators
of the convergents are evaluated by the formulae (3), we find that
in general these higher convergents are not equal to each other.

Consider for example the series

1 1 1 1 2 3 ay o
_7+;B+""

—t gt -ttt
x 2 ¥ 2 22 2 =z

The determinant K, vanishes, therefore a,= 0.

1
The first convergent = ——.
z-1
1
,» second ’ ="
. 47+ 1 21
,, third ’ @ + 10z +

T 4o’ + 62+ 11lx-13°

We see that the second convergent is equal to the first, while
the third convergent is different from the first. The expansion of
either the first or the second convergent coincides with the given
series as far as the third term, whereas the expansion of the third
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convergent coincides with the given series as far as the sixth
term. This illustrates the abnormality with which we are
dealing: for in the normal cases of Heilermann's Theorem, the
expansions of the first, second, and third convergents coincide
with the given series so far as the 2nd, 4th, and 6th terms
respectively. Formulae (3) furnish a regular sequence of con-
vergents, whereas the recurrence-formulae would give all the

convergents equal to xi i°

2. We shall now examine the phenomenon from a somewhat
different stand-point, by enquiring what is the relation between
the series and the continued fraction if X,,, vanishes (and
K,+0).

We shall now show that if K, ., =0, and if K,+0, the first
(2n + 1) terms of the expansion of the n™ convergent will be, term jor
term, the same as the first (2n + 1) terms of the series, and vice-versa.
(In the normal case there is equivalence of 2n tetms only).

Let us consider the second convergent, which is

A 4,

e+ 75)2) Ky, %y Oy Ay
s ® 5

3
Z+BPx+6P  x tatet et
. . 1 1
Multiplying up and equating to zero the coefficients of —, —, ete.,
x’
we obtain the following relations :—
o+ B o+ B 0y =0
o+ B ay+ B 0, =0
A +BP o+ BP an=0 [ - coeverinieennnnn. (9)
4, + B4, + B ay=0

Eliminating B’s from the first three of these relations, we have

Oy O &y
Oy Oy g =0.
4, oy o

And hence if K,+0 and A;=0, then 4, =«,, And if 4,=a,, then
K,=0; which establishes the theorem stated above.
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3. In this case it is to be shown that the (n 4 1)™ convergent is
equal to the n' convergent, and its expansion, as a power-series in

1
~—, will agree with the original series as far as the (2n+ 1)*® term
x

(inclusive) instead of as far as the (2n + 2)** term (inclusive). But
the expansion of the (r+ 2)™ convergent can, in general, be made
to agree as far as the (2r + 4)™ term (inclusive) of the series, where

r=n.
From the third convergent we have the relations
o+ B oo+ B o + B oy = 0
o+ B o+ B o+ B =0 L (6)
+ B9 o+ B oy + B 0 =0
As 4,=0,, so we can reduce the first two equations of (6) by
means of the first (3) equations of (5) to
(B = ) o+ (B9~ ) 0 + B8
(B~ B) e+ (B — BE7) s+ By = 0
Now, comparing these two equations with the first two
equations of (5), we have

BY-BY_BP-BY _ AP _
1 ~= go T pE T » (say).

Therefore
BY =B +p
BY =B +p BY
B =p B

Now, substituting these values of §'s in the third relation of
(6), we have
(o5 + B g + B o) +p (00 + B oy + B o) = 0.
As o+ BP0y + B &, =0, therefore if the third relation of (6) hold,

then

o+ B oy + B3 0
must vanish. That is, the expansion of the 2nd convergent will
agree with the series as far as the 6th term (i.e. 4,=a;), but by
hypothesis this is not the case. Hence the third equation of (6)
is not valid, and the expansion of the third convergent will agree
with the series as far as the 5th term only.
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Moreover, we see that the denominator of the third convergent

* So(@)=2"+ PP 2* + BP « + B
=(z+p) /e (%),
and the numerator
$2(2) = (z +p) b1 ().
Thus * b2 (2)/fs () = b1 (@) /2 ()-

It is to be noted that whatever the value of » may be, the first
two equations of (6) are satisfied. Therefore the denominator and
the numerator of the third convergent, taken separately, are not
unique. But the third convergent, as a whole, is unique, and is
equal to the second convergent.

4. We have seen that if the third relation of (6) holds, then 4,
becomes «,. That is, the expansion of the second convergent
agrees with the series as far as the 6th term.

In this case the 4th convergent will be equal to the 2nd
convergent.

From the 4th convergent we have the relations

ooy + B o+ B o+ B oy + B a =0 )

ag+ BY o+ i, + B oy =0 (7)
g d erint s .=0 '
[ =0

As 4,=0, and 4,=a;, we can reduce the first two equations of
(7) by means of (5) and obtain

B =p,+q B+ BY
B =p, B + ¢ B where ¢ =g~ B
B =p, BY
Hence
Ji (@) = (@ + gz + pi) [ ()
b () = (2 + gz + p1) by (),
by (@) [/ (%) =1 (=) /.12 (%)

* Thus, even if p be o, the third relation of (8) will not hold unless
A,=ay.
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It can also be independently shown that the third equation of (7)

can not hold.
Similarly, of K,=+0, and if all the determinants of order (n+1)

of the type
Ry Ky enenn %,
Cppg Oy Lon—z | i e (8)
Oy g Oeppeanenn L
O, Opyy eer Gy

(where p=mn, n+1, ... n+7)
vanish, then the expansion of the n® convergent will agree with the
series as far as the (2n+7r)® term, and eack of the (n+4 1),
(n+2)™ ... (n+7r)® convergents will be equal to the n' convergent.

5. If in (8) r is infinitely large, then the expansion of the nt
convergent will give the whole series. It is evident that the
series’in this case is a recurring one. But it is also evident that
this is really an exceptional case, happening only when an infinite
number of conditions are satisfied: in general, if one of the
numerator-elements of the continued fraction vanishes, the con-
tinued fraction terminated does not represent the whole series,
and Heilermann’s Theorem may in this sense be said to fail. But
as we have seen, the formulae (3) furnish convergents which do
give a continualiy-improving approximation to the series.

We shall consider the three following cases of recurring series :—

1 1
) I(a, a+n—2);+l‘[(a+l, a+n—l)?+,..
where
H@+r,a+r+n-2)=(a+r)(a+r+1)...(a+r+n-2)

! 1
) T1+g 1+yq"_‘)?+(l + yq, 1+yq"—1)?+

’ 1 " 1 DAY 1
I a"“;—+(a+ 1) “-;2+(a+ 2) ‘ﬁ +...
where # is a positive integer.

@)
The series (I) is a case of the series
D 1 DD+ 1

a-1n (a-1)a n®
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For if we put ficst (a+n-2) for D, and then multiply this
transformed series by Il (¢ — 1, a + n - 2), we obtain the series (I).
The above series has been considered in the section (C) of the
first paper.*

As all the determinants of order higher than » and of the
type (8) contain (D-a-n+2) as a factor, hence they vanish
when D=a+n~2. Therefore the ™ convergent must represent
the whole series. We shall now find this convergent.

From the section (C) we obtain

_(m-1)(a+n+m-3) _ ma+n+m-~2)

b
" a+2m -4 a+2m-2

_(m-L)(n-m+1)(@a+m=-3) (a+n+m-3)
In= (a+2m -5) (a+2m - 4)* (a + 2m - 3)

?

and
-2
a4+m+n -2 "

=== (1) Sy

&

m—2

&

m) (a+m+n-2)(a+m+n-3)
(" (@+2m-2) (a+2m-3)

(a+m+n-2)...(a+n-1)

(- l)m(a+2m—2).....(a+m—1)

Hence f,(z)=(z~-1)"
To find the expression for ¢,_, (x), we have

Y =II(a, a+n—-2)
7, =TI (a+1, a+n—1)-(’1‘) 0 (g, a4+ n - 2)

n-1\ 1
=_< ] )zﬂ(a—l,a+n—")

7,2'_'3={H(a+2,a+n)— (?) O(a+1, “+”—1)}

+ (g)ﬂ(a,a + n-2).

The quantities within { } become y,,, if (a~1) is put for a.

* On the Theory of Continued Fractions, Proc. Edin. Math. Soc., 34
Part (2), 1916-17.

7 Vol. 35
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Therefore

-1 1
i, = _(nl )mn(a,,a+'n—l)+<;)n(a, at+n-2)

n-1\ 1
=( 9 )mn(a—l,a+n"2)

................................................................

(n) — —- t—2 n—l)___l__ - -
4! (-1) (1 a+n-—-3n<a L,a+n-2)

7 = (-1)'1ll(a-1,a+n-3)
Hence ¢, ,{x)=II(a-1,a+n-2)

! n - 1\ 22 + (n - 1) a3 (- 1y 1
x{a—l ( 1 ) a 2 a+l—'"+ - a+n—2}'
And thus the »n* convergent, which is the sum* of the whole

series is determined.
We can find expressions for higher convergents, but they are
all equal to the n' convergent, as has been already shown. Here

we have
i =;c"+'j;(x)F(—r, l-a-n-r l—a—n-"r,-::—)
and

(z) =a:"+’¢,,_l(m)F'<—'r, l-a-n-r 1—a-—'n—2r,—1;>

ntr—1
‘We can also convert the same series,
(g, a+n-2)z+1I(a+1,a+n—-2)2+...
into a contimued fraction of a different form, namely,
QT 6T X
T+ 1 +1+ ...,
the constants ¢’s being given by the equations
o=Il(a, a+n-2),
_ _(a+tm-2)(a+m+n-2)
T (@+2m-2)(e+2m-2) "’
m (n—m)
1= Gt 2m—2) (a+2m~1)

* It is also evident from the relation
Fla, 8 v, 2)=(1-2)Y "% B P(y-a, y—B, v, x) due to Kuler.
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Hence in this case the continued fraction can be written as

axr (a+n-1Nzl.(n-1)z ala+n)z (r-Ddlz (a+n-2)x
1- a + e+l - a+2+..+a+2n-3- 1 '

Expressing the denominator of the continued fraction as a
continuant, we obtain a theorem in factorizable continuants,

namely,
1 x
a+n-1 a x
1.(1-mn) a+l x
ala+n) a+2 x

(1-=).1 a+22-3 =z

at+n—2 1

2

={a(a+1).....(a+2n-3)} (1 -a)"

That is equal to the product of the principal diagonal terms
multiplied by (1 - z)™.

()
The series (J) is a case of the series (H) (loc. cit.), namely,
Lty 1, (4n(+ay) 1 (49 (ltay)(l4q'y) 1
1+z = (1+2z) (1 +¢2) o (1+2) (1 +4gz) (1+¢%2) o
As in the previous case, the n* convergent represents the sum of
the entire series (J).
It can be shown that

So@=(@-1)(n-g)(n~-¢%...(n-g"),

an
Poa (@)=L (1+97'y, 1 +¢"y)

e l:n-—l:l_l_ z"_._,+[n-l] 1,
% 1+97y 1 l+y 2 1+qux T

e[ ]
[n] _ (" ~1)(g»-1)...... (g -1)
1= @-1) (¢-1)

where

q!(f—l)f .
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If the series is expressed as a continued fraction of the second
form, we have
__(1+g™ (A + g™mty)
" T+ ey 1+ y) q

(q - 1) (q - 1) qsm_g
(1+¢"y) 1 +¢y)

Comi1 = — Y.

Therefore
IH(+y 1+¢y) e+ (1+qy, 1+¢" y) 22 +...

_az (1+g'v)z (g-1(¢"-)yz  (1+yg"") ¢"'=

1- l+y - 149y — e 1
Hence if eom =(1 +g™y) 1 +gm-2y) g™
emn = (9"~ 1) ("™ - 1)y
and gr=1+4¢""y,
we have another theorem in factorisable continuants, namely,
1 x
€ gz z
¢ 9s z
€on—1  Gon1 T
€2n I 1y,

={(1+y) 1 +gy).-.(A+ ™ 9)} {1 -2)(1 - g)...(1 - ¢*x)}.
It can also be shown that if o is a primitive root of p*=1,

then
aty 1  (e+y)(xtoy) 1 H(oe+y, at+o*ly) 1
a+z & (0+2) (x+02) & M(o+2, atoz) e
M(e+2z a+o" )"
H(a.+z,a.+0'"‘1z)w ~-lI(e+y, at+a*ty)
! ) a,
Tx+b+ ebot...vx+d,’
where
poT -l ato™ly  o"-1 atony
" o-1 otz o-1 a0z
and
. = ao;:m—s(o.m-—l l) (o._’_o,m—-zz) (0.+ m—ly) (zo.m_z_y)

(e + 0™ 2) (e +0* 2 2 (0 + o™ 22)
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().
By a well-known theorem in the Calculus of Finite Differences
we have
n n
0=trar=@+ny~ (1) @+n-1)ms (3) @+n-2-.

e+ (= 1) a™...(6)
where m and n are both positive integers and m < n. Hence it
can be shown that all the determinants (8) vanish, K, ={(n-1) !}"'
and the denominator of the n* convergent to the series (1') is

Jo (@)= (@~ 1)
Therefore by (4) we have

v =(@tn=1y- (1) @n-2y4 o (-1 (7) 0

omosn s (3 arno3pms ot (-1 ()
vith= (e 1y (1) e

7 n(")l _ an—l .

Hence by the identity (6) we have
W= (1= o

r=(@+ 2= (1) @+ 1y 4 (3) o
(

Yo, =(a+ 1)1~ I{) a™!

Y =a"t.
(i) If ea=1, then we have
7e'=0
Y=y =

Y =yl=2"" -

..........................................

https://doi.org/10.1017/50013091500029734 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500029734

94

Therefore (if n—1=2s) ¢, (x) contains (x+ 1) as a factor.
(ii) If a=4, we have
70 n) 7 (n) = 21-—n

n
o=yt =23 - ( 1)}

n n
W =y= 2”"{5"_' - (2) A ( 1>}

Therefore in this case ¢,,,; (r) contains (x+1) as a factor.

Up to this we have considered only infinite series. The finite
series can be treated exactly in a similar manner. For every finite
series we obtain a factorizable continuant.

As for example, in connection with the series

1 nin-1)

R

the elements of the continued fraction are

2! 4

by=n
b= (n—2m +2)
a,=(m-1) (n-m+2)
And the continuant is that of Painvin of the year 1858.%

6. In case of the quotient of two series the theorem of Heiler-

mann is
dotdx+d,2+... by bz bz
By+Bx+ Bya*+... 1+ 1+ l+...
where bo= A,/ B,
b= — e, B
- A‘.‘n—2 A2n—l
b?.m'-l:"ae—’"lz"A‘QL+‘1
3oy B
and A,=| 4, 4, B, B,
4, A, B, B,
4, 4, B, B
4, 0 0 B,

* Sur un certain systéme d’équations linéares. Journ. (de Liouville) de
Math, (2), iii., p. 46.
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A=| 4, A, 4, B, B,
4, A, A, B, B,
4, A, 4, B, B,
4, 4, 0 B, B
4, 0 0 0 B

It can be shown that if 4;+0, and if all the bigradients

4y 4,5 By, B,
4, 4, 4, B, B
4, A4, A4, B, B, | ... (9)
4, 4, 0 B, B
4 0 0 0 B

(where p=4, 5, ...)

vanish, the 4th convergent to the continued fraction will be equal
to the quotient of the two series.

The bigradients (9) may be denoted by
4 B

L4 P

(4s)s (Bs)e

where 3 denotes the number of A4-columns and 2 denotes the
number of B-columns,

In the case of the quotient of the two hypergeometric series,
namely,

F(o, B+1, y+1, 2)+ F(a, B, 7, @),
the bigradients of the type (9) and of orders higher than (2n+1)
contain (o — y - n) * as a factor.
Therefore for oo=7y +n all these bigradients vanish, and the
2n® convergent is the quotient. Thus we obtain
F(y+n, Bto, y+1, )+ F(y+mn, B, v, x)

=_‘y_(‘y+n)(ﬂ—'y)x(ﬁ+l)(n—l)x (B+n-1).1x (B-A-n+l)x
v+ y+1 + Y+2 +. 4+ y+20-2 + 1

* Bee Section (0), *‘On the Theory of Continued Fractions” (2nd Paper),
Proc. Edin. Math. Soc. 35 (Part L.), 1916-17, p. 48.
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Denoting the continued fraction (10) by 72:(1?»7—)— , Wwe
obtain
\
F(y+1, B ym)=(1-2)"#*D g, (8,)
Fy+2 Bina)=(1-a) "3+“’y(ﬁ+1,7+1)94<ﬁ,7)
.................................................................................... > ___(11)

Fly+m Bya)=(1-z) Mg (B-n-1,y+n-1)...9. (8 7)
=(1-z) B F(-n, y-B v, ) )

If =1, the continued fraction (10) automatically reduces to
the value y/B.
Therefore, when a=1,

9en (B ¥) =Bly-
And then from the last of the relations (11) we obtain

(B+n-1)(B+n-2)..8
(y+n-1)(y+n-2)..y

Ltx=1[F(y+n,B,y,x) (1- x)ﬁ+"]* =

=F(-ny-Bv1).
Similarly in the case of the generalised hypergeometric series
of Heine, namely, ¢ (x, B, v, ¢, ©)t, we have

¢>(7+"L:By‘)’+1,q’ l)¢(7 ”»ﬁ’%q! 1)=(1_q7)+(1—qﬂ)
and ¢(y+n, B, v, ¢, )+ (B+n, ¢, x)
@ oy (F -y @ - (@ - 1)
[ f- P @HF-1) @ F-n 2
=1 [1] 7 [] (97—1)(q7+1-1) q 4.

_ [P @ D@ P )
) ] @ -1)...@ " 11

where z=1.

H(y-DI(y-a-B-1)

* This is evidently the case of F(a, 8, v, 1) =
H{y-a-DI(y--1)

due to Gauss.
_ -
l«}-———————(l ¢%)(1-¢ )x...
1-9(l-g7)

t i.e
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7. If all the A4’s after 4, and all the B’s after B, are zeros,
then the quotient becomes
A+ 4,2+....+ 4,2
By+Biz+....4+ Bz’

and the corresponding continued fraction will evidently terminate
at the (2n+ 1)* convergent. The denominator and the numerator
of the (2n + 1)* convergent are respectively

Co+Ciz+...... o eereierreneenneernenenenes (12)
and
Cg,,+1+03,,x+ . +C,,+,x" ..................... (13)

where (-1)*C,, is the determinant obtained by deleting the
{m + 1)*® column of the array

“ (Aﬂn)n+1 (Bin)n+l ”
where 4d,,=4,,_,=...=4,,=...=B,,=...=8,=0.

As the 2n™ convergent and the fraction are identically equal,
then by comparing the various powérs of x, we bave the relations
Cy:Cytn... $Cpn=Be: By ... i Bt A, ... Ay;
and also
if B, =0, then C,=0, where m } =,

and if 4,_,,, =0, then C,,,=0, where » p n+1,

8. If A, _,+0, and if all* the bigradients

4 B e, ..(14)

(A2')r+l ('Bz')r+l
(where p > 2r and r < n)

vanish, then the continued fraction will terminate at the (2r+ 1)*
convergent, that is

Ao+ dyzt. . . +4,5" b b by x

B+Bz+..+B.ax 1+ 1 4.+ 1
Cop1+Crpat conen. +Cp &

o e (15)

* Evidently (» -7) in number, for in others all the elements of the
first row are zero.
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where (-I)*C, is the determinant obtained by deleting the
(m+1)* column of the array

" (A”)rﬂ (B")r+1 ”

As the denominator and the numerator of the"convergent are
both polynomials of the r** degree, therefore
dg+dz+ ... +4,2 i (16)
and By+ Bzt ...+B, & i (17)
must contain a polynomial of (n — 7)™ degree as a common factor.
Hence if A,,_,+0, then the vanishing of the (n—r) bigradients
(14) 18 the necessary and sufficient condition for the two equations
A, +4,z2+...+4,2"=0
and By+Bix+...+B,2*=0,
having (n —r) and only (n—1) common roots,
This was first shown by Lemonnier.*

9. As (17) contains the denominator of (15) as a factor, there-
fore the continued fraction corresponding to
By+Byx+...+B,x"
Co+Cix+...+C.x"

will terminate at the (2n — 2r + 1)** convergent. The denominator

and the numerator of the (2n — 2r + 1)® convergent are respectively

and 7 IR 37 AP 2 e T .(19)

where (-1)"d,, is the determinant obtained by deleting the
(m + 1)* column of the array

” (Ben—z')n—r-H (C"""_gr)n—r+l ” 1

As the denominator (18) is independent of x, therefore

dy=dy=dy=...=d,_,=0.................. (20)
Similarly from (16) and the numerator of (15) we obtain

eteT+...... el X e (21)

€on2epr Foonens F el 1 B (22)

* Memoire sur Pélimination. Annales de I Ecole Norm. Sup. (2) 7 (1878),
p- 151
t The C’s with suffixes higher than n are to be replaced by zeros.
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as the denominator and the numerator of the (2n — 2r+1)*® con-
vergent to the corresponding continued fraction. Here (-1)"e,
is the determinant obtained by deleting the (m+ 1)® column of
the array

(kﬂn—h)

where k= Cs,p1, by =0y, and so on, &, =¢,y,.

n—r<1

” (Aonsr)

n—r+1 “

Hence we have also
a=t=e=..=€,,.,=0 .. (23)

As the numerator (19) and (22) divided respectively by d, and
¢, become the common factor, therefore we have

ot B grir 2o ar P een B
=€) Con_nri tCongr b oee b Cp gl T eereeieeenrenens (24)

We see that if the condition (14) is satisfied, then each of the
conditions (20), (23), and (24) is satisfied. If all the conditions
(20), (23), and (24) are satisfied, then the condition (14) is satisfied.
But for certain values of » the fulfilment of the condition (20) will
also imply the fulfilment of the condition (14).

10. Let f, be the numerator of the ='® convergent of the

continued fraction
a, a,x ax .
To To T e, (25)

It can be easily shown that if n < m < 2n+1, and if f,, contains
J. a8 a factor, then the m™ convergent will be equal* to the n'®
convergent.

Hence if 27 > n - 1, then the vanishing of all the determinants
(20) will also imply the vanishing of all the determinants (14).

But if m > 2n, then f,, may contain f, as a factor, and still
the two convergents may not be equal. As, for example, in the
case of the continued fraction

1

x x x
1-1-1-1-..,

* If nis odd, m is odd also ; if n is odd and m even, then at least two of
the convergents are equal, but they may not be the nt and the m' con-
vergent.
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we have
Jam=1 —(2”1— l>x+ (2n2—- 2) F— (=1 (:)m"
and f,_+1=1-(21")x+(2”2‘1)x2- ....... +(-1)-(”:1)x".

It can be easily shown that
fs"(rﬂ)—l =fr (fr+1 - :cf r—-l) (fz (r4+1) — xf; w) ------ (fzn_l(r“) - “fs"_](rﬂ)—z)
Where ./:-’n-i-‘.' - w./‘!n
n+2 In-1\2n+2 -
n+ w+(n 1) n + 13-(2” 2>2n+2w,+

=TT 1 p) 2 3
n\ In4 2
...... (=1 ("> e

—1-(2n+2) '(:f,,dz.

As f,._1 is the numerator of the 2m* convergent, so we see that
though f;,,, contains f, as a factor, still the two convergents are
unequal, In this case the condition (14) does not necessarily
depend on (20).

11. If n < m < 3n -1, and if the m'™ convergent contains the
n® convergent as a factor, then the m™ convergent shall be equal to
n
5 -
the conditions (20) and (23) also implies the fulfilment of the
condition (14).

But if » <

the n'® convergent. Thus, if » > 1, then the fulfilment of

n
5"
(23) may be satisfied, still (14) may not be satisfied.

The necessary* conditions for the 8% convergent containing
the 3™ convergent of the continued fraction (25) as a factor, and
at the same time the two convergents remaining unequal, are

(3 + )" + Gy Gy
Gy + ay
GGGy

Gy

3, then though both the conditions (20) and

G+ 0; + 0y =

* The conditions are sufficient if none of the a's is zero.
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which are the same as the vanishing of the two continuants

7] 1
ag 1 1
a, 6 1

where 6 =a,+a, and a,.

The necessary conditions for the n'* convergent containing the
3™ as a factor, and at the same time the two convergents remaining
unequal, are the vanishing of the two continuants of order n - 4,

0 1
as 1 1
@, 0 1

........................

In the case of the continued fraction

1 32 2 ax cx 22 x 2z

T+14+14+1+1+1+1+14+

the 37 convergent is 1te , and the 8™ convergent is
144z
1+ 1+(5+a+c)x+(4+4a+3c)a®

144z 1+ (B +a+c)o+(4+4a+3c)a’+3aa’’

Though the 8™ convergent contains the 3™ as a factor, still they
are unequal.

The necessary conditions for the 11* convergent containing
the 4* as a factor, and at the same time the two convergents
remaining unequal, are

P2= 0y (B + Gy + ayy) + @5 (B30 + @) + @5y

a; @y Gy
=(a,+a;+a,) ——+a,a
(a. o) 2+ a, N

D=t aytaytaptay

R A N

ay 0, ——+aa5a,

and
P2 (@ + ag) - a; ag @y,
(“'3 + a4)2

= +ast+a,.
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This last condition is the same as

) 1
a. 1 1
as 0 1 -0
a 1 1
a, 6 1
a, 1

where 0=a;+a,.

If instead of (11) we take n(>11), one of the conditions shall
always be the vanishing of a continuant of order n - 5.

The conditions are derived from the recurrence-formulae con-
necting three successive convergents. These recurrence-formulae
also show that if n < m < 3n - 1, then the n'* convergent cannot
contain the n'" convergent as a factor unless some of the con-
vergents are equal. But if the convergents are considered in
connection with the corresponding series, then it will be evident
that the n.® convergent is equal to the n*® convergent.

It can be easily shown that if the (3n - 1) convergent contains
the n't convergent as a factor, and at the same time the two
convergents remain unequal, then

*H (@pys Bugs -+ U3uy) = K (a305... a,) K(aa,...a,),
and if the 3n™ convergent contains the n* convergent as a factor,

then
K(a, 384 1) =K(az0;...a,) K (asa,... a,).

12. The quotient of the two series

4, A4

Ao+ =2 +24 ...
X x~

B, B
Bo+—w<~+ ?-{-

can also be converted into a continued fraction of the form

1 + 240+ x+b+.....

.....................

* K (agay...) denotes the continuant 1 -1
aa 1 -1
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The elements of the continued fraction are

5 Dhs Doy
" Z n-3 D 2n—1
o Dons D
" DzM ki

and f,(x) and ¢,(x), the denominator and the numerator of
the (n + 1)® convergent are given by

1D, D, *D,
()=t — gl g DL gt g ()
f ( ) D2n+l D2n+l ( ) D2n+l
2”+1'D2n+1 2"Dzn+1 1 ”+1D2n+\
. () = x" - e+ (=)
4’ ( ) Dan+1 -D2n+1 ( ) Dz...u

where (—1)™ ™D,,,, is the determinant obtained by deleting the
(m +1)® column (D,,,; ="D,,,,) of the array

| (A0, Bu),, |-

The successive convergents to the continued fraction (27) have
the property that if the ' convergent, as well as the quotient

(26), are expanded as a power-series in —:7, then the first (2n-1)

terms of these two expansions will be, term for term, the same.
This may be easily proved in the following way :—

If the quotient (26)=c,+ % + % T ,
then the 3" convergent W
_ L I B .
=tt 2+ S+ S+ b St
Multiplying the two sides of this relation by the denominator of
(26) we obtain
Bﬂ”""ﬁaz'l'ﬁz( B, )
B .
St Raif DYt
_ A4, A, 4; A, )
= (A., o e S R PR —+-
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Now, multiplying up and equating the coefficients
1 1 1 .
iR I I e to zero, we obtain
A+ By A5+ Py Ay=P; B. + B, By + B B,
Ay + By Ao+ Be Ay =B; B:+ B, By + B By
A2+BIA1+B2'AO=B3BO+BA BI+BS‘B!
Al+,30 4, = IBJBO'*'BB-BI
4, = :Bs B,
Solving these simultaneous equations for 8’s, we obtain

of

From the recurrence-formulae connecting the three successive

convergents we have

Ji=(x+b) fitaf

and bi=(x+b;) Ps+ ;.
Equating to zero the coeflicients of the various powers of z, we
obtair
1=1
1D, 1D,
-, - "t
D, _ D, 5 1D,
D,- D, »p t%
3D, D, 5 -z,i _ 1D,
"D, DD, "D,
D, i, D,
D,~ ° kD %D,
*D, ‘D, 3D,
_-I)-;— 0 +b“-—,:—a6D5
‘D, ‘D, ,°'D, ‘D,
D,- D, bt
"D, D, ‘D, 5D,
"D~ ", *"D, %D,
8D, D, D,
-17; = 77 - bs D7 +0
DD’ 7D7
—D—o' =D +0 -0
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Multiplying the first five equations in order by 4;, 4,, 4,, 4,,
and 4,, and the last five equations by B,, B,, B;, B,, and B;,
and then adding up vertically, we find that

D D
=5red
ty= D, D,
Dz’
and from the second equation we have
=L Do
" D. D,

Here we can show that
If Dyp1 40 and if all the bigradents
A B

P P

(), (Ban),,

(where p=2n+1, 2n+2, ... 2n+7)

+1

vanish, then the (n+1)®, (n+2)®, ... (n+17r)™ convergents are equal
to each other, and the expansion of the quotient of the two series will
agree with the expansion of the (n+1)™ convergent as far as the
2n+r+1)* term (inclusive). The proof is similar to that of
Art. 4.

13. It has been stated in Art. 11 that if n<m<3n -1 and if
the m™ convergent contains the n™ convergent as a factor, then
the two convergents are equal. Here we shall show the nature of
the remaining factor when m>3n —~1. Both n and m are supposed
to be odd integers, that is, the convergents are those of the con-
tinued fraction (27) of Art. 12.

If r>n and if
dr=("+ g @+ . T+ ) P
S (@A Prna N e+ P po) fr
then Proncts Pronsy -+ s Pr_im
st Grnty o3 Gron eereneer e e @)

8 Vol, 35
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And also if the first of the determinants

4, BP
........................ (=)
(A‘zn)n-}—l (an)n-l—l

(where p=2n+1, 20 +2, ...)

does not vanish, then, in general,

Pr_sn-1s Prgn—2 <3 Po

FQr gmy cererreienns y Go-
But if the first ! determinant of (x) vanish, then, in addition
to (y), we have also
Drgn—1s oo s Prosn—
=qr-tn-1y +o+y Ir-3n—t -

The p’s and ¢’s can be expressed in terms of 4’s and B’s.
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