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On the Failure of Heilermann's Theorem.

By HABIPADA DATTA, Research Student, Edinburgh University.

(Bead 9th March 1917. Received 7th June 1917.)

The theorem of Heilermann* can be stated thus:—
If the series

X X2 X3

is converted into a continued fraction of the form

then the elements of the continued fraction are

(1)

•(2)

where

°4n «•«+! «•«

and rKn is obtained from this determinant by deleting the (r+ l)th

column and the last row. Moreover, if /„ (a:) and <£„_[ (x) are
respectively the denominator and the numerator of the nth con-
vergent, then

ana
(3)

* Journal fur Math. 33 (1845), p. 174.
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where

(4)

The successive convergents to the continued fraction (2) have the
property that if the nth convergent is expanded as a power-series in

—, the first 2ra terms of this expansion will be, term for term, the
x
same as the first 2n terms of the series (1).

1. Now if any of the a's be zero (say a,1+1 = 0), then the continued
fraction terminates at the ntb convergent. And from the
recurrence-formulae connecting three successive convergents it
would appear that all the convergents after the (n - l)tb are then
equal to one another. But if the numerators and denominators
of the convergents are evaluated by the formulae (3), we find that
in general these higher convergents are not equal to each other.

Consider for example the series

J_ 1 J_ X A JL °-6 ^?
X X~ 3? X* Xs Xs X' X8

The determinant K2 vanishes, therefore os = 0.

1The first convergent =

,, second „ =

x-\
1

4a2 + 10a:+ 21
third ,,

ix> + 6x2+ l l x - 1 3 '

We see that the second convergent is equal to the first, while
the third convergent is different from the first. The expansion of
either the first or the second convergent coincides with the given
series as far as the third term, whereas the expansion of the third
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convergent coincides with the given series as far as the sixth
term. This illustrates the abnormality with which we are
dealing: for in the normal cases of Heilermann's Theorem, the
expansions of the first, second, and third convergents coincide
with the given series so far as the 2nd, 4th, and 6th terms
respectively. Formulae (3) furnish a regular sequence of con-
vergents, whereas the recurrence-formulae would give all the

convergents equal to .

2. We shall now examine the phenomenon from a somewhat
different stand-point, by enquiring what is the relation between
the series and the continued fraction if Kn+l vanishes (and
* . * 0 ) .

We shall now show that if Kn+l = 0, and if Kn 4= 0, the first
(2w + 1) terms of the expansion of the n'h convergent will be, term for
term, the same as the first (2n + 1) terms of the series, and vice-versa.
(In the normal case there is equivalence of In terms only).

Let us consider the second convergent, which is

x + yo-
> x x- xs x> x5 xe

Multiplying up and equating to zero the coefficients of —, —, etc.,
X X"

we obtain the following relations:—

(5)

Eliminating /?'s from the first three of these relations, we have

<X*> 0 t . | OLg

04

= 0.

And hence if J5T2 =t= 0 and A"3 = 0, then Al = a.i. And if A} = a., then
^3 = 0 ; which establishes the theorem stated above.
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3. In this case it is to be shown that the (n + l)th convergent is
equal to the rath convergent, and its expansion, as a power-series in

—, will agree with the original series as far as the (2n+ I)"1 term

(inclusive) instead of as far as the (2n + 2)th term (inclusive). But
the expansion of the (r + 2)*11 convergent can, in general, be made
to agree as far as the (2r + 4)th term (inclusive) of the series, where
r s n.

From the third convergent we have the relations

(6)

As A) = OL4 , so we can reduce the first two equations of (6) by
means of the first (3) equations of (5) to

(/?!?> - #•») 04 + (j8» - /3<!0 <x, + )8»> a , = 0

(/3i" - f3{{}) 04 + (/if1 - /3j,2)) 04 + /3J,3) a.; = 0

Now, comparing these two equations with the first two
equations of (5), we have

/%"> - ffi> _ $ " - $?> ffi>

Therefore

Now, substituting these values of /3's in the third relation of
(6), we have

(04 + /3f» a4 + /?!»> 04) +p (OL4 + fif 04 + j8j?> 04) = 0.

As OL4 + /3f» 04 + ffi a., = 0, therefore if the third relation of (6) hold,
then

must vanish. That is, the expansion of the 2nd convergent will
agree with the series as far as the 6th term (i.e. Ai = a.s), but by
hypothesis this is not the case. Hence the third equation of (6)
is not valid, and the expansion of the third convergent will agree
with the series as far as the 5th term only.
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Moreover, we see that the denominator of the third convergent

and the numerator

Thus * & («)//, (*) = fc (as)//, (a>).

I t is to be noted that whatever the value of p may be, the first
two equations of (6) are satisfied. Therefore the denominator and
the numerator of the third convergent, taken separately, are not
unique. But the third convergent, as a whole, is unique, and is
equal to the second convergent.

4. We have seen that if the third relation of (6) holds, then Az

becomes a5. That is, the expansion of the second convergent
agrees with the series as far as the 6th term.

In this case the 4th convergent will be equal to the 2nd
convergent.

From the 4th convergent we have the relations

*0 - 0

- o
=0

As A1 = <x, and A2 = «.5, we can reduce the first two equations of
(7) by means of (5) and obtain

* 2 >30

W =Pi P? + q A2) }- where q = ffl - jif.

Hence
ft (x) = (x~
<t>3 (x) =

* Thus, even if p be 00, the third relation oi (6) will not hold unless
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It can also be independently shown that the third equation of (7)
can not hold.

Similarly, i/"A',=t=O, and if all the determinants of order (n + 1)
of the type

«-i «•»

(8)

(where p = n, n+\, ... n + r)

vanish, tJien the expansion of the 71th convergent will agree with the
series as far as the (2ra + r)th term, and each of the (n+1)"1,
(n + 2)th, ... (n + r)th convergents will be equal to the 71th convergent.

5. If in (8) r is infinitely large, then the expansion of the n"1

convergent will give the whole series. I t is evident that the
series'in this case is a recurring one. But it is also evident that
this is really an exceptional case, happening only when an infinite
number of conditions are satisfied: in general, if one of the
numerator-elements of the continued fraction vanishes, the con-
tinued fraction terminated does not represent the whole series,
and Heilermann's Theorem may in this sense be said to fail. But
as we have seen, the formulae (3) furnish convergents which do
give a continually-improving approximation to the series.

We shall consider the three following cases of recurring series:—

(I)

(J)

(I')

U(a, a + n-2)— + IL(a + l, a + n-1)—+...

where
U(a + r,

n

X

- 2) = (a + r) (a + r + 1) ... (a + r + n-2)

( 1 + q, 1 + yq"-'2)— + (l+yq,l
X

) ^ +

where n is a positive integer.

(I)-
The series (I) is a case of the series

a- 1 n
1

— + (a-I) a ns
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For if we put first (a + n - 2) for D, and then multiply this
transformed series by II (a - 1, a + n - 2), we obtain the series (I).
The above series has been considered in the section (C) of the
first paper.*

As all the determinants of order higher than n and of the
type (8) contain (D — a - n + 2) as a factor, hence they vanish
when D = a + n - 2. Therefore the nth convergent must represent
the whole series. We shall now find this convergent.

From the section (C) we obtain

_ (m- 1) (a + n + m-3) m(a + n + m-2)
m = a + 2«i - 4 a + 2m - 2 '

_ (m - I) (n - m + 1) (a + m - 3) (a + n + m - 3)
""* ~ (a+ 2m - 5) (a + 2m - 4)J (a+ 2m - 3) '

and

a + 2m - 2
-xm

/m\ (a + m + n-2) (a + m + n-3) m_2
+ ,2/ (o + 2m-2)(a + 2w-3) a ; '"~'----

...+(-
(a+2m-2) (a + m - 1 )

Hence /„ (as) = (* - 1)«.

To find the expression for 4>n_x (x), we have

rW1 = n(a, a + n - 2 )

(o - 1, a + n - 2)

2, a + n) -
\ ~ /

9 ) n (a, a + n - 2).

The quantities within { } become y ^ 2 , if (o - 1) is put for a.

* On the Theory of Continued Fraotions, Proc. Edin. Math. Soc., 34
Part (2), 1916-17.

7 Vol. 35
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Therefore

yj-i = (-1)—>n(a-l , a + n-3) .

Hence <l>n_1(x) = U(a-l, a + n-2)

X"-1 /n-l\x"~2 / n - l \
( ) (

And thus the w."1 convergent, which is the sum* of the whole
series is determined.

We can find expressions for higher convergents, but they are
all equal to the ntb convergent, as has been already shown. Here
we have

-n 1 -a-n-r.l-a-n-2r.-l)

and
-••» 1 - a - n - r , l - a - n - 8 r , —

We can also convert the same series,
Ii(a, a + n-2)x + II(a+l, a + n-2)xs+ ...

into a continued fraction of a different form, namely,
cxx c3x c3x
~+~ + TT...,

the constants c's being given by the equations
c, = II (a, a + n - 2),

(a + TO - 2) (a + m + n - 2)
C'2m= (a + 2m-2)(a + 2m-2) '

in (n — TO)

• It is also evident from the relation
F(a, 0, 7, x) = (1 - x)y ~ ° ~ P F(y -a,y~p,y, x) due to Kuler.
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Hence in this case the continued fraction can be written as

(a + n-\)x \.(n-\)x a(a + n)x ( re-1)1.a; (a + n - 2)x

1 - a + a+l - a + 2 + ...+a + 2n-3- 1

Expressing the denominator of the continued fraction as a
continuant, we obtain a theorem in factorizable continuants,
namely,

1 x

a + n- 1 a x

1. (1 -n) a + l x

a (a + n) a+ 2 x

( l - n ) . l a f 2 « - 3 x

a+n-2 1

= {a(o+l) (a + 2n-3)} (1-*)".

That is equal to the product of the principal diagonal terms
multiplied by (1 - x)n.

(J).

The series (J) is a case of the series (H) (loc. cit.), namely,

i+.v J_J_ +
\ + z x ( \ + z ) ( \ + q z ) of ( l + z ) (
As in the previous case, the nth convergent represents the sum of
the entire series (J).

It can be shown that
/„ (x) = (x - 1) (n - q) (n - 9

2)... (n - / - ' ) ,
and

a;-1 r«-n i
\+q-'y L l Jl+

qxn-

where
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If the series is expressed as a continued fraction of the second
form, we have

y)

Therefore

~ 1 - 1+y - 1+yy - . . . . 1

Hence if « * . - ( ! + J—1 y) 1 + 7m+K-sy) y""1

and gr — 1 + qr~3 y,

we have another theorem in factorisable continuants, namely,

1 x

x

«2n 1

I t can also be shown that if cr is a primitive root of jon=l,
then

fcL + y 1 (a. + y)(q. + <ry) 1 | n (q + y, q. + o*-' y) 1 ^
\o .+s a; («• + «) (a. + o-2) a;2 ' " II (a. + z, a. + o*~*z) a?)

where

and

* - -
o r M - l o. + or"ly

( T - l

q. o*—* (g*-1 - 1); (q + o-"-2 g) (q + cr"-1 y) (sg*-' - y)
(q + (r2™-4 a) (q + o-2"-3 z)2 (q + 02"-2 «)
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(I')-
By a well-known theorem in the Calculus of Finite Differences

•we have

(j\ (a + n- l )m+ (T\ (a + n - 2)™- ...

...+(-l)"a»...(6)
where m and n are both positive integers and m < n. Hence it
can be shown that all the determinants (8) vanish, Kn = {(n - 1)!}"
and the denominator of the ntt convergent to the series (I') is

/ . («)- (a-1)- .
Therefore by (4) we have

yi-i = (a + n - I ) - 1 - (*) (a + n - 2)-1 + .... + ( - 1)- ' (") a-1

7i»» = (a + n - 2 ) - 1 - (JJ (a + n - 3 ) - 1 + . . . + ( - I ) - 2 ( o ) «""'

Hence by the identity (G) we have

7w = ( 3 - « r l - ^ 1 j ( 2 - a ) - 1 .

™3 = (a + 2)"-1 - (f) (a + 1)"-' + ( 2) a""1

(i) If «= 1, then we have
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(ii) If a = J, we have
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') contains as a factor.

7i — y»-2—•»

y8" 2'-{5-» - (£ 1 +

Therefore in this case <ks,+i (a;) contains (*+ 1) as a factor.
Up to this we have considered only infinite series. The finite

series can be treated exactly in a similar manner. For every finite
series we obtain a factorizable continuant.

As for example, in connection with the series
1 n n In — 1)

1 i _ 1 .
X X 2 X3

( -

the elements of the continued fraction are

And the continuant is that of Painvin of the year 1858.*

6. In case of the quotient of two series the theorem of Heiler-
mann is

Q O\ X 02 X

B2X*+... = I T T T nr...
where b0 --

and

b,^ = -

A,

A*

A,

A,

"In—'

A,

A1

Ao

0

A,
1 4

^ 2

•S i

£0

0

In—1

n+1

•n

B3

-S,

-So

* Sur an certain syst^me d'^quations Unbares. Journ. (de Liouville) dt
Math. (2), iii., p. 46.
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At A3 At Bt Bt

A, At Ax JBt Ba

A2 A1 Ao Bx B2

A, Ao 0 Bo B,
A, 0 0 0 Bo

It can be shown that if Ag #= 0, and if all the bigradients

A, A^ A,.
Az A2 A1

A, Ao 0
Ao 0 0

(where p = 4, 5, ...)

Bo
0

(9)

vanish, the 4th convergent to the continued fraction will be equal
to the quotient of the two series.

The bigradients (9) may be denoted by

where 3 denotes the number of ^-columns and 2 denotes the
number of ^-columns.

In the case of the quotient of the two hypergeometric series,
namely,

the bigradients of the type (9) and of orders higher than (2n + 1)
contain (a. — y - n) * as a factor.

Therefore for a. = y + n all these bigradients vanish, and the
2«th convergent is the quotient. Thus we obtain

+ \, x) + F(y + n, /3, y, x)

(n-l)x (P + n-l).lx (/3-X-n+l)x
y+ y + 1 + 2 2y + 2 + . . . + y + 2 n - 2 + 1

(10)

* See Section (0), "On the Theory of Continued Fractions" (2nd Paper),
Proc. Edin. Math. Soc. 35 (Part I.), 1916-17, p. 48.
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Denoting the continued fraction (10) by ^—r- , we
9** \P> 7)

obtain

*\y + lt p>y>&) — v1 ~x) 9i\Pi7)

.(11)

-n,y-P,y, x)

If aj=l, the continued fraction (10) automatically reduces to
the value y/p.

Therefore, when x = 1 ,

s>»<P.y)-P/y-
And then from the last of the relations (11) we obtain

Similarly in the case of the generalised hypergeometric series
of Heine, namely, <j> (a., /?, y, q, a;)t, we have

4>(y + n,p,y + \tq, 1) H- <f> (y - n, P, y, q, 1) = (1 - ? 7 ) - ( l - / )
and <f>(y + n, fi, y, q, x)--r(/3 + n, q, x)

where » = 1.

* This is evidently the case of ^(o, ft 7, 1) = " ! ^[ JT " ~ f ~
due to GauBs.
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7. If all the A's after An and all the B's after Bn are zeros,
then the quotient becomes

Aa + A1x+ ....+AKaf
B0 + B1x+....+BHaf>'

and the corresponding continued fraction will evidently terminate
at the (2n+ l)tb convergent. The denominator and the numerator
of the (2n + l)ax convergent are respectively

CM*» (12)
and

C»l+1 + C*nx+...+Cn+lx* (13)

where (-l)m(7m is the determinant obtained by deleting the
(m+1)"1 column of the array

II (^»)»+i (£*.)„« ||
where AiH = A,n_1 = ... =4 n + 1 = . . .=.5n + 1 = ... =B^ = 0.

As the 2nth convergent and the fraction are identically equal,
then by comparing the various powers of x, we have the relations

C,,:G1: : Cn + 1 = 2?0:-5j: :Bn:An: At;

and also
if Bm = 0, then Cm = 0, where m > w,

and if -4,_r+i=0, then Cn+r = Q, where

8. If A2r_14=0, and if all* the bigradients

X / r + l V 'r+1

(where p > 2r and r < w)

vanish, then the continued fraction will terminate at the (2r + I)"1

convergent, that is

A0 + A1x+...+Anx" _j^ &]je fc^a;

* Evidently (n-r) in number, for in other* all the elements of the
first row are zero.
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where ( - I ) ' "Cm is the determinant obtained by deleting the
(m + l)th column of the array

As the denominator and the numerator of the*convergent are
both polynomials of the r*" degree, therefore

Aa + AiX+...+AKx" (16)
and Bi + B1 x+...+Bnx" (17)
must contain a polynomial of (n - r)"1 degree as a common factor.

Hence if Ajr_j #= 0, then the vanishing of the (n - »•) bigradients
(14) is the necessary and sufficient condition for the two equations

and o 1 n ,
having (n - r) and only (n - r) common roots.

This was first shown by Lemonnier.*

9. As (17) contains the denominator of (15) as a factor, there-
fore the continued fraction corresponding to

B0 + B1x+...+Bnx
n

will terminate at the (2n - 2r+ I)"1 convergent. The denominator
and the numerator of the (2n - 2r + I)"1 convergent are respectively

(£. -f- di x -{• + fl?H_ r x
n~r (18)

and d.,n_^+l + din_,r x+ + dn_r+1 x"~r (19)

where ( - l)m dm is the determinant obtained by deleting the
(m + 1)* column of the array

II li
As the denominator (18) is independent of x, therefore

Similarly from (16) and the numerator of (15) we obtain
eo + e1x+ +en_rx—r (21)

' - (22)

* MemoWt mix Elimination. Annales de VtieoU Norm. Sup. (2) 7 (1878),
p. 151.

t The C'a with suffixes higher than n are to be replaced by zeros.
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as the denominator and the numerator of the (2?8-2r+l) t h con-
vergent to the corresponding continued fraction. Here ( - l ) m e m

is the determinant obtained by deleting the (m+1)01 column of
the array

where *o = c2»+n *i = c»n. and so on, &„ = cn + 1 .

Hence we have also
e1 = e2 = e= ... =e,t+r = 0 (23)

As the numerator (19) and (22) divided respectively by d0 and
«„ become the common factor, therefore we have

<*0 '• <*tn—Sr+1 • "su—2r • • • • • "n—r+1

= «o = e » n - 2 r + i = « 2 , . - j r = ••• : e » - r + i = (24)

We see that if the condition (14) is satisfied, then each of the
conditions (20), (23), and (24) is satisfied. If all the conditions
(20), (23), and (24) are satisfied, then the condition (14) is satisfied.
But for certain values of r the fulfilment of the condition (20) will
also imply the fulfilment of the condition (14).

10. Let f, be the numerator of the rath convergent of the
continued fraction

1+ IT 1+
It can be easily shown that if n < m < 2 n + l , and if fm contains

fn as a factor, then the wi"1 convergent will be equal* to the TO"1

convergent.

Hence if 2r > n - 1, then the vanishing of all the determinants
(20) will also imply the vanishing of all the determinants (14).

But if m > 2n, then fm may contain / , as a factor, and still
the two convergents may not be equal. As, for example, in the
case of the continued fraction

1 x x^ x
T-T-T-T-...,

* If n is odd, m is odd also ; if n is odd and m even, then at least two of
the oonvergents are equal, but they may not be the n"1 and the mth con-
vergent.
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we have

and

It can be easily shown that

/lVlM=/'(/t>-*/M)(/!Hl] - */*•)

where /2>1+2 - a:/2n

As y2m_i is the numerator of the 2mth convergent, so we see that
though /2ll+j contains /„ as a factor, still the two convergents are
unequal. In this case the condition (14) does not necessarily
depend on (20).

11. If n < m < 3n-\, and if the ma convergent contains the
n* convergent as a /actor, then the ma convergent shall be equal to

the n01 convergent. Thus, if r > — - £, then the fulfilment of
o

the conditions (20) and (23) also implies the fulfilment of the
condition (14).

But if r < — - £, then though both the conditions (20) and

(23) may be satisfied, still (14) may not be satisfied.
The necessary* conditions for the 8tb convergent containing

the 3rd convergent of the continued fraction (25) as a factor, and
at the same time the two convergents remaining unequal, are

a,2 + a,**,,

* The conditions are sufficient if none of the a's it zero.
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which are the same as the vanishing of the two continuants

e
««

1
1 1

0

« 8

where and a3.

The necessary conditions for the nth convergent containing the
3rd as a factor, and at the same time the two convergents remaining
unequal, are the vanishing of the two continuants of order n — 4,

B 1
1
a,

1
6 1

In the case of the continued fraction

1 3a; x ax ex 2x x 2x
T+T+T+T+T+T+T+T+...

\+x
the 3r t convergent is

l + x

, , and the 8th- convergent is
1 +4x

1 + (5 + a + c) x + (4 + 4a + 3c) x2

Though the 8th convergent contains the 3rd as a factor, still they
are unequal.

The necessary conditions for the 11th convergent containing
the 4th as a factor, and at the same time the two convergents
remaining unequal, are

Pi = <h (<h + «io + an) + «s (<*io + «n) + a» «ii

and

Pi =
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This last condition is the same as
0 1

a, 1 1

<h 1
6

an 1
where 0 = #3 + 04.

If instead of (11) we take n ( > l l ) , one of the conditions shall
always be the vanishing of a continuant of order n - 5.

The conditions are derived from the recurrence-formulae con-
necting three successive convergents. These recurrence-formulae
also show that if it < m < 3n - 1, then the »»** convergent cannot
contain the nth convergent as a factor unless some of the con-
vergents are equal. But if the convergents are considered in
connection with the corresponding series, then it will be evident
that the mtb convergent is equal to the n'h convergent.

It can be easily shown that if the (3re - 1) convergent contains
the n'h convergent as a factor, and at the same time the two
convergents remain unequal, then

*A' (an+3 au+i... a3n_i) = K(a2az... an) K(aiat... an),

and if the 3ntb convergent contains the nth convergent as a factor,
then

an+4... a3n_x
... an).

12. The quotient of the two series

A A
A + ++

can also be converted into a continued fraction of the form

(26)

(27)

.) denotes the oontinuant
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The elements of the continued fraction are

and „£ (aj) and <£„ (*), the denominator and the numerator of
the (n +1 ) a convergent are given by

where ( -1)"* "VDan+i is the determinant obtained by deleting the
(m +1 y* column (2)a,+i = °-Ojn+i) of the array

The successive convergents to the continued fraction (27) have
the property that if the ntt convergent, as well as the quotient

(26), are expanded as a power-series in —, then the first (2« - 1)

terms of these two expansions will be, term for term, the same.
This may be easily proved in the following way:—

If the quotient (26) = c,+ —+ — + ,

then the 3 - convergent P*f+Pi*+Pt

c, c» c. c. v
x x* sr x* ar

Multiplying the two sides of this relation by the denominator of
(26) we obtain
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Now, multiplying up and equating the coefficients of

—2, —, a;0, x, —^ to zero, we obtain

^ + ft Ax + ft Ao = ft J?o + ft A + ft JSt

Solving these simultaneous equations for fi's, we obtain

J -ft ft ft -ft ft
A '/>, 2z>5

 a / ) 5
 4 / ) 6 «i>5 •

From the recurrence-formulae connecting the three successive
convergents we have

a n d <f>t = (x + 65)

Equating to zero the coefficients of the various powers of *, we
obtain

1 = 1

"A

*A_ = 0 _£5!A_a6!^_

-*£L= 0 +6/A-a s
3 A

•A
A
'A
A "

8A
A
•A
A

4A
A
"A

~~A
•A
A
'A

~^A

A"" • A"+"S:
« A '•>

-o.
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Multiplying the first five equations in order by AT, Ae, As, Alt

and As, and the last five equations by B3, Bt, B5, B6, and B-,,
and then adding up vertically, we find that

°~A+a»A"
A A

and from the second equation we have

Here we can show that

If D2n+i + 0 and if all the bigradents

n+l

(where p = 2n+ 1, 2

vanish, then the (ra + l)tb, (n+2)tb, ... (n + r)th convergents are equal
to each other, and the expansion of the quotient of the two series will
agree with the expansion of the (n+l) t b convergent as far as the
(2n + r + l ) t b term (inclusive). The proof is similar to that of
Art. 4.

13. It has been stated in Art. 11 that if n<m<3n- 1 and if
the mth convergent contains the nth convergent as a factor, then
the two convergents are equal. Here we shall show the nature of
the remaining factor when m > 3n - 1. Both n and in are supposed
to be odd integers, that is, the convergents are those of the con-
tinued fraction (27) of Art. 12.

If r>n and if

/ r = (x1-"+jor_n_1x'-"-1+ ... +p1x+p0)fn

then Pr-n-l,Pr-,,-^---,Pr-:;n

= qr-n-l> ? r - n - 2 . • • • » 9 V - S .
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And also if the first of the determinants
An 2?

(x)

(wherep = 2re + 1, 2n + 2, ...)
does not vanish, then, in general,

Pr-3n-lt Pr-3n-2> ••• 1 Po

=1= 3 ' r _ 3 _ n , 1 ?0 •

But if the first I determinant of (a;) vanish, then, in addition
to («/), we have also

Pr—3n—1 ! • • • 1 Pr—3n—l

~9r—3n—l> ••• ) 9r-2n— I •

The jo's and 9's can be expressed in terms of .4's and .B's.
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