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PCA is a popular tool for exploring and summarizing multivariate data, especially those consisting of
many variables. PCA, however, is often not simple to interpret, as the components are a linear combination
of the variables. To address this issue, numerous methods have been proposed to sparsify the nonzero
coefficients in the components, including rotation-thresholding methods and, more recently, PCAmethods
subject to sparsity inducing penalties or constraints. Here, we offer guidelines on how to choose among the
different sparse PCA methods. Current literature misses clear guidance on the properties and performance
of the different sparse PCA methods, often relying on the misconception that the equivalence of the
formulations for ordinary PCA also holds for sparse PCA. To guide potential users of sparse PCAmethods,
we first discuss several popular sparse PCA methods in terms of where the sparseness is imposed on the
loadings or on the weights, assumed model, and optimization criterion used to impose sparseness. Second,
using an extensive simulation study, we assess each of these methods by means of performance measures
such as squared relative error, misidentification rate, and percentage of explained variance for several data
generating models and conditions for the population model. Finally, two examples using empirical data
are considered.

Key words: dimension reduction, exploratory data analysis, high dimension-low sample size, regulariza-
tion, sparse principal components analysis.

Principal component analysis (PCA) is one of the oldest and most popular multivariate anal-
ysis techniques used to summarize a (large) set of variables in low dimension with minimum
loss of information (Jolliffe and Cadima 2016; Wold et al. 1987). In particular, PCA is one of
the most popular techniques used to analyze (ultra-) high-dimensional data consisting of many
more variables than observations, and its use has become more widespread over recent years.
PCA is mainly used to summarize the individual variables’ scores by a few derived components
based on a linear combination of the individual variables. These new variables are known as
component scores and are often used as a data pre-processing step to deal with a large number
of variables, e.g., to reduce the number of predictor variables to account for collinearity issues
in regression analysis. The coefficients of the linear combination, used to derive the component
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scores, are known as component weights (Adachi and Trendafilov 2016). Additionally, PCA can
give insight into the data structure via the correlation between component scores and variables.
These correlations are known as component loadings.

In PCA, there is a long-standing tradition to look for sparse representationswhere the variables
are associated with only one or a few components (Kaiser 1958). The sparse structure facilitates
interpretation, and the need for such a representation is especially warranted in the case of an
extensive collection of variables. Moreover, sparse representations have been employed not only
for interpretational issues but also to deal with the inconsistency of the estimated component
loadings/weights in the high-dimensional setting (Johnstone and Lu 2009).

There is a substantial volume of work in sparse PCA based on the different formulations of
PCA and using different approaches to achieve sparsity. We categorize sparse PCA methods by
their estimation aim: sparse loadings or sparse weights. To obtain sparse loadings, Kaiser (1958),
Jolliffe (1995), Cadima and Jolliffe (1995), andKiers (1994) used a rotation of the PCA solution to
obtain a simple structure, andShen andHuang (2008), andPapailiopoulos et al. (2013) introduced a
least-squares low-rank approximationwith sparsity inducingpenalties such as the lasso (Tibshirani
2011). For sparse weights, Jolliffe et al. (2003) modified the original PCA problem to satisfy the
lasso penalty (SCoTLASS), while Zou et al. (2006) used a lasso penalized least-squares approach
to obtain sparsity. d’Aspremont et al. (2007b) and d’Aspremont et al. (2007a) established a sparse
PCA method subject to a cardinality constraint based on semidefinite programming (SDP), while
Journée et al. (2010) and Yuan and Zhang (2013) introduced variations of the well-known power
method to achieve sparse PCA solutions using sparsity inducing penalties.

Most of the formulations for sparse PCA are based on different formulation of PCA; thus,
the corresponding optimization problems solved are different and—unlike ordinary PCA—do not
yield equivalent solutions. Importantly, the different methods result in sparse estimates for differ-
ent model structures. Hence, the selected method should depend on the objective of the analysis
and the assumed model structure for which sparsity is desired. These differences in sparse PCA
formulations have remained mostly unnoticed in the literature, which highlights the need for a
thorough comparison of the methods under different data generating models—imposing sparsity
on different model structures—and concerning different performance measures. The objective of
our research is to provide a guide for using sparse PCA, emphasizing the differences in purposes,
objectives, and performance among several sparse PCA approaches. We present a review of the
most relevant sparse PCA methods used for sparse loadings and sparse weights estimation. We
assess these methods by conducting an extensive simulation study using three types of sparse
data structures and performance measures such as squared relative error, misidentification rate,
and percentage of explained variance. Finally, we use two empirical data sets to illustrate how to
use these methods in practice. The data sets consist of item scores on a questionnaire measuring
the Big Five personality (Dolan et al. 2009) and gene expression profiles of lymphoblastoid cells
used to distinguish different forms of autism ( Nishimura et al. 2007). The former example relies
on questionnaire data for which researchers wish to understand the correlation patterns in the
data (e.g., knowing which items are highly correlating and hinting at an underlying component
or construct). In contrast, the latter example relies on high-dimensional data collected in a clas-
sification setting where a reduction of the large set of variables is performed as a pre-processing
step.1 Results from the simulation study and empirical applications suggest that sparse loadings
methods are more suitable for exploratory data analysis, while sparse weights methods are more
suitable for summarization.

The paper is organized as follows. Section 1 describes different approaches and drawbacks
of PCA. In Sect. 2, the leading methods for sparse PCA are briefly discussed. Simulation studies

1The MATLAB and R codes used to perform simulation study and applications are available from https://github.
com/RosemberGuerra/sparsePCA.
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are presented in Sect. 3, and two examples using empirical data sets are presented in Sect. 4.
Concluding remarks aremade inSect. 5.Next,we collect our notation for our readers’ convenience.

NotationMatrices are denoted by bold uppercase, the transpose of a matrix by the superscript
� (e.g., A�), vectors by bold lowercase, and scalars by lowercase italics, and we will use capital
letters (of the letter used to run an index) to denote cardinality (e.g., j running from 1 to J ). Given
a vector x ∈ R

J , its j-th entry is denoted by x j . The l0-norm ‖x‖0 is the number of nonzero
elements of x, the l1-norm is defined by ‖x‖1 = ∑J

j=1

∣
∣x j

∣
∣, and the Euclidean distance by

‖x‖ = (
∑J

j=1 x
2
j )
1/2. Given a matrixX ∈ R

I×J , its i-th row and j-th column entry is denoted by

xi, j , ‖X‖2F = ∑I
i=1

∑J
j=1

∣
∣xi, j

∣
∣2 denotes the squared Frobenius norm, and Tr(X) = ∑I

i=1 xi,i
denotes the trace operator when X is square matrix (I = J ). We use the notation XK ∈ R

I×K ,
with K < J , for the matrix whose columns are the first K columns of X. Given a scalar δ ∈ R,
[δ]+ = max(0, δ). The soft-thresholding operator is defined as (S(x, λ) = sign(x)[|x | − λ]+),
where sign denotes the sign of x . Finally, when formulating an optimization problem, s.t means
“subject to”.

1. Principal Component Analysis Overview

This section aims to review different formulations for PCA and their relation to the singular
value decomposition (SVD) and the eigenvalue decomposition (EVD). PCA formulations are
presented in Sect. 1.1. Section 1.2 discusses the lack of consistency in the estimation of the
component loadings/weights and the difficulties to interpret the component scores—the main
drawbacks of PCA found in the literature. Let us define X ∈ R

I×J as the data matrix (i.e., I
observations and J variables) and K < J the number of desired components. Without loss of
generality, we follow the common practice of assuming that all the data are centered and scaled
to unit variance, that is X�1I = 0J and �̂ = 1

I−1X
�X denotes the sample correlation matrix

(Jolliffe and Cadima 2016).

1.1. PCA Formulations

Several disciplines rely on the following structure for the data set (Whittle 1952),

X = TP� + E, (1)

where T ∈ R
I×K , P ∈ R

J×K , P�P = I ∈ R
K×K , I denotes de identity matrix, and E ∈ R

I×J is
the error matrix uncorrelated to TP�. P is called the component loadings matrix and p j,k are the
component loadings, which express the strength of the connection between the variables and the
component scores T. In this model, the component scores are linear combinations of the original
variables; therefore, they can be expressed as T = XW, where the elements w j,k express the
weights used in this combination. The elements of the matrixW ∈ R

J×K are named component
weights. For this approach, the goal of PCA is to minimize the squared Frobenius norm of the
error matrix E (also known as the least-squares approach). The problem is formulated as:

(T̂, P̂) = argmin
T,P

∥
∥X − TP�∥

∥2
F

s.t. P�P = I. (2)

A solution of problem (2) can be obtained from the truncated SVDofX = UDV�, withU ∈ R
I×K

and V ∈ R
J×K semi-orthogonal matrices such that U�U = V�V = I ∈ R

K×K and D ∈ R
K×K
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a diagonal matrix (Eckart and Young 1936). Thus, T̂ = UD and P̂ = V provide the solution of
problem (2).

In psychometrics, it is common to find PCA formulations, where problem (2) is modified as
follows (ten Berge 1986),

(T̂, P̂) = argmin
T,P

∥
∥X − TP�∥

∥2
F

s.t. T�T = (I − 1)I. (3)

The solution of problem (3) can be obtained using the SVD of X by taking T̂ = (I − 1)1/2U and
P̂ = (I − 1)−1/2VD.2 Hence,

T̂ = (X − E)P(P�P)−1

= (I − 1)1/2XVD−1.

Therefore, the component weights matrix for problem (3) is Ŵ = (I − 1)1/2VD−1. Additionally,
problem (3) is commonly formulated as an explicit combination of the original variables (ten
Berge 1993), considering T = XW that is

(Ŵ, P̂) = argmin
W,P

∥
∥X − XWP�∥

∥2
F

s.t. T�T = (I − 1)I.

The classical way to define PCA is to find the component weight matrixW ∈ R
J×K , having

orthogonal vectors thatmaximize the variance of the components. Formally, consider the following
formulation:

Ŵ = argmax
W

Tr
(
W��̂W

)

s.t. W�W = I. (4)

A solution for problem (4) can be obtained from the EVD (Hotelling 1933) of the covariance
matrix �̂ = V�V�, taking Ŵ = V as the matrix formed by eigenvectors corresponding the K
largest eigenvalues.

The orthogonality constraints in PCA formulations (2) and (4) and principal axes
orientation imply their equivalence. More precisely, component loadings and component
weights are both equal to V. To see this, notice that using the SVD of X = UDVT ,
the EVD for � = X�X = VD2V� is obtained (Jolliffe and Cadima 2016). Thus, D2

is the diagonal matrix containing the eigenvalues of � (the square of the singular val-
ues of X) in decreasing order: d211 ≥ d222 ≥ . . . ≥ d2J J . Then, the matrix of com-
ponent weights Ŵ = V coincides with the matrix P̂ of component loadings defined by
PCA formulation (2). However, this equivalence does not hold exactly for PCA formulation
(3) because the orthogonality constraint is imposed on the component scores. Instead, under
formulation (3), Ŵ and P̂ are proportional to V.

2It can be shown that the element p j,k is the correlation between variable x j and component scores tk .
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1.2. PCA Drawbacks

1.2.1. Interpretation andNon-uniqueness Principal component scores are a linear combination
of the original variables. That makes them difficult to interpret. For instance, when using data
containing measures with different units, the linear combination does not have a definite meaning.
A common practice to tackle this problem is to use the correlation matrix instead of the covariance
matrix (Jolliffe and Cadima 2016). That is to standardize the variables, so all of them are on the
same scale.

Rotation techniques are commonly used to help practitioners interpret the component load-
ings. The rotation is done to obtain component loadings values close to either 0 or 1, such that
only the most relevant variables are considered for interpretation purposes (see Sect. 2.1.1 for fur-
ther discussion). The rotation can be implemented using an orthogonal rotation matrix Q which
does not modify the amount of variance accounted for by all components together but rather
redistributes the variance across the variables by choosing a different system of orthogonal axes.
However, because of the several possible choices for the rotation matrixQ, non-unique solutions
in problems (2) and (4) are achieved (Hastie et al. 2000).

1.2.2. Inconsistency in the High-Dimensional Setting As mentioned above, the solution of the
model-free PCA formulation (4) is the leading eigenvector of the covariancematrix. Inconsistency
of this leading eigenvector has been studied analyzing the angle between its population and
estimated value, under different asymptotical conditions for the dimensionality of the data set.
For instance, Johnstone and Lu (2009) show that

P

(

lim
I→∞ R2(v̂1, v1) = R2∞(ω, c)

)

= 1,

where v1 is the leading population eigenvector, v̂1 its estimate, and R2(v̂1, v1) the cosine of the
angle between v̂1 and v1. ω > 0 stands for the limiting signal-to-noise ratio, c = lim

I→∞ J/I ,

and R2∞ = (ω2 − c)+/(ω2 + cω). This result implies that v̂1 is a consistent estimate of v1 if
and only if c = 0. Therefore, in the high-dimensional setting (J � I ), the estimator of the
component weights in the PCA formulation (4) is inconsistent. Similarly, the estimation of the
leading eigenvalue is shown to be inconsistent under random matrix theory (e.g., when I and J
tend to infinity and the ratio I/J converges to a constant) (Baik and Silverstein 2006; Paul 2007;
Nadler 2008; Johnstone and Lu 2009) and in the high-dimensional low sample size (HDLSS)
(e.g., J tends to infinity, and I is fixed) (Jung and Marron 2009; Shen et al. 2016a). On the other
hand, Jung and Marron (2009) show that, when I is fixed, the angle between v̂1 and v1 goes to 0
with probability 1 if the leading eigenvalues are extremely large in comparison with the number
of variables J , yet the components scores are shown to be inconsistent (Shen et al. 2016b).

2. Sparse Principal Component Analysis Overview

Sparse PCA has been proposed as a solution to the difficulties encountered in interpreting
the component scores of ordinary PCA, non-uniqueness, and the inconsistency of the component
loadings/weights (c.f. Sect. 1.2). Research efforts have focused on reformulations for PCA, where
component loadings or component weights have as many zero elements as possible. In this sec-
tion, we present six sparse PCA methods that are well established in the literature and for which
implementations are available. Our selection of methods was also chosen to reflect the different
PCA formulations (2), (3), and (4). This section aims to show the differences in the purposes
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and objectives of sparse PCA methods. The emphasis is on the fact that while the ordinary PCA
formulations (2) and (4) are equivalent (see Sect. 1.1), for sparse PCA the corresponding formu-
lations are not equivalent, so that the obtained results heavily depend on the chosen methodology.
Sparse PCA methods for estimating the loadings are presented in Sect. 2.1, while sparse PCA
methods for estimating the weights are presented in 2.2.3

2.1. Sparse Loadings

Principal component analysis, when used to explore structure and patterns in data, relies on
the model structure presented in Eq. (1). Interpreting the components is based on inspecting the
loadings because these reveal how strongly the variables contribute to the components. More
precisely, in problem (2), the component loadings P represent the regression coefficients in the
multiple regression of x j on the k component scores tk .4 Note that with orthogonal component
scores this is a regression problem with independent predictors and with proper normalization
constraints the loading is equal to the correlation. Then, having sparse component loadings gives
a clearer interpretation in the sense that variables are explained only by one or a few components.
In this section, we present two frequently used methodologies for this purpose.

2.1.1. SparsePCAViaRotationandThresholding:VarimaxandSimplimax Thefirst attempts to
achieve a component structurewith variables being explained by one component onlywhile having
zero loadings for the other components are simple structure rotations followed by thresholding.
Simple structure rotation, which was adopted from factor analysis, (Jolliffe 2002, 1995, 1989,
Chap. 11), relies on the rotational freedom of Eq. (1):

X = TP� + E = T(Q−1)�(PQ)� + E

X = TrotatedP�
rotated + E (5)

withQ a non-singular transformation matrix usually orthogonal (henceQ is a rotation matrix) or
oblique5 (Jennrich 2004, 2006).

This approach is applied in two steps. First, the component scores and component loadings are
obtained from solving problem (2). Second, a rotation matrixQ is found by optimizing a criterion
that leads to a simple structure ofPQ. In this study,we consider twowell-knownmethods:Varimax
(Kaiser 1958) that maximizes the variance of the squared component loadings hence encouraging
loadings to be as close to either 0 or 1 as possible, and Simplimax (Kiers 1994) that finds an
oblique matrix such that the rotated loading matrix comes closest (in the least square sense) to a
matrix with (at least) a given number of zero values. Oblique rotationmatrices are often usedwhen
the component scores are expected to be correlated. The rotated loadings will—in general—not
be precisely zero, but in practice, small loadings are neglected (including not printing the value of
small loadings in leading software packages such as SPSS), which boils down to treating them as
having a zero value (Jolliffe 2002, p.269). This practice is called thresholding and is considered
ad hoc. Importantly, as discussed by Cadima and Jolliffe (1995), the thresholding approach is
misleading in the sense that another subset of variables may better approximate the data as in
Eq. (5).

3Ning-min and Jing (2015), Trendafilov (2014), Zou and Xue (2018) give a wide list of more methods for both
purposes.

4Observe that from (1) it follows that x j = ∑
k tk p j,k + e j which is the linear regression equation with dependent

variable x j and predictor variables tk .
5A non-singular matrix Q ∈ R

K×K is called oblique if Q�Q is a correlation matrix (Trendafilov 2014).
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2.1.2. Sparse PCA via Regularized SVD: sPCA-rSVD Taking the close connection between
the SVD and PCA as a point of departure, Shen and Huang (2008) proposed a sparse PCAmethod
based on adding a regularization penalty to the least-squares PCA criterion in problem (3). Their
so-called sparse PCA via regularized SVD (sPCA-rSVD) method solves the following problem:

(t̂, p̂) = argmin
t,p

∥
∥
∥X − tp�

∥
∥
∥
2

F
+ Pλ(p)

s.t. ‖t‖22 = 1, (6)

where t̂p̂
�
is the best rank-one approximation of the datamatrixX (Eckart andYoung1936), t is the

first component score vector and p the corresponding loading vector, andPλ is a particular penalty
term that imposes sparsity on the component loadings. Three different sparsity inducing penalties
are considered in Shen and Huang (2008), including the l1-norm of the loadings also known as
the lasso. Problem (6) is used to find the first component score and component loading vectors,
the subsequent pairs (t̂k, p̂k) with k > 1 are obtained by solving problem (6) for the residual

matrix (i.e., X − t̂p̂
�
). Shen and Huang (2008) solved the problem by alternating between the

optimization of t given p̂ and p given t̂; they also discuss that the conditional optimization problem
of the loadings is separable in the variables. Such separability has two major advantages. First,
all loadings can be optimized simultaneously using simple expressions (e.g., soft-thresholding of
the inner product of the observed variable and component scores) which implies very efficient
computation even in the high-dimensional setting; second, it means that the problem can be solved
for a fixed number of zero coefficients. Trendafilov and Adachi (2015) used this advantages to
solve the least-squares PCA problem (3) with orthogonal T for k > 1 subject to a cardinality
constraint.

2.2. Sparse Weights

In this section, we present different methodologies to estimate the sparse component weights
matrixW. Given that the role ofW is to weight the original variables to form T = XW, sparsity
is desired onW. In this way, the component scores T would be summarized by a weighted linear
combination of those variables in X with nonzero elements inW.

2.2.1. Sparse PCA Via Elastic Net Regularization: SPCA One of the most popular methods
for PCA with sparse component weights was proposed by Zou et al. (2006). They showed that
the component weights6 are proportional to the solution of a ridge regression, and sparsity can be
attained by adding a lasso penalty. Zou et al. (2006) proposed to solve the following problem

(Ŵ, P̂) = argmin
W,P

∥
∥
∥X − XWP�

∥
∥
∥
2

F
+

K∑

k=1

λ ‖wk‖2 +
K∑

k=1

λ1,k ‖wk‖1

s.t. P�P = I. (7)

The terms
∑K

k=1 λ ‖wk‖2 and ∑K
k=1 λ1,k ‖wk‖1 are the ridge and lasso penalties, respectively. To

solve the problem (7) for given values of λ and λ1,k , Zou et al. (2006) proposed an alternating
minimization algorithm, that updates W and P alternately with the other variable is fixed to its
current estimate until some stopping criterion is reached. The update of P conditional upon fixed

6Referred as loadings in Zou et al. (2006).
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W is the orthogonal Procrustes rotation problem with known optimal solution (Golub and Van
Loan 2013). The conditional update of the weights W can be written as an elastic net regression
problem that regresses the component scores tk on the J variables x j (Zou and Hastie 2005). Note
that in the high-dimensional setting, this becomes a high-dimensional regression problem with
known numerical issues (Hastie et al. 2001). Then, as the lasso penalty yields at most I nonzero
coefficients, in the high-dimensional setting the ridge penalty is included. Efficient procedures
have been proposed for the elastic net regression problem such as the LARS-EN (Tibshirani
et al. 2004), cyclic coordinate descent (Friedman et al. 2007), and proximal gradient techniques
(Beck and Teboulle 2009). However, these algorithms remain subject to computational issues in
the high-dimensional setting (Yuan et al. 2011). Furthermore, a major challenge when using the
elastic net method is a proper tuning of the penalties. In this respect, the LARS-EN algorithm has
the benefit that it allows defining the number of nonzero values a priori.

2.2.2. Sparse PCA Via Cardinality Penalty: pathSPCA d’Aspremont et al. (2007a) focused on
the problem of maximizing the variance of the components with a cardinality penalty,

ŵ = argmax
‖w‖≤1

‖Xw‖2 − ρ ‖w‖0 , (8)

with ρ a parameter controlling the sparsity. d’Aspremont et al. (2007a) proposed a greedy algo-
rithm that provides candidate indexes Ir for r nonzero elements. Then the sparse component
weights vector is the solution of the problem (8) given Ir , which is:

ŵ = argmax
{
wI cr

=0, ‖w‖=1
}
‖Xw‖2 − ρr,

where I cr is the complement set of Ir , this is, the position with zero element in w. This algorithm
is called pathSPCA.

2.2.3. Sparse PCA Via Lasso Penalty: GPower Journée et al. (2010) showed that the sparse
PCA formulation based on maximizing the (scaled) standard deviation of the component scores
using a lasso penalty,

ŵ = argmax
‖w‖=1

‖Xw‖ − λ ‖w‖1 , (9)

is equivalent to solving initially:

ẑ = argmax
‖z‖≤1

∥
∥
∥S(X�z, λ)

∥
∥
∥
2
, (10)

where the soft-thresholding function S(X�z, λ) is applied component wise. Once ẑ is obtained,
define ŵ = S(X�ẑ, λ)/

∥
∥S(X�ẑ, λ)

∥
∥, which gives the sparsity pattern S(X�ẑ, λ) for w. Then,

the component weights are obtained via the ordinary PCA (problem (4)) by removing the cor-
responding zero variables from the original data set X. Note that the problem of solving for the
J -dimensional vector ŵ is reformulated in terms of solving for a I -dimensional vector z. In the
high-dimensional setting, this avoids to search in a large space. A gradient scheme is used to solve
problem (10). Additionally to the problem (9), Journée et al. (2010) also considered the problem
of maximizing the variance subject to a cardinality penalty.
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Table 1.
Summary of methods for sparse PCA.

Method Estimated Objective Sparsity Algorithm

VARIMAX P Rotation Threshold Block
SIMPLIMAX P Rotation Threshold Block
sPCA-rSVD P low-rank l1 Deflating
SPCA W Max. variance l1 and l2 Block
pathSPCA W Max. variance l0 Deflating
GPower W Max. variance l1 Deflating

2.3. Sparse PCA: Summary

PCA can be formulated as different optimization problems whose solutions happen to be
equivalent (see page 7). However, when having sparsity constraints in the formulation, neither
the SVD of the data set nor EVD of the covariance matrix is the solution of the sparse PCA
problem. Given the lack of awareness of the different formulations and goals of PCA, it is not
clear whatsoever when to use which method. In this section, we have discussed several methods
for sparse PCA that all share the principle of Ockham’s razor to represent the data in a reliable
though simple way. Table 1 summarizes the described methods: each of them imposes sparsity
either on the component loadings or on the component weights. The last column of Table 1,
“Algorithm”, indicates whether components are extracted one by one (deflation approach) or all
together (block approach).

To impose sparsity, PCA methods rely on one of three popular techniques: rotation, the
addition of a penalty, or a constraint (usually l0 or l17). Many of the sparse PCA formulations
are complex to solve, and a considerable amount of work is of an algorithmic nature; proposed
algorithms are often subject to local optima andwithout guaranteed convergence.Moreover, some
of the procedures also fail in terms of memory or are very slow to compute. Such algorithmic
issues are not the focus here, yet they may affect the numerical performance of the methods.

3. Simulation Study

A crucial question that we want to address using simulated data is when to use which sparse
PCA method. As discussed throughout the paper, choosing the proper approach depends on the
assumed model (sparse component loadings, sparse component weights, or both) and perfor-
mance of the method concerning various criteria. Here, we will use four measures to assess the
performance of the six sparse PCA methods discussed in Sect. 2.

3.1. Design

An essential factor in any simulation is the assumed data-generating model. Most of the
reported simulation studies for sparse PCA are based on the spiked covariance model for which
data follow amultivariate distributionwith zeromean, variance (� = VDVT ), with sparse leading
eigenvectorsVK , and the K largest eigenvalues much larger than the remaining ones. Papers using
this model include Zou et al. (2006), Shen and Huang (2008), Johnstone and Lu (2009). Another
model that has been considered is the sparse standard factor model that relies on Eq. (1), that is,

7Note that for l1 it is possible to find a dual representation though this is not always the case for the l0 pseudo-norm;
see, e.g., Bertsimas et al. (2016).

https://doi.org/10.1007/s11336-021-09773-2 Published online by Cambridge University Press

https://doi.org/10.1007/s11336-021-09773-2


902 PSYCHOMETRIKA

Table 2.
Simulation design factors and their levels.

Model sparse I J K V AF PS Repetions

X = TP� + E P 100, 500 10, 100, 1000 2, 3 80%, 95%, 100% 0.0, 0.5, 0.8 100
X = XWP� + E W 100, 500 10, 100, 1000 2, 3 80%, 95%, 100% 0.0, 0.5, 0.8 100
X = XWP� + E P andW 100, 500 10, 100, 1000 2, 3 80%, 95%, 100% 0.7, 0.8, 0.9 100

I sample size, J No. of variables, K N. of components, VAF variance accounted, PS proportion of sparsity

X = TP� + E with P sparse, and noise E independent of the components scores T; see Adachi
and Trendafilov (2016) for an example of a simulation study using this model. Also, more relaxed
versions have been considered under the same name.8 Here, we will rely on three versions of the
‘factor model’ set up such that they correspond to the data model structure assumed by the sparse
PCA methods considered in this study. First, consider

X = TP� + E (11)

with P sparse and T�T = I; note that model in Eq. (11) corresponds to the structure imposed by
Adachi and Trendafilov (2016). Second, considering the component scores explicitly as a function
of the weights,

X = XWP� + E (12)

withW sparse and, third, the same model in Eq. (12) but, with P andW being sparse simultane-
ously.

For generating the synthetic data sets, besides the data-generating model, we also considered
the following factors and levels: sample size with levels I = 100, 500, number of variables with
levels J = 10, 100, 1000, number of components with levels K = 2, 3, percentage of variance
accounted for the data set with levels VAF = 80%, 95%, 100%, and proportion of sparsity with
levels PS = 0.0, 0.5, 0.8 or PS = 0.7, 0.8, 0.9 when data are generated with component loadings
and component weights being equal, sparse, and orthogonal. These higher levels of sparsity allow
avoiding overlap of the nonzero values making it possible to have sparse structures that are
orthogonal. For each of the three types of models, a fully crossed design was used, resulting in
2× 3× 2× 3× 3 = 108 conditions. For each condition, 100 data sets were generated, ending up
with a total of 10, 800 data sets in each of the three data generating regimes. The data generation
design is summarized in Table 2.

Data were generated using one of three algorithms: Algorithm 1 is used for generating data
with a sparse component loadings structure, Algorithm 2 generates data with a sparse component
weights structure, and Algorithm 3 generates data with, orthogonal and equal sparse component
loadings and weights. Every algorithm begins with a rank-K decomposition obtained from the
truncated SVD decomposition of data generated from a multivariate normal distribution. Algo-
rithm 1 then imposes sparsity on the component loadings P = VD and has orthogonal component
scores T = U; Algorithm 2 imposes sparsity on the component weightsW = V. For Algorithm 3
there are two scenarios: (1) For the model that assumes P sparse, W = VD−1, and (2) for the
models that assumesW sparse, P = V. Additionally, every algorithm considers additive noise E
distributed according to a multivariate normal distribution with mean 0, and variance proportional
to the identity matrix, such that the final data set has the desired VAF. This error structure has

8Note that outside psychology, the least-squares model with component scores and loadings is often wrongly named
factor model.
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been also considered in leading sparse PCA papers (e.g., Johnstone and Lu 2009; Shen and Huang
2008; Zou et al. 2006), while Van Deun et al. (2019) considers generalizations of sparse PCA to
data with non-additive noise.

Input: I , J , K , PS, and VAF
Output: X ∈ R

I×J

1 Generate Xini tial by sampling I vectors from N (0J , IJ )
2 Obtain U, D, and V via the truncated SVD: Xini tial = UDV�
3 Replace by zero the PS proportion of elements of V having the smallest absolute value
4 Normalize each column of V to a unit vector
5 P ← VD
6 T ← U
7 X ← TP� + f E with E having I vectors drawn from N (0J , IJ ) and f such that
VAF = ‖TP�‖2/(‖TP�‖2 + f 2‖E‖2).

Algorithm 1: Data generation: Sparse Component loadings.

Input: I , J , K , PS, and VAF
Output: X ∈ R

I×J

1 Generate Xini tial by sampling I vectors from N (0J , IJ )
2 Obtain U, D, and V via the truncated SVD: Xini tial = UDV�
3 Replace the elements of V with the smallest absolute value by 0, according to the level
of sparsity

4 Normalize each column of V to a unit vector
5 T = Xini tialV
6 P is the solution of Xini tial = TP�
7 X ← Xini tialVP� + f E with E having I vectors drawn from N (0J , IJ ) and f such
that VAF = ‖TP�‖2/(‖TP�‖2 + f 2‖E‖2).

Algorithm 2: Data generation: Sparse Component Weights.

Each data set was analyzed using the six sparse PCA methods previously discussed: PCA
with simple thresholding of the rotated loadings using either Varimax or Simplimax rotation,
sPCA-rSVD, SPCA, pathSPCA, and GPower. Also, the performance of each method on each
data set was assessed using the following performance measures: the squared relative error (SRE)
of the model parameters, the misidentification rate (MR) of zero versus the nonzero status of the
sparse coefficients, the percentage of explained variance (PEV), and the cosine similarity (also
known as Tucker’s coefficient of congruence). The performance measures are defined as follows.

• The SRE is used to assess how well each method estimates the model component scores,
component loadings, and/or component weights. For a matrix A, the SRE is defined by

SRE(A) =
∥
∥Â − A

∥
∥2
F

‖A‖2F
,
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Input: I , J , K , PS, and VAF
Output: X ∈ R

I×J

1 Generate Xini tial by sampling I vectors from N (0J , IJ )
2 Obtain U, D, and V via the truncated SVD: Xini tial = UDV�
3 Replace by zero the PS proportion of elements of V having the smallest absolute value
4 Normalize and orthogonalize V, preserving the zero elements
5 if model relies on X = TP� + E, then
6 T ← U
7 W ← VD−1

8 P ← VD
9 end

10 if model relies on maximization of the variance, then
11 W ← V
12 P = W
13 T = Xini tialW
14 P is the solution of Xini tial = TP�
15 end
16 X ← TP� + f E with E having I vectors drawn from N (0J , IJ ) and f such that

VAF = ‖TP�‖2/(‖TP�‖2 + f 2‖E‖2).
Algorithm 3: Data generation: Sparse Component Weights and loadings.

with Â representing the estimatedmatrix. Values close to zero indicate good recovery of the
original model matrix by the method, while values close to or higher than one indicate bad
recovery. The SRE is calculated for the component scores T, component loadings P, and
component weightsW. The cosine similarity (or Tucker congruence) between matrices A
and B with dimension I × K is defined as

CosSim(A,B) = 1

K

K∑

k=1

a�
k bk

‖ak‖ ‖bk‖ (13)

with ak and bk the k-th column of matrix A and B, respectively. This value is calcu-
lated between the estimated component loadings and the population component weights
CosSim (̂P,W), the estimated component weights and the population component loadings
CosSim(Ŵ,P), and the estimated and population component scores CosSim(T̂,T). The
CosSim is only calculated for the simulation settings representing a mismatch between
the sparse constraints imposed by the data generating model and those imposed by the
method.

• The misidentification rate assesses how badly each model captures the sparse structure of
the data set. MR is defined as the percentage of zero values that are not recovered, that is,

MR = 1 − # of correctly classified zero elements

# of zero elements
.

MR is a value in the interval [0, 1]. When MR = 0, all zeros in the generated model
structure have been estimated as a zero by the sparse PCA method, while MR = 1 means
that none of the zeros in the model structure has been estimated as a zero by the method.
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Hence, methods set up to identify the underlying sparse structure should have MR values
close to zero. Note that in simulation conditions with the proportion of sparsity set to zero,
the MR is not calculated.

• The percentage of explained variance was implemented to assess how well the sparse
component solution explains the variance in the generated data. PEV is defined as

PEV = 1 −
∥
∥X̂ − X

∥
∥2
F

‖X‖2F
.

where X̂ represents the recovered data set and it is defined as X̂ = T̂P̂�. PEV is a value in
the interval [0, 1] and is desired to be close to the variance accounted by the generated data
(VAF); a PEV value greater than VAF means that the model extracts some of the residual
variation (i.e., the noise), which is a sign of overfitting.

Note that—except for PEV—all performance measures are sensitive to order permutations and
changing of the sign of the component scores, loadings, or weights. However, the methods consid-
ered here have sign invariance, and some of them also have permutational invariance. Therefore,
to make our measurement robust, we considered all possible permutations of the component
loadings/weights—including changes of their sign—and calculated all measurements with the
combination that produces the minimum SRE (or CosSim when is used).

3.2. Results

3.2.1. Overview We present the results for three different types of conditions. In condition
type I, the sparse structure of the generated data matches the sparse structure of the methods.
In condition type II, the data have been generated with more constraints than those set by the
methods. Finally, in condition type III, we assume a mismatch between generated and estimated
sparse structures (that is, analyzing data generated with sparse loadings using a method that yields
sparse weights and vice versa, see Table 3). In Figs. 1, 2, and 3 , we report results for the settings
that include two components, a PS equal to 50% and 80% for condition types I and III, and VAF
equal to 80%. Each panel contains a boxplot of a performance measure. Within each panel, a
dashed line divides the boxplots for sparse loadings methods (at the left side of the dashed line)
from those for sparse weights methods. For condition type II, the settings with two components
scores andVAF equal to 80%were included.9 All analyses were performed using the actual values
of the number of components and the sparsity level available in the simulation setting. Therefore,
differences in performance are not the result of an improper tuning of the meta-parameters by the
methods.

3.2.2. Condition Type I:Matching Sparsity Thefirst type of conditions thatwe discuss are those
with data generated using the same model structures as the corresponding methods. Therefore,
data generated by Algorithm 1 were analyzed with thresholding of rotated loadings and sPCA-
rSVD, while data generated by Algorithm 2 were analyzed with SPCA, pahSPCA, and GPower.
Figure 1 shows the results of the different performance measures for the simulation setting with
two components and VAF equal to 80%. It can be observed that among the methods with sparse
loadings, both thresholded Varimax and sPCA-rSVD perform reasonably well on all performance
measures and in all settings. Thresholded Simplimax, on the other hand, only performs well
with respect to explaining the variance. Comparing Varimax with sPCA-rSVD, we found that
sPCA-rSVD has the lowest MR in all conditions and has a better recovery of the loadings and

9Settings with three components and with the PS equal to 0% are available as Online Resource 1.
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Table 3.
Simulation description summary.

Condition Sparse structure Algorithm Measurements

Type I P Alg-I SRE MR PEV
W Alg-II SRE MR PEV

Type II P and W Alg-III SRE MR PEV
P and W Alg-III SRE MR PEV

Type III W Alg-II CosSim MR PEV
P Alg-I CosSim MR PEV

component scores in situations with many variables (J > 10). We found a strong effect of the
level of sparsity on the MR. MR is lower when the PS is higher: This is mainly an artefact as the
maximal MR is 1 − .6/.8 = 0.25 when the sparsity is 80% and 1 when it is 50%. For Varimax
and sPCA-rSVD (and in some conditions also for Simplimax), some effect of the number of
variables can be observed: Better results were obtained when the number of variables increases.
This is contrary to expectations, given reported issues for high-dimensional data (see Sect. 1.2).
However, as explained previously in Sect. 2, the estimation of the loadings with the sPCA-rSVD
method boils down to univariate regressions.

Among the methods imposing sparsity on the weights, GPower shows the best performance
in general. For the SRE on the component weights and component scores (first and second row),
it always had the lowest values when the proportion of sparsity was 80%. For different parameter
settings, GPower and SPCA presented similar results. Related to the PEV and MR, GPower
and SPCA showed favorable performance, although GPower obtained the best performance on
the latter. Both for SPCA and GPower, it holds that their SRE performance decreased with an
increasing number of variables; the estimation problem, with sparse component weights, suffers
from the high-dimensionality as the estimation of the weights streamlines to a high-dimensional
regression problem. Finally, pathSPCA had the worst performance on every measure. For theMR,
pathSPCA obtained values close to the maximum possible, and the SRE were always close to or
greater than 1.

3.2.3. Condition Type II: Double Sparsity In condition type II, the data were generated with
the component loadings and component weights simultaneously sparse, relying on Algorithm 3.
Figure 2 shows the results for the performance measures in the conditions with two components
and VAF equal to 80%. We found that sPCA-rSVD and GPower maintained good performance
and showed the best performance for sparse loadings and sparse weights methods, respectively.
Both rotation techniques and sPCA-rSVD performed better in general with a reduction of the
SRE of the component loadings and scores, a reduction of the MR, and a slight increment of the
PEV. The performance of SPCA is much worse in the settings with 100 and 1, 000 variables for
all measures but the PEV, which remains around 80%. PathSPCA still performs badly, especially
with respect to MR, where it almost attains the maximum possible value.

Besides comparisons within methods imposing sparsity on P and within methods imposing
sparsity on W, comparisons between the two purposes can also be made (PvsW). In condition
type I and II, sPCA-rSVD outperformed GPower on all measures but PEV, where they showed
similar performance. This indicates that methods for sparse component loadings recover better
the sparse component loading structure than that methods for sparse component weights recover
the sparse component weight structure. The comparison also indicates that sparse component
weights methods have higher PEV.
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Figure 1.
Matching sparsity: Boxplots of the performance measures in conditions with 80% of variance accounted by the model in
the data and two components. Within each panel, a dashed line divides the boxplots for sparse loadings methods (at the
left side of the dashed line) from those for sparse weights methods. The top row summarizes the squared relative error
(SRE-LW) for the loadings (at the left of the dashed line) and weights (at the right of the dashed line), the second row the
SRE-S for the component scores, the third row (PEV) the proportion of variance in the data explained by the estimated
model, and the bottom row the misidentification rate (MR).

3.2.4. Condition Type III: Mismatching Sparsity In condition type III, the sparse structures
were mismatched between generated and estimated structures, that is, data generated with sparse
componentweightswere analyzedwith sparse loadingsmethodswhile datawith sparse component
loadingswere analyzedwithmethods for sparseweights. This implies that sparse loadingsmethods
were assessed using data generated with Algorithm 2, and sparse weights methods are assessed
using data generated with Algorithm 1. Additionally, the similarity measure described in Eq. (13)
was used to assess the recovery of the component loadings/weights and scores instead of SRE.

Figure 3 summarizes the results for the setting with two components and VAF equal to 80%.
Note that for the sparse loadings methods, the recovery of the component weights is calculated
(and thus not of the component loadings), while for sparse weights methods the recovery of
the component loadings is calculated. All methods for sparse loadings—thus imposing sparse
component loadings—recover the component weights and component scores well; Simplimax
even obtains better results than Varimax in the conditions with 50% of sparsity and in some
conditions also than sPCA-rSVD. Compared to condition types I and II, when 80% sparsity is
imposed and J > I the PEV drops. This can be understood by the fact that data were generated
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Figure 2.
Double sparsity: Boxplots of the performance measures in conditions with 80% of variance accounted by the model in
the data and two components. Within each panel, a dashed line divides the boxplots for sparse loadings methods (at the
left side of the dashed line) from those for sparse weights methods. The top row summarizes the squared relative error
(SRE-LW) for the loadings (at the left of the dashed line) and weights (at the right of the dashed line), the second row the
SRE-S for the component scores, the third row (PEV) the proportion of variance in the data explained by the estimated
model, and the bottom row the misidentification rate (MR).

with sparse component weights while they were estimated with sparse component loadings, the
latter having a more direct impact on the recovered data x̂i j than the former.

Methods for sparse weights show the same pattern of results as in condition type I and notably
maintain the same PEV as in condition types I and II. GPower outperformed SPCA in most of the
settings and measures, although the latter still shows reasonably good results except with respect
toMR in the high-dimensional settings. Compared to condition type I, GPower also outperformed
SPCA on the MR in conditions with 50% of sparsity; its performance improved in this condition
with mismatched sparsity. PathSPCA performed badly on every measure. Additionally, GPower
outperformed sPCA-rSVD on all measures and in almost all conditions except for those with
J = 10. Taken together, these results suggest that an underlying sparse component loading
structure can be recovered better by a sparse component weight method and with higher PEV
than vice versa.

We used Figs. 4 and 5 to summarize the MR and PEV of the three condition types. First
we discuss MR. The robustness of the methods in capturing the sparse structure under varying
data generation schemes can be observed in Fig. 4. We can see, for example, that Simplimax
showed its best MR in the conditions where sparseness is imposed on the component weights
(condition types II and III). On the other hand, Varimax and sPCA-rSVD showed their best results
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Figure 3.
Mismatching sparsity: boxplots of the performance measures in conditions with 80% of variance accounted by the model
in the data and two components. Within each panel, a dashed line divides the boxplots for sparse loadings methods (at the
left side of the dashed line) from those for sparse weights methods. The top row summarizes the squared relative error
(SRE-LW) for the loadings (at the left of the dashed line) and weights (at the right of the dashed line), the second row the
SRE-S for the component scores, the third row (PEV) the proportion of variance in the data explained by the estimated
model, and the bottom row the misidentification rate (MR).

in condition type I. SPCA presented good results only when I = 10 for the three condition types.
GPower, although being a method that imposes sparseness on the weights, has a better recovery
of the sparse structure when data are generated with sparse loadings (condition types II and III).
Second, regarding the PEV (see Fig. 5), GPower and SPCA showed the best PEV under each
condition type, and methods for sparse loadings only have a comparable PEV when data were
generated with sparseness both on loadings and weights (condition type II). On both measures,
MR and PEV, pathSPCA consistently showed poor performance across every condition type.
Additionally, comparing the MR of GPower (sPCA-rSVD) in condition type I with sPCA-rSVD
(GPower) performance in condition type III, we see that the sparse loading structure of sPCA-
rSVD does a better job in finding the sparse structure of component weights for data generated
with a sparse component weight structure. GPower, however, is not better in finding the underlying
sparse loading structure than sPCA-rSVD.

The different results in condition types I and II that we observe in Fig. 4 further support
the hypothesis that sparse component loadings and sparse component weights should be treated
differently. If sparse component loadings and sparse component weights were the same, we would
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Figure 4.
Misidentification rate (MR): boxplots of the MR in conditions with 80% of variance accounted by the model in the data,
a proportion of sparsity of 0.8, and two components. Within each panel, a dashed line is used to divide the boxplots for
sparse loadings methods (at the left side of the dashed line) from those for sparse weights methods.
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Figure 5.
Percentage of explained variance (PEV): boxplots of the PEV in conditions with 80% of variance accounted by the model
in the data, a proportion of sparsity of 0.8, and two components. Within each panel, a dashed line is used to divide the
boxplots for sparse loadings methods (at the left side of the dashed line) from those for sparse weights methods.

have observed the same results in conditions type I and III, which is not the case. In condition
type II, it is assumed that both component loadings and weights have the same sparse structure,
and methods for sparse loadings showed a better performance recovering the sparse structure in
the data sets.
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3.3. Summary

Here we focus on two essential aims of a sparse PCA analysis, namely recovering the sparse-
ness structure (which variables are associated with the components and which ones not) and
explaining maximal variance in a parsimonious way. (This is using components that are a linear
combination of a few variables only.) When recovery of the sparseness structure is the aim, a
sparse loading approach (preferably sPCA-rSVD) should be used unless the data have an under-
lying sparse weight structure. (In the latter case, the GPower approach with sparse weights should
be used). When summarizing the variables with a few derived variables that explain maximal
variance and are based on a linear combination of a few variables only is the goal, a sparse weight
approach should be used, preferably GPower.

Although the present results convincingly favor sPCA-rSVD and GPower, we should
acknowledge that we unrealistically used knowledge about the number of components and the
level of sparseness to implement the methodologies. These factors’ actual values are only avail-
able in simulation studies and not when using empirical data sets. Then, parameters such as
the proportion of sparsity and the number of components require additional techniques to select
them. Those techniques are out of the scope of this study. The following section illustrates the
implementation of sparse PCA methodologies using empirical data sets.

4. Empirical Applications

In this section, we use two empirical data sets to illustrate the application of sparse PCA
in practice. We used a highly structured data set with variables designed to measure one of five
underlying psychological constructs.Here the aimof the sparse PCAanalysis is to reveal the sparse
structure that underlies the data: each variable is expected to be associated to one component only.
A second data set was selected to show the use of sparse PCA as a summarization tool in the
high-dimensional setting. For this purpose, we analyze a ultra-high-dimensional genetic data set
with the aim of finding a limited set of genes that allow to classify subjects into one of three
groups (two autism-related groups and a control group).

An important issue that needs to be addressed for these empirical applications, and that was
not addressed in the simulation study, is the choice of the number of components and the level
of sparsity. For the number of components, we rely on the literature and substantive arguments
made therein. For the proportion of sparsity, we rely on a data driven method, namely the Index of
sparseness (IS) introduced by Trendafilov (2014), that was shown to outperform other methods
such as cross-validation and the BIC in estimating the true proportion of sparsity (Gu et al. 2019).
The IS is defined as

IS = PEVsparse × PEVpca × PS

with PEVsparse, PEVpca, and PS denoting the PEV using a sparse method, PEV using ordinary
PCA, and the proportion of sparsity (loadings or weights), respectively. The IS value increases
with the goodness-of-fit PEVsparse, the higher adjusted variance PEVpca, and the sparseness: the
level of sparsity is determined by maximizing IS.

4.1. Big Five Data

We used data on the Big Five personality dimensions publicly available from the R-package
qgraph (Epskamp et al. 2012), henceforth called Big Five data. The data set contains the scores
of 500 individuals on the NEO-PI-R questionnaire (McCrae and Costa 1999) consisting of five
sets of 48 items (i.e., 240 items in total), each set measuring one of the Big Five personality
traits (Neuroticism, Extraversion, Openness to Experience, Agreeableness, and Conscientious-
ness) (Dolan et al. 2009). For this kind of data, interest is usually in the correlation patterns in
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Index of sparseness(IS) and percentage of explained variance (PEV) against the proportion of sparsity (PS).

the data (component loadings); therefore, each variable was mean-centered and scaled to unit
variance. Following the design of the questionnaire, we chose K = 5 five components. Ordinary
PCA explained 24% of the total variance; this is the maximal amount of variance that can be
explained with 5 components. We will analyze these data with six sparse PCA methods. Yet,
before doing so, we first need to tune the level of sparseness. As sPCA-rSVD showed the best
performance in the simulation study, we use this method in combination with IS to determine the
level of sparseness. Figure 6 shows the values for the IS and PEV as a function of the proportion
of sparsity for sPCA-rSVD, calculated as the proportion of the 5×240 loadings that are zero. The
maximum IS for sPCA-rSVD is attained at a sparsity proportion of 0.73 having 18% explained
variance. This proportion of sparsity corresponds to a sparse model having only 64 nonzero out
of 240 loadings for each component; this is reasonably close to the 48 nonzero loadings that may
be expected on the basis of the design of the questionnaire.

The biplot representation of the first two components after running PCA and SPCA-rSVD
is shown in Fig. 7. Each variable is represented by an oriented vector and each subject by a dot.
Figure 7a depicts the first two PCA components. Each item loads on both components, and the
solution is hard to interpret; sparseness has been introduced to improve interpretability. The biplot
representation of the two first sPCA-rSVD components is shown in Fig. 7b. Most of the items
load just on one component; this makes interpretation of the components easy.

Table 4 presents a summary of the number of items in each set that have a nonzero loading for
the five components. Using sPCA-rSVD, except for the fourth component, most nonzero loadings
belong to one particular item set. For instance, from the 64 items that load on component 1, 34
belong to Neuroticism and 17 to Extraversion; on the other hand, items having a nonzero loading
on component 2, mainly belong to Agreeableness (29 items), and Extraversion (19 items). Hence,
the components are strongly associated with one specific trait; this is especially true for the third
component (mainly Conscientiousness items) and fifth component (mostly Openness items). On
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Figure 7.
Biplot: the dots in each subplot represent the component scores, the arrows the component loadings.

the fourth component, relatively many items from both Extraversion and Agreeableness load.
The prior expectation may be that the items of one set load only on one particular component
and thus it invalidates the sPCA-rSVD method. Yet, many studies have shown the type of pattern
found here, for example, high cross-loadings for Extraversion and Agreeableness after Procrustes
rotation to the predefined structure (McCrae et al. 2005).

To illustrate the comparative performance on the same empirical data, we implemented the
other methods using the Big Five data set with the total number of nonzero coefficients fixed
to the one found for sPCA-rSVD. As can be seen from Table 4, the Varimax results largely
reflect the design underlying the questionnaire with items designed to measure a particular trait
loading only on one particular component. Simplimax, on the other hand, does not recover the
underlying structure; it has no component that is clearly dominated by the extraversion items, and
the conscientiousness trait does not show up as a single component but rather as two (components
2 and 3). Using methods with sparse weights, the zero/nonzero pattern of the SPCA weights is
very similar to the pattern of the Simplimax loadings. However, SPCA explains only 13% of the
variance. PathSPCA showed no particular structure, each component is a weighted combination
of variables related to all traits, and these components explain only 9% of the variance. Finally,
by using GPower, 22% of the variance can be explained. However, the summary representations
by the GPower components do not include the variables related to the Neuroticism; this trait
practically disappeared. Only two and one variable of the Neuroticism set of items have a nonzero
weight for component 1 and 2, respectively. Additionally, items designed tomeasure theOpenness
trait underlie three of the five components (namely, components 2, 3, and 5).

Overall, the results presented in Table 4 highlight the importance of taking the purpose of
analysis into account when choosing the sparse PCA method. We observe that methods imposing
sparseness on the loadings are more suitable for the purpose of exploratory data analysis than
methods imposing sparseness on the component weights. The sparsity pattern of the sPCA-rSVD
and Varimax loadings reflected the questionnaire design underlying the data best even though
the latter showed poor performance on every performance measure in the simulation study. On
the other hand, GPower explained the most variance but could not recover the personality traits
from the data. Finally, in line with the simulation study, pathSPCA failed to explain a reasonable
amount of variance and to recover the underlying traits.
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Table 4.
Sparse loading and weights composition by trait (OCEAN).

sPCArSVD Varimax Simplimax

p1 p2 p3 p4 p5 p1 p2 p3 p4 p5 p1 p2 p3 p4 p5

Openness 0 9 1 4 41 1 0 8 5 42 0 17 9 4 30
Concientiousness 9 3 11 43 2 7 7 3 44 4 15 0 23 31 7
Extraversion 17 19 21 6 9 16 15 30 5 7 15 10 6 7 11
Agreeableness 4 29 23 2 5 3 33 16 4 4 6 33 13 14 5
Neuroticism 34 4 8 9 7 37 9 7 6 7 28 4 13 8 11
Total nonzero 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

SPCA pathSPCA Gpower

w1 w2 w3 w4 w5 w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

Openness 0 17 4 13 25 16 12 14 12 10 27 4 12 41 33
Concientiousness 15 0 26 24 8 15 15 11 10 13 11 3 42 11 15
Extraversion 15 10 15 6 16 16 10 14 14 10 3 34 5 10 12
Agreeableness 6 27 13 10 3 15 9 11 17 12 39 4 1 5 5
Neuroticism 28 10 6 11 12 17 10 12 9 16 1 2 0 0 0
Total nonzero 64 64 64 64 64 79 56 62 62 61 81 47 60 67 65

Each column represents the number of items in each loading/weight that have a nonzero value in each trait.
The components were ordered such that the number of nonzero loading/weights on the diagonal ismaximized

4.2. Gene Expression Data

To illustrate sparse PCA used as a summarization tool, we rely on publicly available gene
expression data comparing 14 male control subjects to 13 male autistic subjects 10. The autism
subjects were further subdivided in two groups: a group of six with autism caused by a fragile
X mutation (FMR1-FM) and a group of seven with autism caused by a 15q11–q13 duplication
(dup15q). For each subject the transcription rates of 43, 893 probes, corresponding to 18, 498
unique genes, were obtained; hence the number of variables is much larger than the number of
observations, with known numerical issues for generalized linear models (Hastie et al. 2001).
Often the approach followed to account for such high-dimensionality is to first reduce the large
set of variables to a few components. Because it showed the best performance in the simulation
study, we will use GPower method to select the relevant genes that summarize the component
scores.

Prior to analyzing the data, we centered and scaled them to unit variance; in this way we focus
on the correlation between the expression values. Following the original publication, we select
K = 3 three components ( Nishimura et al. 2007). Figure 8 shows the IS and PEV as a function
of the proportion of sparsity. The maximal PEV with three components, obtained with ordinary
PCA, accounts for 32% of the total variance. The maximum value of IS is reached at a proportion
of sparsity of 0.97 with a PEV of 31%. This corresponds to 3% or 4, 323 nonzero component
weights, spread over 4, 323 different variables each having exactly one nonzeroweight. Therefore,
we found an efficient reduction of the high-dimensional data to just three derived variables (the
component score vectors) using approximately 10% of the original variables while losing only 1%

10The data can be accessed from the NCBI GEO database ( Nishimura et al. 2007), using accession number GSE7329.
After personally contacting the corresponding author, we were informed that the data for the individuals GSM176586
(autism with FMR1FM, AU046707), GSM176589 (autism with FMR1FM, AU046708), and GSM176615 (control,
AU1165305) were not correctly stored in the database. Therefore, the data for these individuals were not used in our
analyses.
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Figure 8.
Index of sparseness and percentage of explained variance against the proportion of sparsity when applying GPower to the
gene expression data set.

of the variance accounted compared to when all variables are used in constructing the components
via ordinary PCA.

When using the other sparse PCA methods, only sPCA-rSVD can handle the dimension of
the data set computationally. However, if sPCA-rSVD had been used as a summarization tool
with the same optimal proportion of sparseness found for GPower (PS=0.97), virtually 0% of the
variance would have been explained, evidencing that methods imposing sparsity in the weights
are more suitable for summarization purpose.

Figure 9 shows the scatter plot of the three component scores. From Fig. 9a, we observe
that the first component separates the individuals with autism from the control group; this could
be expected as the largest source of variation in the data is the distinction between control and
autistic subjects. One may notice that Nishimura et al. (2007) constructed components scores
using a subset of 293 probes with significant difference in expression between the three groups
in an analysis of variance (ANOVA). In other words, the authors used an informed approach to
select the relevant genes while sparse PCA methods (here GPower) do not rely on such external
information; still, a separation between the two large groups can be observed from Fig. 9b.
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Figure 9.
Scatter plot of component scores.

5. Concluding Remarks

As explained in this study, different PCA formulations give the same estimated scores and
lead to estimates of the model coefficients that are the same or only differ up to scaling or rotation.
Not surprisingly, little attention has been given to existing differences between the PCAmethods,
which is exemplified by the different meanings given to the term ‘loadings’ in the literature. Based
on these different formulations of PCA, different methods for sparse PCA have been proposed
where most of the attention has been given to the different ways of imposing sparsity and the
numerical procedures used to solve the optimization problems. But, the sparse PCA methods are
different on a more fundamental level and this is seldom discussed; the (implicitly) assumed data-
generating model is often overlooked, while sparsity is imposed on different model structures
(either the component weights or the component loadings). Also sparse PCA may serve different
purposes in which some methods may be better than other ones. For instance, for exploratory
data analysis, finding structure in the data and attaching meaning to the components is of primary
importance. Then, good recovery of the relevant variables and the structure therein is required.
For summarization, the primary focus is to find component scores that maximally account for the
variance in the data. Here, the focus is on the proportion of explained variance and, sometimes,
on recovering the component scores.

To offer users of sparse PCA guidance onwhichmethod to use and under what circumstances,
in a simulation study, we compared six popular methods under three data-generating schemes and
four performance measures. Assuming matching sparsity (e.g., generating data with a sparse
loading model and estimating them back with a method for sparse loadings), sPCA-rSVDwas the
preferred method based on every performance criterion for sparse loadings methods, and GPower
was the best method among the sparse weights methods. In psychology, a common practice is
to threshold the loadings obtained after rotation to a simple structure. In our simulation study,
thresholding sometimes gave good results but sometimes also produced much worse results than
the sPCA-rSVD approach. Considering that the data generating model may be unknown and that
there may be a mismatch in sparsity, sPCA-rSVD is overall the best method for recovering the
relevant variables, and GPower performs best in terms of explained variance.

Finally, from a practical point of view, the availability of software is of utmost importance
for the use of data analysis methods. Unfortunately, sPCA-rSVD and GPower have not been (yet)
implemented in major software packages such as SPSS. GPower, to our knowledge, is currently
only available in MATLAB. sPCA-rSVD with a cardinality constraint is available in the Clus-
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terSSCA R-package (Yuan et al. 2019), while a penalized approach is part of the RegularizedSCA
R-package (Gu and Van Deun 2019).
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