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EXTENDED CHROMATIC POLYNOMIALS 

ANDREW SOBCZYK AND JAMES O. GETTYS, JR. 

1. Introduction. Let G be a finite graph with non-empty vertex setT^(G) 
and edge set (^ (G) (see [2]). Let X be a positive integer. Tutte [5] defines a 
X-colouring of G as a mapping of 7^(G) into the set I\ = {1, 2, 3, . . . , X} with 
the property that two ends of any edge are mapped onto distinct integers. The 
elements of I\ are commonly called "colours." If P(G, X) represents the number 
of X-colourings of G, it is well known that P(G, X) can be expressed as a poly­
nomial in X. For this reason P(G, X) is usually referred to as the chromatic 
polynomial of G. 

The chromatic polynomial P(G, X) was first suggested as an approach to the 
four-colour conjecture. To quote Tutte [5]: ". . . many people are specially 
interested in the value X = 4. There is a long-standing conjecture that P(M, 4) is 
positive for every triangulation M" Although the four-colour conjecture 
remains, chromatic polynomials are of interest in themselves and occupy a 
prominent place in the literature. 

Many well known combinatorial problems seem to suggest other chromatic 
polynomials in much the same way as the four-colour conjecture prompted the 
definition of P(G, X). For example, consider the class of Ramsey numbers 
R(ku . . . , k\; 2). (See [1 ; 4; 3, Chapter IV].) For k = (klt . . . , k\), define 
Ek(G, X) to be the number of mappings/of <o (G) into I\, which have the property 
that for each v = 1, . . . , X, f~l{v) does not contain all the edges of any complete 
subgraph on as many as kv vertices. For G the complete graph Kn on n vertices, 
if Ek(Knj X) > 0, then n ^ R(klt . . . , k\; 2). The determination of the largest 
integer n for which Ek(Kn, X) > 0, for example in a case with X ^ 4 and 
ki è 3, . . . , k\ ^ 3, would be a determination of one of the numbers 
R(ki, . . . , k\;2) which have been unknown for a long time. (It is known that 
R(4:, 4; 2) = 17, and that R(3, 3, 3; 2) = 16.) 

Of equal interest are the chromatic polynomials Vk(G, X) and Tk(G, X). Hence 
Vk(G, X) is the number of mappings of ^(G) into I\ which are not constant on 
the vertices of any complete ^-subgraph of G; and Tk(G, X) is the number of 
mappings of the set of triangles of G into I\ which are not constant on the 
triangles of any complete ^-subgraph of G. In § 3 we specialize Ek(G, X) to the 
case ki = . . . = k\ = k, where now we regard k as a single positive integer 
(rather than as an ordered set of X positive integers). Of course Vk and Tk have 
analogous generalizations, which, like the general Ek, are not studied in the 
present paper. Also, for the main results of this paper, G will be Kn. 
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2. The chromatic polynomials Vk(G, X). By a (V, k, X)-colouring of 
a graph G we mean a mapping of 7^(G) into I\ which is not constant on the 
vertices of any complete ^-subgraph of G. 

Our polynomial ViiQ, X), and the traditional chromatic polynomial P(G, X) as 
defined by Tutte [5], are similar but not identical. Under Tutte's definition, if G 
has a loop, then P(G, X) is 0. On the other hand, if x denotes the loop of G, then 
V2(G, X) = V2(G\x, X). In fact we have the following lemma. 

LEMMA I. If G has a loop x, then Vk(G, X) = Vk(G\x, X). 

The proof is immediate from the definition of a (V, k, X)-colouring. 

LEMMA 2. Let G be the union of components Hi, ... , Hn. Then 

V*(G,\) = f [ Vk{Hu\). 
i=i 

Proof. Since Ht C\ Hj = 0 for i ^ j , each combination of (V, k, X)-colourings 
of the Hi yields a (V, k, X)-colouring of G; and each (V, k, X)-colouring of G is 
some combination of (V, k, X)-colourings of the Ht. 

THEOREM 1. If G is any finite graph, then Vk(G, X) can be expressed as a 
polynomial in X with the following properties: 

(i) The coefficient aiOf\l is an integer for all i. 
(ii) Coefficient a^ ^ 0 only if c(G) ^ i ^ m, where c(G) is the number of com­

ponents of G, and m is the cardinality of V(G). 
(iii) Coefficient am is 1. 

Proof. Let an>k be the number of mappings of V(G) onto In which are not 
constant on any complete ^-subgraph of G. Clearly, the an,k are integers for all 
integers k and n. Also, since necessarily an = 0 for n > m, we have 

n=i \n/ 

where I ) is taken to be 0 if X < 0 or X < n. Clearly Vk(G, X) is a polynomial in X 

with integer coefficients. The term of highest degree, Xm, of Vk(G, X) is obtained 

from the above expression when n = m. Since ( ) contains a factor X for each 

value of n, we see that a non-zero constant term in Vk(G, X) is not possible. The 
lower bound of c(G) for the exponent of X is now a consequence of Lemma 2. 
Note that c(G) is by no means a strict lower bound on the exponents of X in 
Vk(G, X). For k > 2 we can obtain an arbitrarily large connected graph G which 
contains no complete ^-subgraph. For such a graph G, Vk(G, X) = m, although 
c(G) = 1. 

Clearly Vi{Kn, X) = P{Kn, X), and we obtain directly 
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T H E O R E M 2. The polynomial Vz(Kn, X) is given by 

X! ( " y i / 2 2X!w! 

(X - n)\ ' t l [X - (n + 2* + l)/2]!2 (n-2i+lT/2(2i - 1)!(» - 2* + 1) 

i/- « w o<W; «red by 

X! ( w g / 2 2XW 
(X - n)\ ^ jA [X - in + 2i)/2]!2(w-2iy/2(2^)!(^ - 2i) 

Proof. Let w be an odd integer. Suppose first that X ̂  n. Define a ^-partition & 
of a graph G to be a partition of the s e t ^ ( G ) such that each part of & contains at 
most t elements. At most two vertices of Kn can share the same colour in a 
(V, 3, X)-colouring since any three vertices of Kn are the vertices of a triangle. 
Hence each (V, 3, X)-colouring of Kn is a colouring of some 2-partition & of i£n 

in which distinct parts of SP receive different colours. There can be 1, 3, 5, . . . , 
or n one-element parts to a 2-partition of Kn. \i& has k one-element parts, then 
it has (n — k)/2 two-element parts and (n + k)/2 parts in all. There are 
therefore 

( - ^ 2 ) / 2 (n - 2i)\ 2n\ 
ho (n - 2i - 2)\{n - k) 2in~"1/2kl(n - k) 

2-partitions with k one-element parts. Colouring each part of & differently 

requires (n + k)/2 colours. There are ( , , , , /c? J ways of choosing (n + k)/2 

colours, and [(n + k)/2]\ ways to colour the (n + k)/2 parts of £P. We see now 
that there are 

^ 2 2X!«! 
oât=i [X - in + k)/2)\2(n~k)/2kl(n - k) 

ways of colouring the 2-partitions of Kn with at least one two-element part. 
There are clearly X!/(X — n)\ ways to colour the 2-partition of Kn with n 
one-element parts. Hence for odd n, 

V,(Kn, X) = X!/(X - n)\ + o E = i pT_ {n + k)/2^=-^k\{n - k) ' 

We now replace k by 2i — 1, and let i range from 1 to (n — l ) /2 , to obtain a 
conventional summation. Thus the theorem is established for odd n. For even n 
the proof is similar. 

A more satisfactory formula is given by: 

THEOREM 3. Let n, k be integers with n ^ k ^ 3, and let 
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Then 

Vk(Kn, X) 

rt(" 
1=1 \ 

- (k-iKi-iy 
F2(X, m) Vk-i(Kn-m]c+m, X - m) 

Proof. First, any (V, k — 1, X)-colouring of Kn is a (V, k, X)-colouring of Kn 

so that Vk(Kn, X) ^ Vk-i(Kn, X). Next any (V, k, X) -colouring of Kn which is not 
a (V, k — 1, X)-colouring must be constant on at least one complete (k — 1)-
subgraph of Kn. We shall call a (V, k, X)-colouring of Kn which is constant on 
exactly n (k — 1)-subgraphs an Ev(n, k — 1, X)-colouring of Kn. There are 

M-V-T-") 
ways to choose n pair-wise disjoint (k — 1)-subgraphs of Kn. If each of these n 
(k — 1)-subgraphs is to be monochromatic, there are ^(X, m) ways to colour 
them so as to avoid a monochromatic ^-subgraph. For each such colouring of m 
i^-i-subgraphs there are Vk-i(Kn-m(k-D, X — m) ways to colour the remaining 
vertices of Kn to obtain an Ev(m, k — 1, X)-colouring of Kn. Hence there are 

[n(« k - 1 
D̂  V2(\,tn)Vk-i(Kn-mik-lh X - m) 

Ev(m, k — 1, X)-colourings of Kn. Since m can range from 0 to 
theorem follows if we understand that 

Ik - 1 
, the 

I Î ( M (*-D(* 
k - 1 

1) 
) • 

F2(X,0) 

which is standard (see [5]). 

Determination of Vk{G, X) provides more information than is at first realized. 
We have, for example, the following relationships: 

Vk(G, 1) = ahk 

Vk(G, 2) = a2tk + 2ahk 

Vk(G, 3) = az>k + 3a2,k + Sahk 

Vk(G,m) = am>k + s (*K 
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Since am = m ! for all graphs G, this system of equations provides a nice check of 
the correctness of a calculated Vk(G, X). Also, knowledge of the a* is important in 
itself. 

THEOREM 4. For any graph G, if F2(G, X) > 0, then 

K,(G,[^1])>0. 
Proof. Suppose there exists a map A: V(G) -

2-subgraph of G. If X is even, define A': V(G) 
I\ which is not constant on any 

* h/z by 

A'(v) = 
A(P) 

A(fO 

if A(i>) 

X ., 

2 l f A ( » ) > ^ . 

Now suppose A.f(Vi) = a(i = 1, 2, 3) where vly v2j and vz are the vertices of a 
3-subgraph of G, and 1 ^ a ^ X/2. Then either A(^) = A(fl̂ ) = a, or 
A(flf) = A(^) = a + X/2, for some i, j G 1$. In either case we reach a contradic­
tion to the definition of A, since vt and Vj are vertices of a 2-subgraph of G for all 
i, j e h. Hence A' is a (F, 3, X/2)-colouring of G. If X is odd, define A": F(G) -» 
/(x+D/2 b y 

f 
A" = 

A(») 

A(») 
X + l 

if A(v) ^ 

if A(») > 

X + 1 
2 

X + l 
2 v ' ^ 2 ' 

Using an argument similar to the one employed above we see that A" is a 
(7 , 3, (X + l)/2)-colouring of G. 

Hence the existence of a (F, 2, X)-colouring of G implies the existence of a 
(F, 2, [(X + l)/2])-colouring of G, and the theorem follows. 

COROLLARY 1. For any loopless planar graph G, Vz(G, 3) > 0. 

Proof. If G is planar and loopless, then F2(G, 5) > 0. 

COROLLARY 2. The truth of the four-colour conjecture implies Vz(G, 2) > 0 for 
every planar graph G. 

3. The chromatic polynomials Ek(G, X). By an (£, k, X)-colouring of 
a graph G we mean a mapping of E(G) into I\ that is not constant on the edges 
of any ^-subgraph of G. 

LEMMA 3. Let G be the union of subgraphs Hu H2, Hz, . . . , Hn such that 
Ht C\ Hj = 0 or a singleton vertex, for each (i, j) with i ^ j . Then 

Ek(G, X) = ft Ek(Hi, X). 

Proof. The proof is similar to that of Lemma 2. 
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THEOREM 5. If G is any finite graph with \E(G) \ > 0, then Ek(G, X) can be 
expressed as a polynomial in X with the following properties: 

(i) The coefficient at of X* is an integer for all i. 
(ii) at 9^ 0 only if C(G) S i ^ P, where C(G) is the number of non-trivial 

components of G, and p = |-E(G)|. 
(iii) Av = 1. 

Proof. The proof is similar to that of Theorem 1, if we replace aUik by bn,k, 
where bniJc is the number of mappings of E(G) onto In which are non-constant on 
the edges of any ^-subgraph of G. 

LEMMA 4. The edge-polynomial Ei(Ki, X) = X3 — X. 

Proof. There are X3 colourings of the edges of K% with X colours. However, X of 
these are not (E, 3, X)-colourings. Hence E^Kz, X) = X3 — X. 

Rather than use the subtractive approach, as in the proof of Lemma 4, we can 
count the number of (E, 3, X)-colourings directly. Label the edges of K% as 
Xi, x2, and x$. The number of (E, 3, X)-colourings with x± and x2 of the same 
colour is X(X — 1). The number of (£, 3, X)-colourings with Xi and x2 of different 
colours is X2(X — 1). Hence as before, 

£3(i^3, X) = X(X - 1) + X2(X - 1) = X3 - X. 

LEMMA 5. The edge-polynomial 

EZ(K*, X) = X6 - 4X4 + 6X2 - 3X. 

Proof. There are X6 colourings of the edges of K\ with X colours. Of the X6 

colourings, X are constant on KA. Also 4X[X(X - 1)(X - 2) + 3(X - l)2 + (X - 1)] 
colourings are constant on a single triangle of K±. Here 4X corresponds to the 
four triangles of K± and the X ways in which one can have all of its edges coloured 
thesame;X(X — 1)(X — 2),3(X — l)2, and (X — 1) indicate the number of ways 
of colouring the remaining three edges of K± all differently, two alike, and all 
alike, respectively. Finally, there are 6X(X — 1) colourings which are constant 
on exactly two triangles of K±—there are six ways to leave out an edge, X ways 
to colour the two triangles, and X — 1 ways to colour the remaining edge. Hence 

£3(^4, X) = X6 - X - 4X[X(X - 1)(X - 2) + 3(X - l)2 + (X - 1)] - 6X(X - 1) 

= X6 + 4X4 + 6X2 - 3X. 

Again we offer an alternate method of counting. Choose a vertex v of K±. 

4T 
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There are XE3(i£3, X — 1)(-E, 3, X)-colourings of K^ with all three edges at v 

X - 1 
coloured alike; 3X(X — 1) •E*(KZ, X) (£, 3, X)-colourings of K± with 

exactly two of the three edges at v coloured alike; and X(X — 1)(X — 2) 
E3(i£3, X)(E, 3, X)-colourings of K4 with each of the three edges at v coloured 
differently. Hence, 

rx - i 
£3(i£4, X) = X£3(X3, X - 1) + 3X(X - 1) :EZ(KZ, X) 

+ X ( X - 1 ) ( X - 2)£3(X3, X) 

= XD 4X4 + 6X2 - 3X. 

LEMMA 6. The edge-polynomial 

£3(i£5, X) = X10 - 10X8 + 45X6 - 15X5 - 100X4 + 105X3 - 20X2 - 6X. 

Proof. Choose any vertex v of K<$. 

I _ S^ov 

There are XE^K^, X — 1)(E, 3, X)-colourings of K5 with all four edges at v 
coloured alike. When exactly three of the four edges at v are coloured alike, 
there are 

4X(X - lMEsCKa, X - 1) + (X - l)Ez(Kz, X - 2) + 3(X - 1)E3(K3, X - 1) 
+ 3(X - 1)(X - 2)£3(X3, X - 1) + X(X - 1)(X - 2)£3(i£3, X - 1)] 

possible (E, 3, X)-colourings. Here the term 4X(X — 1) includes the four choices 
of three edges at v, the X ways to colour them, and the X — 1 ways to colour the 
remaining edge at v. 

For each choice of colour c for the three like edges at v, the terms in brackets 
correspond respectively to the cases: (1) edges 1, 2, and 3 coloured c, (2) edges 
1, 2, 3 coloured alike with some colour other than c, (3) two of 1, 2, and 3 
coloured c, (4) two of 1, 2, and 3 coloured alike with some colour other than c} 

and (5) each of 1, 2, and 3 coloured differently. There are 

6X(X - 1)(X - 2) ( x - D Ez(Kh X) 
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(E, 3, X)-colourings of K$ with exactly two edges at v coloured alike. Suppose 
next that there are two edges of one colour and two edges of another colour, 
incident with v. 

VCX? ^ov 

Pick a pair of non-adjacent edges a and b in KA as in the figure above. (There are 
three such pairs.) The number of (E, 3, X)-colourings A for which a and b are 
coloured alike is given by 

A = X(X - 1)[X3 + X2 - 3X + 1]. 

The number of (E, 3, X)-colourings D for which a and b are coloured differently 
is given by 

D = X(X - 1)[X4 - 4X2 + 2]. 

Hence the number of (E, 3, X)-colourings with two edges of one colour and two 
edges of another colour at v is 

3X(X - 1) {(-!)- X ^ X(X - 1) WH 
Finally, there are X(X - 1)(X - 2)(X - Z)Ez{Kit X)(£, 3, X)-colourings of Kb 

with all of the edges at v coloured differently. 
Combining the terms derived above, we obtain 

E,(K6, X) = \E3(Kh X - 1) + 4X(X - 1)[£,(K,, X - 1) 

+ (X - l)Es(Kt, X - 2) + 3(X - 1)ES(K3, X - 1) 

+ 3 ( X - l ) ( X - 2 ) £ 8 ( ^ 3 , X - 1) 

+ X(X - 1)(X - 2)Ei(Ks, X - 1)] + 3X(X - l ) | ( l - fjA 

+ [1-f+Mx-b)H + 6 ( X - 1 ) (X-2)£ 3 (X 4 ,X) 

+ X(X - 1)(X - 2)(X - 3)E3(Kh X) 

= X1 10X8 + 45X6 - 15X5 - 100X4 + 105X3 - 20X2 - 6X. 

For Ek(G, X) we have the following system of equations, analogous to the 
system mentioned above for Vk(G, X) : 
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Ek(G, 1) = bllk 

Ek(G, 2) = bltl + 2bllk 

Ek(G, 3) = b3,k + 3b2,k + 3ôi.» 

Ek(G,p) = £ K ) ^ , . » 

where £ = \E(G)\, and where for small X it is understood that the factorial 
expressions in the denominators are evaluated as they were earlier. 

Remark. Using the above system of equations, one can easily get the computer 
to calculate the bitk, i = 1, 2, 3, . . . , p, provided that Ek(G, X) is known. For the 
given Ed(KA, X) we obtain fr6>3 = 6!, and for the given Ez(K5y X) we obtain 
&io,3 — 10!. Since for K± and K5 we find, by direct counts, the values of fr2,3 
and fr3,3 which also agree, this is strong presumptive evidence for the correctness 
of our polynomials Ez(K±, X) and E^(K5y X). Direct counting and the computer 
yield the following values: 

K* K5 

02,3 = 8 &2,3 12 

63,3 = 396 &3,3 17,100 

04,3 = 1,464 &4,3 474,480 

65,3 = 1,800 b-0,z = 3,922,200 

6̂,3 = 6! h,z = 14,552,640 

67,3 = 28,224,000 

bs,s = 29,836,800 

69,3 = 16,329,600 

&10.3 10! 
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