EXTENDED CHROMATIC POLYNOMIALS

ANDREW SOBCZYK AND JAMES O. GETTYS, JR.

1. Introduction. Let G be a finite graph with non-empty vertex set $\mathscr{V}(G)$ and edge set $\mathscr{E}(G)$ (see [2]). Let λ be a positive integer. Tutte [5] defines a λ-colouring of G as a mapping of $\mathscr{V}(G)$ into the set $I_{\lambda}=\{1,2,3, \ldots, \lambda\}$ with the property that two ends of any edge are mapped onto distinct integers. The elements of I_{λ} are commonly called "colours." If $P(G, \lambda)$ represents the number of λ-colourings of G, it is well known that $P(G, \lambda)$ can be expressed as a polynomial in λ. For this reason $P(G, \lambda)$ is usually referred to as the chromatic polynomial of G.

The chromatic polynomial $P(G, \lambda)$ was first suggested as an approach to the four-colour conjecture. To quote Tutte [5]: ". . . many people are specially interested in the value $\lambda=4$. There is a long-standing conjecture that $P(M, 4)$ is positive for every triangulation M." Although the four-colour conjecture remains, chromatic polynomials are of interest in themselves and occupy a prominent place in the literature.

Many well known combinatorial problems seem to suggest other chromatic polynomials in much the same way as the four-colour conjecture prompted the definition of $P(G, \lambda)$. For example, consider the class of Ramsey numbers $R\left(k_{1}, \ldots, k_{\lambda} ; 2\right)$. (See $\left[\mathbf{1} ; \mathbf{4} ; \mathbf{3}\right.$, Chapter IV].) For $k=\left(k_{1}, \ldots, k_{\lambda}\right)$, define $E_{k}(G, \lambda)$ to be the number of mappings f of $\mathscr{E}(G)$ into I_{λ}, which have the property that for each $\nu=1, \ldots, \lambda, f^{-1}(\nu)$ does not contain all the edges of any complete subgraph on as many as k_{ν} vertices. For G the complete graph K_{n} on n vertices, if $E_{k}\left(K_{n}, \lambda\right)>0$, then $n \leqq R\left(k_{1}, \ldots, k_{\lambda} ; 2\right)$. The determination of the largest integer n for which $E_{k}\left(K_{n}, \lambda\right)>0$, for example in a case with $\lambda \geqq 4$ and $k_{1} \geqq 3, \ldots, k_{\lambda} \geqq 3$, would be a determination of one of the numbers $R\left(k_{1}, \ldots, k_{\lambda} ; 2\right)$ which have been unknown for a long time. (It is known that $R(4,4 ; 2)=17$, and that $R(3,3,3 ; 2)=16$.)

Of equal interest are the chromatic polynomials $V_{k}(G, \lambda)$ and $T_{k}(G, \lambda)$. Hence $V_{k}(G, \lambda)$ is the number of mappings of $\mathscr{V}(G)$ into I_{λ} which are not constant on the vertices of any complete k-subgraph of G; and $T_{k}(G, \lambda)$ is the number of mappings of the set of triangles of G into I_{λ} which are not constant on the triangles of any complete k-subgraph of G. In § 3 we specialize $E_{k}(G, \lambda)$ to the case $k_{1}=\ldots=k_{\lambda}=k$, where now we regard k as a single positive integer (rather than as an ordered set of λ positive integers). Of course V_{k} and T_{k} have analogous generalizations, which, like the general E_{k}, are not studied in the present paper. Also, for the main results of this paper, G will be K_{n}.

Received June 1, 1971 and in revised form, January 13, 1972.
2. The chromatic polynomials $V_{k}(G, \lambda)$. By a (V, k, λ)-colouring of a graph G we mean a mapping of $\mathscr{V}(G)$ into I_{λ} which is not constant on the vertices of any complete k-subgraph of G.

Our polynomial $V_{2}(G, \lambda)$, and the traditional chromatic polynomial $P(G, \lambda)$ as defined by Tutte [5], are similar but not identical. Under Tutte's definition, if G has a loop, then $P(G, \lambda)$ is 0 . On the other hand, if x denotes the loop of G, then $V_{2}(G, \lambda)=V_{2}(G \backslash x, \lambda)$. In fact we have the following lemma.

Lemma 1. If G has a loop x, then $V_{k}(G, \lambda)=V_{k}(G \backslash x, \lambda)$.
The proof is immediate from the definition of a (V, k, λ)-colouring.
Lemma 2. Let G be the union of components H_{1}, \ldots, H_{n}. Then

$$
V_{k}(G, \lambda)=\prod_{i=1}^{n} V_{k}\left(H_{i}, \lambda\right)
$$

Proof. Since $H_{i} \cap H_{j}=\emptyset$ for $i \neq j$, each combination of (V, k, λ)-colourings of the H_{i} yields a (V, k, λ)-colouring of G; and each (V, k, λ)-colouring of G is some combination of (V, k, λ)-colourings of the H_{i}.

Theorem 1. If G is any finite graph, then $V_{k}(G, \lambda)$ can be expressed as a polynomial in λ with the following properties:
(i) The coefficient a_{i} of λ^{i} is an integer for all i.
(ii) Coefficient $a_{i} \neq 0$ only if $c(G) \leqq i \leqq m$, where $c(G)$ is the number of components of G, and m is the cardinality of $V(G)$.
(iii) Coefficient a_{m} is 1 .

Proof. Let $a_{n, k}$ be the number of mappings of $V(G)$ onto I_{n} which are not constant on any complete k-subgraph of G. Clearly, the $a_{n, k}$ are integers for all integers k and n. Also, since necessarily $a_{n}=0$ for $n>m$, we have

$$
V_{k}(G, \lambda)=\sum_{n=1}^{m}\binom{\lambda}{n} a_{n, k}
$$

where $\binom{\lambda}{n}$ is taken to be 0 if $\lambda<0$ or $\lambda<n$. Clearly $V_{k}(G, \lambda)$ is a polynomial in λ with integer coefficients. The term of highest degree, λ^{m}, of $V_{k}(G, \lambda)$ is obtained from the above expression when $n=m$. Since $\binom{\lambda}{n}$ contains a factor λ for each value of n, we see that a non-zero constant term in $V_{k}(G, \lambda)$ is not possible. The lower bound of $c(G)$ for the exponent of λ is now a consequence of Lemma 2. Note that $c(G)$ is by no means a strict lower bound on the exponents of λ in $V_{k}(G, \lambda)$. For $k>2$ we can obtain an arbitrarily large connected graph G which contains no complete k-subgraph. For such a graph $G, V_{k}(G, \lambda)=m$, although $c(G)=1$.

Clearly $V_{2}\left(K_{n}, \lambda\right)=P\left(K_{n}, \lambda\right)$, and we obtain directly

Theorem 2. The polynomial $V_{3}\left(K_{n}, \lambda\right)$ is given by

$$
\frac{\lambda!}{(\lambda-n)!}+\sum_{i=1}^{(n-1) / 2} \frac{2 \lambda!n!}{[\lambda-(n+2 i+1) / 2]!2^{(n-2 i+1) / 2}(2 i-1)!(n-2 i+1)}
$$

if n is odd; and by

$$
\frac{\lambda!}{(\lambda-n)!}+\sum_{i=0}^{(n-2) / 2} \frac{2 \lambda!n!}{[\lambda-(n+2 i) / 2]!2^{(n-2 i) / 2}(2 i)!(n-2 i)}
$$

if n is even.
Proof. Let n be an odd integer. Suppose first that $\lambda \geqq n$. Define a t-partition \mathscr{F} of a graph G to be a partition of the set $\mathscr{V}(G)$ such that each part of \mathscr{P} contains at most t elements. At most two vertices of K_{n} can share the same colour in a ($V, 3, \lambda$)-colouring since any three vertices of K_{n} are the vertices of a triangle. Hence each ($V, 3, \lambda$)-colouring of K_{n} is a colouring of some 2 -partition \mathscr{P} of K_{n} in which distinct parts of \mathscr{P} receive different colours. There can be $1,3,5, \ldots$, or n one-element parts to a 2 -partition of K_{n}. If \mathscr{P} has k one-element parts, then it has $(n-k) / 2$ two-element parts and $(n+k) / 2$ parts in all. There are therefore

$$
\sum_{i=0}^{(n-k-2) / 2} \frac{(n-2 i)!}{(n-2 i-2)!(n-k)}=\frac{2 n!}{2^{(n-\bar{k}) / 2} k!(n-k)}
$$

2-partitions with k one-element parts. Colouring each part of \mathscr{P} differently requires $(n+k) / 2$ colours. There are $\binom{\lambda}{(n+k) / 2}$ ways of choosing $(n+k) / 2$ colours, and $[(n+k) / 2]$! ways to colour the $(n+k) / 2$ parts of \mathscr{P}. We see now that there are

$$
\sum_{\text {odd } k=1}^{n-2} \frac{2 \lambda!n!}{[\lambda-(n+k) / 2]!2^{(n-k) / 2} k!(n-k)}
$$

ways of colouring the 2 -partitions of K_{n} with at least one two-element part. There are clearly $\lambda!/(\lambda-n)$! ways to colour the 2 -partition of K_{n} with n one-element parts. Hence for odd n,

$$
V_{3}\left(K_{n}, \lambda\right)=\lambda!/(\lambda-n)!+\sum_{\text {odd } k=1}^{n-2} \frac{2 \lambda!n!}{[\lambda-(n+k) / 2]!2^{(n-k) / 2} k!(n-k)} .
$$

We now replace k by $2 i-1$, and let i range from 1 to $(n-1) / 2$, to obtain a conventional summation. Thus the theorem is established for odd n. For even n the proof is similar.

A more satisfactory formula is given by:
Theorem 3. Let n, k be integers with $n \geqq k \geqq 3$, and let

$$
N=\left[\frac{n}{k-1}\right] .
$$

Then

$$
\begin{aligned}
& V_{k}\left(K_{n}, \lambda\right) \\
& \qquad=\sum_{n=0}^{N}\left\{\left[\prod_{i=1}^{n}\binom{n-(k-1)(i-1)}{k-1}\right] V_{2}(\lambda, m) V_{k-1}\left(K_{n-m k+m}, \lambda-m\right)\right\} .
\end{aligned}
$$

Proof. First, any ($V, k-1, \lambda$)-colouring of K_{n} is a (V, k, λ)-colouring of K_{n} so that $V_{k}\left(K_{n}, \lambda\right) \geqq V_{k-1}\left(K_{n}, \lambda\right)$. Next any (V, k, λ)-colouring of K_{n} which is not a ($V, k-1, \lambda$)-colouring must be constant on at least one complete $(k-1)$ subgraph of K_{n}. We shall call a (V, k, λ)-colouring of K_{n} which is constant on exactly $n(k-1)$-subgraphs an $E_{V}(n, k-1, \lambda)$-colouring of K_{n}. There are

$$
\prod_{i=1}^{n}\binom{n-(k-1)(i-1)}{k-1}
$$

ways to choose n pair-wise disjoint $(k-1)$-subgraphs of K_{n}. If each of these n ($k-1$)-subgraphs is to be monochromatic, there are $V_{2}(\lambda, m)$ ways to colour them so as to avoid a monochromatic k-subgraph. For each such colouring of m K_{k-1}-subgraphs there are $V_{k-1}\left(K_{n-m(k-1)}, \lambda-m\right)$ ways to colour the remaining vertices of K_{n} to obtain an $E_{V}(m, k-1, \lambda)$-colouring of K_{n}. Hence there are

$$
\left[\prod_{i=1}^{m}\binom{n-(k-1)(i-1)}{k-1}\right] V_{2}(\lambda, m) V_{k-1}\left(K_{n-m(k-1)}, \lambda-m\right)
$$

$E_{V}(m, k-1, \lambda)$-colourings of K_{n}. Since m can range from 0 to $\left[\frac{n}{k-1}\right]$, the theorem follows if we understand that

$$
\prod_{i=1}^{0}\binom{n-(k-1)(i-1)}{k-1}=V_{2}(\lambda, 0)=1
$$

which is standard (see [5]).
Determination of $V_{k}(G, \lambda)$ provides more information than is at first realized. We have, for example, the following relationships:

$$
\begin{aligned}
& V_{k}(G, 1)=a_{1, k} \\
& V_{k}(G, 2)=a_{2, k}+2 a_{1, k} \\
& V_{k}(G, 3)=a_{3, k}+3 a_{2, k}+3 a_{1, k} \\
& \cdot \\
& \cdot \\
& \cdot \\
& V_{k}(G, m)=a_{m, k}+\sum_{i=0}^{m-1}\binom{m}{i} a_{n-i, k} \\
& \cdot \\
& \cdot \\
& \cdot \\
& V_{k}(G, \lambda)=\frac{\lambda!}{m!(\lambda-m)!}+\sum_{i=0}^{m-1}\binom{\lambda}{m-i} a_{m-i, k} .
\end{aligned}
$$

Since $a_{m}=m!$ for all graphs G, this system of equations provides a nice check of the correctness of a calculated $V_{k}(G, \lambda)$. Also, knowledge of the a_{i} is important in itself.

Theorem 4. For any graph G, if $V_{2}(G, \lambda)>0$, then

$$
V_{3}\left(G,\left[\frac{\lambda+1}{2}\right]\right)>0 .
$$

Proof. Suppose there exists a map $\Lambda: V(G) \rightarrow I_{\lambda}$ which is not constant on any 2 -subgraph of G. If λ is even, define $\Lambda^{\prime}: V(G) \rightarrow I_{\lambda / 2}$ by

$$
\Lambda^{\prime}(v)=\left\{\begin{array}{lll}
\Lambda(v) & \text { if } & \Lambda(v) \leqq \frac{\lambda}{2} \\
\Lambda(v)-\frac{\lambda}{2} & \text { if } & \Lambda(v)>\frac{\lambda}{2}
\end{array}\right.
$$

Now suppose $\Lambda^{\prime}\left(v_{i}\right)=\alpha(i=1,2,3)$ where v_{1}, v_{2}, and v_{3} are the vertices of a 3 -subgraph of G, and $1 \leqq \alpha \leqq \lambda / 2$. Then either $\Lambda\left(v_{i}\right)=\Lambda\left(v_{j}\right)=\alpha$, or $\Lambda\left(v_{i}\right)=\Lambda\left(v_{j}\right)=\alpha+\lambda / 2$, for some $i, j \in I_{3}$. In either case we reach a contradiction to the definition of Λ, since v_{i} and v_{j} are vertices of a 2 -subgraph of G for all $i, j \in I_{3}$. Hence Λ^{\prime} is a $(V, 3, \lambda / 2)$-colouring of G. If λ is odd, define $\Lambda^{\prime \prime}: V(G) \rightarrow$ $I_{(\lambda+1) / 2}$ by

$$
\Lambda^{\prime \prime}=\left\{\begin{array}{lll}
\Lambda(v) & \text { if } & \Lambda(v) \leqq \frac{\lambda+1}{2} \\
\Lambda(v)-\frac{\lambda+1}{2} & \text { if } & \Lambda(v)>\frac{\lambda+1}{2}
\end{array}\right.
$$

Using an argument similar to the one employed above we see that $\Lambda^{\prime \prime}$ is a $(V, 3,(\lambda+1) / 2)$-colouring of G.

Hence the existence of a ($V, 2, \lambda$)-colouring of G implies the existence of a ($V, 2,[(\lambda+1) / 2])$-colouring of G, and the theorem follows.

Corollary 1. For any loopless planar graph $G, V_{3}(G, 3)>0$.
Proof. If G is planar and loopless, then $V_{2}(G, 5)>0$.
Corollary 2. The truth of the four-colour conjecture implies $V_{3}(G, 2)>0$ for every planar graph G.
3. The chromatic polynomials $E_{k}(G, \lambda)$. By an (E, k, λ)-colouring of a graph G we mean a mapping of $E(G)$ into I_{λ} that is not constant on the edges of any k-subgraph of G.

Lemma 3. Let G be the union of subgraphs $H_{1}, H_{2}, H_{3}, \ldots, H_{n}$ such that $H_{i} \cap H_{j}=\emptyset$ or a singleton vertex, for each (i, j) with $i \neq j$. Then

$$
E_{k}(G, \lambda)=\prod_{i=1}^{n} E_{k}\left(H_{i}, \lambda\right)
$$

Proof. The proof is similar to that of Lemma 2.

Theorem 5. If G is any finite graph with $|E(G)|>0$, then $E_{k}(G, \lambda)$ can be expressed as a polynomial in λ with the following properties:
(i) The coefficient a_{i} of λ^{i} is an integer for all i.
(ii) $a_{i} \neq 0$ only if $C(G) \leqq i \leqq p$, where $C(G)$ is the number of non-trivial components of G, and $p=|E(G)|$.
(iii) $A_{p}=1$.

Proof. The proof is similar to that of Theorem 1, if we replace $a_{n, k}$ by $b_{n, k}$, where $b_{n, k}$ is the number of mappings of $E(G)$ onto I_{n} which are non-constant on the edges of any k-subgraph of G.

Lemma 4. The edge-polynomial $E_{3}\left(K_{3}, \lambda\right)=\lambda^{3}-\lambda$.
Proof. There are λ^{3} colourings of the edges of K_{3} with λ colours. However, λ of these are not $(E, 3, \lambda)$-colourings. Hence $E_{3}\left(K_{3}, \lambda\right)=\lambda^{3}-\lambda$.

Rather than use the subtractive approach, as in the proof of Lemma 4, we can count the number of $(E, 3, \lambda)$-colourings directly. Label the edges of K_{3} as x_{1}, x_{2}, and x_{3}. The number of $(E, 3, \lambda)$-colourings with x_{1} and x_{2} of the same colour is $\lambda(\lambda-1)$. The number of $(E, 3, \lambda)$-colourings with x_{1} and x_{2} of different colours is $\lambda^{2}(\lambda-1)$. Hence as before,

$$
E_{3}\left(K_{3}, \lambda\right)=\lambda(\lambda-1)+\lambda^{2}(\lambda-1)=\lambda^{3}-\lambda .
$$

Lemma 5. The edge-polynomial

$$
E_{3}\left(K_{4}, \lambda\right)=\lambda^{6}-4 \lambda^{4}+6 \lambda^{2}-3 \lambda
$$

Proof. There are λ^{6} colourings of the edges of K_{4} with λ colours. Of the λ^{6} colourings, λ are constant on K_{4}. Also $4 \lambda\left[\lambda(\lambda-1)(\lambda-2)+3(\lambda-1)^{2}+(\lambda-1)\right]$ colourings are constant on a single triangle of K_{4}. Here 4λ corresponds to the four triangles of K_{4} and the λ ways in which one can have all of its edges coloured the same ; $\lambda(\lambda-1)(\lambda-2), 3(\lambda-1)^{2}$, and $(\lambda-1)$ indicate the number of ways of colouring the remaining three edges of K_{4} all differently, two alike, and all alike, respectively. Finally, there are $6 \lambda(\lambda-1)$ colourings which are constant on exactly two triangles of K_{4}-there are six ways to leave out an edge, λ ways to colour the two triangles, and $\lambda-1$ ways to colour the remaining edge. Hence

$$
\begin{aligned}
E_{3}\left(K_{4}, \lambda\right) & =\lambda^{6}-\lambda-4 \lambda\left[\lambda(\lambda-1)(\lambda-2)+3(\lambda-1)^{2}+(\lambda-1)\right]-6 \lambda(\lambda-1) \\
& =\lambda^{6}+4 \lambda^{4}+6 \lambda^{2}-3 \lambda .
\end{aligned}
$$

Again we offer an alternate method of counting. Choose a vertex v of K_{4}.

There are $\lambda E_{3}\left(K_{3}, \lambda-1\right)(E, 3, \lambda)$-colourings of K_{4} with all three edges at v coloured alike; $3 \lambda(\lambda-1)\left[\frac{\lambda-1}{\lambda} E_{3}\left(K_{3}, \lambda\right)\right](E, 3, \lambda)$-colourings of K_{4} with exactly two of the three edges at v coloured alike; and $\lambda(\lambda-1)(\lambda-2)$ $E_{3}\left(K_{3}, \lambda\right)(E, 3, \lambda)$-colourings of K_{4} with each of the three edges at v coloured differently. Hence,

$$
\begin{aligned}
E_{3}\left(K_{4}, \lambda\right)=\lambda E_{3}\left(K_{3}, \lambda-1\right)+3 \lambda(\lambda-1)\left[\frac{\lambda-1}{\lambda}\right. & \left.E_{3}\left(K_{3}, \lambda\right)\right] \\
& +\lambda(\lambda-1)(\lambda-2) E_{3}\left(K_{3}, \lambda\right)
\end{aligned}
$$

$$
=\lambda^{6}-4 \lambda^{4}+6 \lambda^{2}-3 \lambda
$$

Lemma 6. The edge-polynomial

$$
E_{3}\left(K_{5}, \lambda\right)=\lambda^{10}-10 \lambda^{8}+45 \lambda^{6}-15 \lambda^{5}-100 \lambda^{4}+105 \lambda^{3}-20 \lambda^{2}-6 \lambda .
$$

Proof. Choose any vertex v of K_{5}.

There are $\lambda E_{3}\left(K_{4}, \lambda-1\right)(E, 3, \lambda)$-colourings of K_{5} with all four edges at v coloured alike. When exactly three of the four edges at v are coloured alike, there are

$$
\begin{aligned}
4 \lambda(\lambda-1) & {\left[E_{3}\left(K_{3}, \lambda-1\right)+(\lambda-1) E_{3}\left(K_{3}, \lambda-2\right)+3(\lambda-1) E_{3}\left(K_{3}, \lambda-1\right)\right.} \\
& \left.+3(\lambda-1)(\lambda-2) E_{3}\left(K_{3}, \lambda-1\right)+\lambda(\lambda-1)(\lambda-2) E_{3}\left(K_{3}, \lambda-1\right)\right]
\end{aligned}
$$

possible $(E, 3, \lambda)$-colourings. Here the term $4 \lambda(\lambda-1)$ includes the four choices of three edges at v, the λ ways to colour them, and the $\lambda-1$ ways to colour the remaining edge at v.

For each choice of colour c for the three like edges at v, the terms in brackets correspond respectively to the cases: (1) edges 1,2 , and 3 coloured c, (2) edges $1,2,3$ coloured alike with some colour other than c, (3) two of 1,2 , and 3 coloured c, (4) two of 1,2 , and 3 coloured alike with some colour other than c, and (5) each of 1,2 , and 3 coloured differently. There are

$$
6 \lambda(\lambda-1)(\lambda-2)\left[\frac{(\lambda-1)}{\lambda} E_{3}\left(K_{4}, \lambda\right)\right]
$$

($E, 3, \lambda$)-colourings of K_{5} with exactly two edges at v coloured alike. Suppose next that there are two edges of one colour and two edges of another colour, incident with v.

Pick a pair of non-adjacent edges a and b in K_{4} as in the figure above. (There are three such pairs.) The number of ($E, 3, \lambda$)-colourings A for which a and b are coloured alike is given by

$$
A=\lambda(\lambda-1)\left[\lambda^{3}+\lambda^{2}-3 \lambda+1\right] .
$$

The number of $(E, 3, \lambda)$-colourings D for which a and b are coloured differently is given by

$$
D=\lambda(\lambda-1)\left[\lambda^{4}-4 \lambda^{2}+2\right]
$$

Hence the number of $(E, 3, \lambda)$-colourings with two edges of one colour and two edges of another colour at v is

$$
3 \lambda(\lambda-1)\left\{\left(1-\frac{2}{\lambda}\right) A+\left[1-\frac{2}{\lambda}+\frac{1}{\lambda(\lambda-1)}\right] D\right\} .
$$

Finally, there are $\lambda(\lambda-1)(\lambda-2)(\lambda-3) E_{3}\left(K_{4}, \lambda\right)(E, 3, \lambda)$-colourings of K_{5} with all of the edges at v coloured differently.

Combining the terms derived above, we obtain

$$
\begin{aligned}
& E_{3}\left(K_{5}, \lambda\right)=\lambda E_{3}\left(K_{4}, \lambda-1\right)+4 \lambda(\lambda-1)\left[E_{3}\left(K_{3}, \lambda-1\right)\right. \\
&+(\lambda-1) E_{3}\left(K_{3}, \lambda-2\right)+3(\lambda-1) E_{3}\left(K_{3}, \lambda-1\right) \\
&+3(\lambda-1)(\lambda-2) E_{3}\left(K_{3}, \lambda-1\right) \\
&\left.+\lambda(\lambda-1)(\lambda-2) E_{3}\left(K_{3}, \lambda-1\right)\right]+3 \lambda(\lambda-1)\left\{\left(1-\frac{2}{\lambda}\right) A\right. \\
&\left.+\left[1-\frac{2}{\lambda}+\frac{1}{\lambda(\lambda-1)}\right] D\right\}+6(\lambda-1)(\lambda-2) E_{3}\left(K_{4}, \lambda\right) \\
&+\lambda(\lambda-1)(\lambda-2)(\lambda-3) E_{3}\left(K_{4}, \lambda\right) \\
&= \lambda^{10}-10 \lambda^{8}+45 \lambda^{6}-15 \lambda^{5}-100 \lambda^{4}+105 \lambda^{3}-20 \lambda^{2}-6 \lambda .
\end{aligned}
$$

For $E_{k}(G, \lambda)$ we have the following system of equations, analogous to the system mentioned above for $V_{k}(G, \lambda)$:

$$
\begin{aligned}
& E_{k}(G, 1)=b_{1, k} \\
& E_{k}(G, 2)=b_{2, k}+2 b_{1, k} \\
& E_{k}(G, 3)=b_{3, k}+3 b_{2, k}+3 b_{1, k} \\
& \cdot \\
& \cdot \\
& \cdot \\
& E_{k}(G, p)=\sum_{i=0}^{p-1}\binom{p}{i} b_{p-i, k} \\
& \cdot \\
& \cdot \\
& \cdot \\
& E_{k}(G, \lambda)=\sum_{i=0}^{p-1}\binom{\lambda}{p-i} b_{p-i, k}
\end{aligned}
$$

where $p=|E(G)|$, and where for small λ it is understood that the factorial expressions in the denominators are evaluated as they were earlier.

Remark. Using the above system of equations, one can easily get the computer to calculate the $b_{i, k}, i=1,2,3, \ldots, p$, provided that $E_{k}(G, \lambda)$ is known. For the given $E_{3}\left(K_{4}, \lambda\right)$ we obtain $b_{6,3}=6$!, and for the given $E_{3}\left(K_{5}, \lambda\right)$ we obtain $b_{10,3}-10$!. Since for K_{4} and K_{5} we find, by direct counts, the values of $b_{2,3}$ and $b_{3,3}$ which also agree, this is strong presumptive evidence for the correctness of our polynomials $E_{3}\left(K_{4}, \lambda\right)$ and $E_{3}\left(K_{5}, \lambda\right)$. Direct counting and the computer yield the following values:

K_{4}		K_{5}	
$b_{2,3}=$	8	$b_{2,3}=$	

References

1. A. M. Gleason and R. E. Greenwood, Combinatorial relations and chromatic graphs, Can. J. Math. 7(1955), 1-7.
2. Frank Harary, Graph theory (Addison-Wesley, Reading, Mass., 1969).
3. H. J. Ryser, Carus Monograph No. 14, Combinatorial Mathematics (Wiley, New York, 1963).
4. Andrew Sobczyk, Graph-colouring and combinatorial numbers, Can. J. Math. 20 (1968), 520-534.
5. W. T. Tutte, Lectures on chromatic polynomials, Institute of Statistics Mimeo Series, No. 600.25 .

Clemson University,
Clemson, South Carolina;
Parker High School,
Greenville, South Carolina

