EXTENDED CHROMATIC POLYNOMIALS

ANDREW SOBCZYK AND JAMES O. GETTYS, JR.

1. Introduction. Let G be a finite graph with non-empty vertex set $\mathscr{V}(G)$ and edge set $\mathscr{C}(G)$ (see [2]). Let λ be a positive integer. Tutte [5] defines a λ -colouring of G as a mapping of $\mathscr{V}(G)$ into the set $I_{\lambda} = \{1, 2, 3, ..., \lambda\}$ with the property that two ends of any edge are mapped onto distinct integers. The elements of I_{λ} are commonly called "colours." If $P(G, \lambda)$ represents the number of λ -colourings of G, it is well known that $P(G, \lambda)$ can be expressed as a polynomial in λ . For this reason $P(G, \lambda)$ is usually referred to as the chromatic polynomial of G.

The chromatic polynomial $P(G, \lambda)$ was first suggested as an approach to the four-colour conjecture. To quote Tutte [5]: "... many people are specially interested in the value $\lambda = 4$. There is a long-standing conjecture that P(M, 4) is positive for every triangulation M." Although the four-colour conjecture remains, chromatic polynomials are of interest in themselves and occupy a prominent place in the literature.

Many well known combinatorial problems seem to suggest other chromatic polynomials in much the same way as the four-colour conjecture prompted the definition of $P(G, \lambda)$. For example, consider the class of Ramsey numbers $R(k_1, \ldots, k_{\lambda}; 2)$. (See [1; 4; 3, Chapter IV].) For $k = (k_1, \ldots, k_{\lambda})$, define $E_k(G, \lambda)$ to be the number of mappings f of $\mathscr{C}(G)$ into I_{λ} , which have the property that for each $\nu = 1, \ldots, \lambda, f^{-1}(\nu)$ does not contain all the edges of any complete subgraph on as many as k_{ν} vertices. For G the complete graph K_n on n vertices, if $E_k(K_n, \lambda) > 0$, then $n \leq R(k_1, \ldots, k_{\lambda}; 2)$. The determination of the largest integer n for which $E_k(K_n, \lambda) > 0$, for example in a case with $\lambda \geq 4$ and $k_1 \geq 3, \ldots, k_{\lambda} \geq 3$, would be a determination of one of the numbers $R(k_1, \ldots, k_{\lambda}; 2)$ which have been unknown for a long time. (It is known that R(4, 4; 2) = 17, and that R(3, 3, 3; 2) = 16.)

Of equal interest are the chromatic polynomials $V_k(G, \lambda)$ and $T_k(G, \lambda)$. Hence $V_k(G, \lambda)$ is the number of mappings of $\mathscr{V}(G)$ into I_{λ} which are not constant on the vertices of any complete k-subgraph of G; and $T_k(G, \lambda)$ is the number of mappings of the set of triangles of G into I_{λ} which are not constant on the triangles of any complete k-subgraph of G. In § 3 we specialize $E_k(G, \lambda)$ to the case $k_1 = \ldots = k_{\lambda} = k$, where now we regard k as a single positive integer (rather than as an ordered set of λ positive integers). Of course V_k and T_k have analogous generalizations, which, like the general E_k , are not studied in the present paper. Also, for the main results of this paper, G will be K_n .

Received June 1, 1971 and in revised form, January 13, 1972.

2. The chromatic polynomials $V_k(G, \lambda)$. By a (V, k, λ) -colouring of a graph G we mean a mapping of $\mathscr{V}(G)$ into I_{λ} which is not constant on the vertices of any complete k-subgraph of G.

Our polynomial $V_2(G, \lambda)$, and the traditional chromatic polynomial $P(G, \lambda)$ as defined by Tutte [5], are similar but not identical. Under Tutte's definition, if G has a loop, then $P(G, \lambda)$ is 0. On the other hand, if x denotes the loop of G, then $V_2(G, \lambda) = V_2(G \setminus x, \lambda)$. In fact we have the following lemma.

LEMMA 1. If G has a loop x, then $V_k(G, \lambda) = V_k(G \setminus x, \lambda)$.

The proof is immediate from the definition of a (V, k, λ) -colouring.

LEMMA 2. Let G be the union of components H_1, \ldots, H_n . Then

$$V_k(G,\lambda) = \prod_{i=1}^n V_k(H_i,\lambda).$$

Proof. Since $H_i \cap H_j = \emptyset$ for $i \neq j$, each combination of (V, k, λ) -colourings of the H_i yields a (V, k, λ) -colouring of G; and each (V, k, λ) -colouring of G is some combination of (V, k, λ) -colourings of the H_i .

THEOREM 1. If G is any finite graph, then $V_k(G, \lambda)$ can be expressed as a polynomial in λ with the following properties:

(i) The coefficient a_i of λ^i is an integer for all *i*.

(ii) Coefficient $a_i \neq 0$ only if $c(G) \leq i \leq m$, where c(G) is the number of components of G, and m is the cardinality of V(G).

(iii) Coefficient a_m is 1.

Proof. Let $a_{n,k}$ be the number of mappings of V(G) onto I_n which are not constant on any complete k-subgraph of G. Clearly, the $a_{n,k}$ are integers for all integers k and n. Also, since necessarily $a_n = 0$ for n > m, we have

$$V_k(G,\lambda) = \sum_{n=1}^m {\binom{\lambda}{n}} a_{n,k}$$

where $\binom{\lambda}{n}$ is taken to be 0 if $\lambda < 0$ or $\lambda < n$. Clearly $V_k(G, \lambda)$ is a polynomial in λ with integer coefficients. The term of highest degree, λ^m , of $V_k(G, \lambda)$ is obtained from the above expression when n = m. Since $\binom{\lambda}{n}$ contains a factor λ for each value of n, we see that a non-zero constant term in $V_k(G, \lambda)$ is not possible. The lower bound of c(G) for the exponent of λ is now a consequence of Lemma 2. Note that c(G) is by no means a strict lower bound on the exponents of λ in $V_k(G, \lambda)$. For k > 2 we can obtain an arbitrarily large connected graph G which contains no complete k-subgraph. For such a graph G, $V_k(G, \lambda) = m$, although c(G) = 1.

Clearly $V_2(K_n, \lambda) = P(K_n, \lambda)$, and we obtain directly

THEOREM 2. The polynomial $V_3(K_n, \lambda)$ is given by

$$\frac{\lambda!}{(\lambda-n)!} + \sum_{i=1}^{(n-1)/2} \frac{2\lambda!n!}{[\lambda-(n+2i+1)/2]!2^{(n-2i+1)/2}(2i-1)!(n-2i+1)}$$

if n is odd; and by

$$\frac{\lambda!}{(\lambda-n)!} + \sum_{i=0}^{(n-2)/2} \frac{2\lambda!n!}{[\lambda-(n+2i)/2]!2^{(n-2i)/2}(2i)!(n-2i)}$$

if n is even.

Proof. Let *n* be an odd integer. Suppose first that $\lambda \geq n$. Define a *t*-partition \mathscr{P} of a graph *G* to be a partition of the set $\mathscr{V}(G)$ such that each part of \mathscr{P} contains at most *t* elements. At most two vertices of K_n can share the same colour in a $(V, 3, \lambda)$ -colouring since any three vertices of K_n are the vertices of a triangle. Hence each $(V, 3, \lambda)$ -colouring of K_n is a colouring of some 2-partition \mathscr{P} of K_n in which distinct parts of \mathscr{P} receive different colours. There can be 1, 3, 5, ..., or *n* one-element parts to a 2-partition of K_n . If \mathscr{P} has *k* one-element parts, then it has (n - k)/2 two-element parts and (n + k)/2 parts in all. There are therefore

$$\sum_{i=0}^{(n-k-2)/2} \frac{(n-2i)!}{(n-2i-2)!(n-k)} = \frac{2n!}{2^{(n-k)/2}k!(n-k)}$$

2-partitions with k one-element parts. Colouring each part of \mathscr{P} differently requires (n + k)/2 colours. There are $\binom{\lambda}{(n + k)/2}$ ways of choosing (n + k)/2 colours, and [(n + k)/2]! ways to colour the (n + k)/2 parts of \mathscr{P} . We see now that there are

$$\sum_{\lambda=1}^{n-2} \frac{2\lambda! n!}{[\lambda - (n+k)/2]! 2^{(n-k)/2} k! (n-k)}$$

ways of colouring the 2-partitions of K_n with at least one two-element part. There are clearly $\lambda!/(\lambda - n)!$ ways to colour the 2-partition of K_n with n one-element parts. Hence for odd n,

$$V_{3}(K_{n}, \lambda) = \lambda!/(\lambda - n)! + \sum_{\text{odd } k=1}^{n-2} \frac{2\lambda! n!}{[\lambda - (n+k)/2]! 2^{(n-k)/2} k! (n-k)}.$$

We now replace k by 2i - 1, and let i range from 1 to (n - 1)/2, to obtain a conventional summation. Thus the theorem is established for odd n. For even n the proof is similar.

A more satisfactory formula is given by:

THEOREM 3. Let n, k be integers with $n \ge k \ge 3$, and let

$$N = \left[\frac{n}{k-1}\right].$$

Then

$$V_{k}(K_{n}, \lambda) = \sum_{n=0}^{N} \left\{ \left[\prod_{i=1}^{n} \binom{n - (k-1)(i-1)}{k-1} \right] V_{2}(\lambda, m) V_{k-1}(K_{n-mk+m}, \lambda - m) \right\}.$$

Proof. First, any $(V, k - 1, \lambda)$ -colouring of K_n is a (V, k, λ) -colouring of K_n so that $V_k(K_n, \lambda) \geq V_{k-1}(K_n, \lambda)$. Next any (V, k, λ) -colouring of K_n which is not a $(V, k - 1, \lambda)$ -colouring must be constant on at least one complete (k - 1)-subgraph of K_n . We shall call a (V, k, λ) -colouring of K_n which is constant on exactly n (k - 1)-subgraphs an $E_V(n, k - 1, \lambda)$ -colouring of K_n . There are

$$\prod_{i=1}^{n} \binom{n-(k-1)(i-1)}{k-1}$$

ways to choose *n* pair-wise disjoint (k-1)-subgraphs of K_n . If each of these *n* (k-1)-subgraphs is to be monochromatic, there are $V_2(\lambda, m)$ ways to colour them so as to avoid a monochromatic *k*-subgraph. For each such colouring of *m* K_{k-1} -subgraphs there are $V_{k-1}(K_{n-m(k-1)}, \lambda - m)$ ways to colour the remaining vertices of K_n to obtain an $E_V(m, k-1, \lambda)$ -colouring of K_n . Hence there are

$$\left[\prod_{i=1}^{m} \binom{n-(k-1)(i-1)}{k-1}\right] V_2(\lambda,m) V_{k-1}(K_{n-m(k-1)},\lambda-m)$$

 $E_v(m, k - 1, \lambda)$ -colourings of K_n . Since *m* can range from 0 to $\lfloor \frac{n}{k-1} \rfloor$, the theorem follows if we understand that

$$\prod_{i=1}^{0} \binom{n - (k - 1)(i - 1)}{k - 1} = V_2(\lambda, 0) = 1$$

which is standard (see [5]).

Determination of $V_k(G, \lambda)$ provides more information than is at first realized. We have, for example, the following relationships:

$$V_{k}(G, 1) = a_{1,k}$$

$$V_{k}(G, 2) = a_{2,k} + 2a_{1,k}$$

$$V_{k}(G, 3) = a_{3,k} + 3a_{2,k} + 3a_{1,k}$$

$$\vdots$$

$$V_{k}(G,m) = a_{m,k} + \sum_{i=0}^{m-1} \binom{m}{i} a_{n-i,k}$$

$$\vdots$$

$$V_{k}(G, \lambda) = \frac{\lambda!}{m!(\lambda - m)!} + \sum_{i=0}^{m-1} \binom{\lambda}{m-i} a_{m-i,k}$$

Since $a_m = m!$ for all graphs G, this system of equations provides a nice check of the correctness of a calculated $V_k(G, \lambda)$. Also, knowledge of the a_i is important in itself.

THEOREM 4. For any graph G, if $V_2(G, \lambda) > 0$, then

$$V_{3}\left(G,\left[\frac{\lambda+1}{2}\right]\right) > 0.$$

Proof. Suppose there exists a map Λ : $V(G) \to I_{\lambda}$ which is not constant on any 2-subgraph of G. If λ is even, define Λ' : $V(G) \to I_{\lambda/2}$ by

$$\Lambda'(v) = \begin{cases} \Lambda(v) & \text{if } \Lambda(v) \leq \frac{\lambda}{2} \\ \Lambda(v) - \frac{\lambda}{2} & \text{if } \Lambda(v) > \frac{\lambda}{2} \end{cases}$$

Now suppose $\Lambda'(v_i) = \alpha(i = 1, 2, 3)$ where v_1, v_2 , and v_3 are the vertices of a 3-subgraph of G, and $1 \leq \alpha \leq \lambda/2$. Then either $\Lambda(v_i) = \Lambda(v_j) = \alpha$, or $\Lambda(v_i) = \Lambda(v_j) = \alpha + \lambda/2$, for some $i, j \in I_3$. In either case we reach a contradiction to the definition of Λ , since v_i and v_j are vertices of a 2-subgraph of G for all $i, j \in I_3$. Hence Λ' is a $(V, 3, \lambda/2)$ -colouring of G. If λ is odd, define $\Lambda'': V(G) \to I_{(\lambda+1)/2}$ by

$$\Lambda'' = \begin{cases} \Lambda(v) & \text{if } \Lambda(v) \leq \frac{\lambda+1}{2} \\ \Lambda(v) - \frac{\lambda+1}{2} & \text{if } \Lambda(v) > \frac{\lambda+1}{2}. \end{cases}$$

Using an argument similar to the one employed above we see that Λ'' is a $(V, 3, (\lambda + 1)/2)$ -colouring of G.

Hence the existence of a $(V, 2, \lambda)$ -colouring of G implies the existence of a $(V, 2, [(\lambda + 1)/2])$ -colouring of G, and the theorem follows.

COROLLARY 1. For any loopless planar graph G, $V_3(G, 3) > 0$.

Proof. If G is planar and loopless, then $V_2(G, 5) > 0$.

COROLLARY 2. The truth of the four-colour conjecture implies $V_3(G, 2) > 0$ for every planar graph G.

3. The chromatic polynomials $E_k(G, \lambda)$. By an (E, k, λ) -colouring of a graph G we mean a mapping of E(G) into I_{λ} that is not constant on the edges of any k-subgraph of G.

LEMMA 3. Let G be the union of subgraphs $H_1, H_2, H_3, \ldots, H_n$ such that $H_i \cap H_j = \emptyset$ or a singleton vertex, for each (i, j) with $i \neq j$. Then

$$E_k(G, \lambda) = \prod_{i=1}^n E_k(H_i, \lambda).$$

Proof. The proof is similar to that of Lemma 2.

496

THEOREM 5. If G is any finite graph with |E(G)| > 0, then $E_k(G, \lambda)$ can be expressed as a polynomial in λ with the following properties:

(i) The coefficient a_i of λ^i is an integer for all *i*.

(ii) $a_i \neq 0$ only if $C(G) \leq i \leq p$, where C(G) is the number of non-trivial components of G, and p = |E(G)|.

(iii) $A_p = 1$.

Proof. The proof is similar to that of Theorem 1, if we replace $a_{n,k}$ by $b_{n,k}$, where $b_{n,k}$ is the number of mappings of E(G) onto I_n which are non-constant on the edges of any k-subgraph of G.

LEMMA 4. The edge-polynomial $E_3(K_3, \lambda) = \lambda^3 - \lambda$.

Proof. There are λ^3 colourings of the edges of K_3 with λ colours. However, λ of these are not $(E, 3, \lambda)$ -colourings. Hence $E_3(K_3, \lambda) = \lambda^3 - \lambda$.

Rather than use the subtractive approach, as in the proof of Lemma 4, we can count the number of $(E, 3, \lambda)$ -colourings directly. Label the edges of K_3 as x_1, x_2 , and x_3 . The number of $(E, 3, \lambda)$ -colourings with x_1 and x_2 of the same colour is $\lambda(\lambda - 1)$. The number of $(E, 3, \lambda)$ -colourings with x_1 and x_2 of different colours is $\lambda^2(\lambda - 1)$. Hence as before,

$$E_{3}(K_{3}, \lambda) = \lambda(\lambda - 1) + \lambda^{2}(\lambda - 1) = \lambda^{3} - \lambda.$$

LEMMA 5. The edge-polynomial

$$E_3(K_4, \lambda) = \lambda^6 - 4\lambda^4 + 6\lambda^2 - 3\lambda.$$

Proof. There are λ^6 colourings of the edges of K_4 with λ colours. Of the λ^6 colourings, λ are constant on K_4 . Also $4\lambda[\lambda(\lambda - 1)(\lambda - 2) + 3(\lambda - 1)^2 + (\lambda - 1)]$ colourings are constant on a single triangle of K_4 . Here 4λ corresponds to the four triangles of K_4 and the λ ways in which one can have all of its edges coloured the same; $\lambda(\lambda - 1)(\lambda - 2)$, $3(\lambda - 1)^2$, and $(\lambda - 1)$ indicate the number of ways of colouring the remaining three edges of K_4 all differently, two alike, and all alike, respectively. Finally, there are $6\lambda(\lambda - 1)$ colourings which are constant on exactly two triangles of K_4 —there are six ways to leave out an edge, λ ways to colour the two triangles, and $\lambda - 1$ ways to colour the remaining edge. Hence

$$E_3(K_4, \lambda) = \lambda^6 - \lambda - 4\lambda[\lambda(\lambda - 1)(\lambda - 2) + 3(\lambda - 1)^2 + (\lambda - 1)] - 6\lambda(\lambda - 1)$$

= $\lambda^6 + 4\lambda^4 + 6\lambda^2 - 3\lambda.$

Again we offer an alternate method of counting. Choose a vertex v of K_4 .

There are $\lambda E_3(K_3, \lambda - 1)(E, 3, \lambda)$ -colourings of K_4 with all three edges at v coloured alike; $3\lambda(\lambda - 1)\left[\frac{\lambda - 1}{\lambda}E_3(K_3, \lambda)\right]$ (E, 3, λ)-colourings of K_4 with exactly two of the three edges at v coloured alike; and $\lambda(\lambda - 1)(\lambda - 2)$ $E_3(K_3, \lambda)(E, 3, \lambda)$ -colourings of K_4 with each of the three edges at v coloured differently. Hence,

$$E_{3}(K_{4}, \lambda) = \lambda E_{3}(K_{3}, \lambda - 1) + 3\lambda(\lambda - 1) \left[\frac{\lambda - 1}{\lambda} E_{3}(K_{3}, \lambda) \right]$$
$$+ \lambda(\lambda - 1)(\lambda - 2)E_{3}(K_{3}, \lambda)$$
$$= \lambda^{6} - 4\lambda^{4} + 6\lambda^{2} - 3\lambda.$$

LEMMA 6. The edge-polynomial

$$E_{3}(K_{5},\lambda) = \lambda^{10} - 10\lambda^{8} + 45\lambda^{6} - 15\lambda^{5} - 100\lambda^{4} + 105\lambda^{3} - 20\lambda^{2} - 6\lambda.$$

Proof. Choose any vertex v of K_5 .

There are $\lambda E_3(K_4, \lambda - 1)(E, 3, \lambda)$ -colourings of K_5 with all four edges at v coloured alike. When exactly three of the four edges at v are coloured alike, there are

$$\begin{aligned} 4\lambda(\lambda-1)[E_3(K_3,\lambda-1)+(\lambda-1)E_3(K_3,\lambda-2)+3(\lambda-1)E_3(K_3,\lambda-1)\\ &+3(\lambda-1)(\lambda-2)E_3(K_3,\lambda-1)+\lambda(\lambda-1)(\lambda-2)E_3(K_3,\lambda-1)] \end{aligned}$$

possible (*E*, 3, λ)-colourings. Here the term $4\lambda(\lambda - 1)$ includes the four choices of three edges at v, the λ ways to colour them, and the $\lambda - 1$ ways to colour the remaining edge at v.

For each choice of colour c for the three like edges at v, the terms in brackets correspond respectively to the cases: (1) edges 1, 2, and 3 coloured c, (2) edges 1, 2, 3 coloured alike with some colour other than c, (3) two of 1, 2, and 3 coloured c, (4) two of 1, 2, and 3 coloured alike with some colour other than c, and (5) each of 1, 2, and 3 coloured differently. There are

$$6\lambda(\lambda-1)(\lambda-2)\left[rac{(\lambda-1)}{\lambda}E_{\mathfrak{z}}(K_{4},\lambda)
ight]$$

498

 $(E, 3, \lambda)$ -colourings of K_5 with exactly two edges at v coloured alike. Suppose next that there are two edges of one colour and two edges of another colour, incident with v.

Pick a pair of non-adjacent edges a and b in K_4 as in the figure above. (There are three such pairs.) The number of $(E, 3, \lambda)$ -colourings A for which a and b are coloured alike is given by

$$A = \lambda(\lambda - 1)[\lambda^3 + \lambda^2 - 3\lambda + 1].$$

The number of $(E, 3, \lambda)$ -colourings D for which a and b are coloured differently is given by

$$D = \lambda(\lambda - 1)[\lambda^4 - 4\lambda^2 + 2].$$

Hence the number of $(E, 3, \lambda)$ -colourings with two edges of one colour and two edges of another colour at v is

$$3\lambda(\lambda-1)\left\{\left(1-\frac{2}{\lambda}\right)A+\left[1-\frac{2}{\lambda}+\frac{1}{\lambda(\lambda-1)}\right]D\right\}.$$

Finally, there are $\lambda(\lambda - 1)(\lambda - 2)(\lambda - 3)E_3(K_4, \lambda)(E, 3, \lambda)$ -colourings of K_5 with all of the edges at v coloured differently.

Combining the terms derived above, we obtain

$$\begin{split} E_{3}(K_{5},\lambda) &= \lambda E_{3}(K_{4},\lambda-1) + 4\lambda(\lambda-1)[E_{3}(K_{3},\lambda-1) \\ &+ (\lambda-1)E_{3}(K_{3},\lambda-2) + 3(\lambda-1)E_{3}(K_{3},\lambda-1) \\ &+ 3(\lambda-1)(\lambda-2)E_{3}(K_{3},\lambda-1) \\ &+ \lambda(\lambda-1)(\lambda-2)E_{3}(K_{3},\lambda-1)] + 3\lambda(\lambda-1)\bigg\{\bigg(1-\frac{2}{\lambda}\bigg)A \\ &+ \bigg[1-\frac{2}{\lambda}+\frac{1}{\lambda(\lambda-1)}\bigg]D\bigg\} + 6(\lambda-1)(\lambda-2)E_{3}(K_{4},\lambda) \\ &+ \lambda(\lambda-1)(\lambda-2)(\lambda-3)E_{3}(K_{4},\lambda) \\ &= \lambda^{10} - 10\lambda^{8} + 45\lambda^{6} - 15\lambda^{5} - 100\lambda^{4} + 105\lambda^{3} - 20\lambda^{2} - 6\lambda. \end{split}$$

For $E_k(G, \lambda)$ we have the following system of equations, analogous to the system mentioned above for $V_k(G, \lambda)$:

$$E_{k}(G, 1) = b_{1,k}$$

$$E_{k}(G, 2) = b_{2,k} + 2b_{1,k}$$

$$E_{k}(G, 3) = b_{3,k} + 3b_{2,k} + 3b_{1,k}$$

$$\vdots$$

$$E_{k}(G, p) = \sum_{i=0}^{p-1} {p \choose i} b_{p-i,k}$$

$$\vdots$$

$$E_{k}(G, \lambda) = \sum_{i=0}^{p-1} {\lambda \choose p-i} b_{p-i,k},$$

where p = |E(G)|, and where for small λ it is understood that the factorial expressions in the denominators are evaluated as they were earlier.

Remark. Using the above system of equations, one can easily get the computer to calculate the $b_{i,k}$, $i = 1, 2, 3, \ldots, p$, provided that $E_k(G, \lambda)$ is known. For the given $E_3(K_4, \lambda)$ we obtain $b_{6,3} = 6!$, and for the given $E_3(K_5, \lambda)$ we obtain $b_{10,3} - 10!$. Since for K_4 and K_5 we find, by direct counts, the values of $b_{2,3}$ and $b_{3,3}$ which also agree, this is strong presumptive evidence for the correctness of our polynomials $E_3(K_4, \lambda)$ and $E_3(K_5, \lambda)$. Direct counting and the computer yield the following values:

K_4		K_5
$b_{2,3} = 8$	$b_{2,3} =$	12
$b_{3,3} = 396$	$b_{3,3} =$	17,100
$b_{4,3} = 1,464$	$b_{4,3} =$	474,480
$b_{5,3} = 1,800$	$b_{5,3} =$	3,922,200
$b_{6,3} = 6!$	$b_{6,3} =$	14,552,640
	b7,3 =	28,224,000
	$b_{3,3} =$	29,836,800
	$b_{9,3} =$	16,329,600
	$b_{10,3} =$	10!

References

- A. M. Gleason and R. E. Greenwood, Combinatorial relations and chromatic graphs, Can. J. Math. 7(1955), 1-7.
- 2. Frank Harary, Graph theory (Addison-Wesley, Reading, Mass., 1969).

500

- 3. H. J. Ryser, Carus Monograph No. 14, Combinatorial Mathematics (Wiley, New York, 1963).
- 4. Andrew Sobczyk, Graph-colouring and combinatorial numbers, Can. J. Math. 20 (1968), 520-534.
- 5. W. T. Tutte, Lectures on chromatic polynomials, Institute of Statistics Mimeo Series, No. 600.25.

Clemson University, Clemson, South Carolina; Parker High School, Greenville, South Carolina