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Abstract

Cuneiform is a minimal functional programming language for large-scale scientific data

analysis. Implementing a strict black-box view on external operators and data, it allows the

direct embedding of code in a variety of external languages like Python or R, provides data-

parallel higher order operators for processing large partitioned data sets, allows conditionals

and general recursion, and has a naturally parallelizable evaluation strategy suitable for

multi-core servers and distributed execution environments like Hadoop, HTCondor, or

distributed Erlang. Cuneiform has been applied in several data-intensive research areas

including remote sensing, machine learning, and bioinformatics, all of which critically depend

on the flexible assembly of pre-existing tools and libraries written in different languages into

complex pipelines. This paper introduces the computation semantics for Cuneiform. It presents

Cuneiform’s abstract syntax, a simple type system, and the semantics of evaluation. Providing

an unambiguous specification of the behavior of Cuneiform eases the implementation of

interpreters which we showcase by providing a concise reference implementation in Erlang.

The similarity of Cuneiform’s syntax to the simply typed lambda calculus puts Cuneiform in

perspective and allows a straightforward discussion of its design in the context of functional

programming. Moreover, the simple type system allows the deduction of the language’s safety

up to black-box operators. Last, the formulation of the semantics also permits the verification

of compilers to and from other workflow languages.

1 Introduction

In many current scientific projects, the need to analyze large and heterogeneous data

sets in distributed compute environments is prevalent (Hey et al., 2009). Systems

supporting the definition, execution, and management of such data analysis programs

are called scientific workflow systems (Cohen-Boulakia & Leser, 2011; Liu et al.,

2015). They typically bundle a scientific workflow language and a workflow execution

environment. The main purpose of such workflow languages is to facilitate the

formulation of assemblies made up of independent computations operating on large

and heterogeneous data sets. This leads to a unique set of requirements when
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compared to general purpose programming languages or scripting languages: (i) It

must be easy to specify a complex data analysis procedure as an assembly of

independent subprograms that can run in parallel. (ii) It must be easy to integrate

existing tools and libraries with heterogeneous programming interfaces, because the

individual steps in a scientific workflow are often complex programs in themselves

which are developed by different groups around the world. Finally, (iii) analysis

procedures often require conditional branching and iterative processing.

Cuneiform is a programming language for the specification of scientific workflows

focusing on parallel execution, integration of arbitrary external programs, and

support for a rich set of control elements (Brandt et al., 2015). It has been applied

in a variety of scientific domains including remote sensing, machine learning,

and bioinformatics (Bessani et al., 2015). Cuneiform comes with an execution

environment supporting the parallel execution of programs on multi-core servers, on

local clusters running distributed computation frameworks like Hadoop, HTCondor,

or distributed Erlang which may be hosted on cloud infrastructures like Amazon’s

EC2 (Bux et al., 2015). Performance evaluations on systems with up to several

hundreds of nodes showed the scalability of Cuneiform workflows in a number of

use cases (Bux et al., 2017).

In this paper, we define Cuneiform’s structural operational semantics, i.e., a small-

step operational semantics (Hennessy, 1990; Winskel, 1993; Harper, 2016) together

with a simple type system. Defining a language’s semantics has several advantages.

First, it eases language implementation because, otherwise, the language’s desired

behavior would have to be re-enacted from a reference implementation or extracted

from an informal description. Furthermore, it permits reasoning about language

properties such as the assertion that evaluation is total, consistent, and safe, as well

as reasoning about when termination can be guaranteed. Last, the correctness of

compilers transforming programs from or to other workflow languages with defined

semantics can be verified.

Our motivation to provide and use a formal semantics for Cuneiform also arose

from our own bad experiences. Previously, the behavior of Cuneiform programs was

defined only informally which caused a previous Java-based interpreter (of a code

size of 20 kLOC) to be difficult to maintain (Brandt et al., 2015). Although this

approach worked satisfactorily for basic language features, it made extending the

language core to support more complex features, e.g., general recursion, difficult, and

error prone. Faced with this situation, we decided to re-implement the interpreter

based on a formal semantics and a type system, which made the code cleaner,

easier to understand and maintain, and more concise. The resulting Java-based

implementation (10 kLOC) had only roughly half the code volume while offering

a richer functionality. Eventually, we also implemented the interpreter a third time

in Erlang (Armstrong et al., 1996) which had the additional advantage that the

reduction rules can be directly expressed owing to Erlang being a functional

programming language with pattern matching. Using Erlang led to a further

reduction of code volume by a factor of 3 (3.6 kLOC). Thus, defining Cuneiform’s

semantics had an apparent positive effect on code volume and enabled important

features which previously were either infeasible or had brittle implementations.
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Cuneiform is minimal in the sense that it provides only those language features

that are absolutely necessary regarding its specialization to organizing scientific data

analysis. It focuses on integrating external operators written in a variety of different

languages and the parallel execution of these operators. Accordingly, it lacks a

number of features common in general purpose programming languages, such as

support for efficient arithmetic operations, a more involved type system, control

structures like continuations or exception handling, or encapsulation. Instead, it

offers features such as automatic parallelization and direct embedding of code in

external languages. Its approach differs from current database-inspired distributed

systems in that Cuneiform has a strict black-box operator model and a black-box

data model. This means, it neither has information about the algebraic properties

of operators to re-order them nor has it a generic data model that would allow for

implicit partitioning of data sets. In this, it differs from some common declarative

data-flow languages like Pig Latin (Olston et al., 2008) or HiveQL (Thusoo et al.,

2009). However, the black-box approach allows the integration of arbitrary existing

tools and libraries and the processing of arbitrary data formats. The flexibility

resulting from being able to reuse any library and to process any data format is a

necessary condition for many scientific data analysis use cases.

The main idea behind Cuneiform’s semantics is the repeated evaluation of a

program term which may contain external operations. When an external operation

is encountered, it is scheduled to an execution environment. Evaluation continues as

far as possible to be able to simultaneously schedule as many external operations as

possible. The evaluation process starts with a program term which is handed to the

Cuneiform interpreter connected to a (possibly distributed) execution environment.

The interpreter sends external operations that are ready to execute to the execution

environment and receives operation results in return. Communication between the

interpreter and the execution environment is asynchronous. External operations are

independently executed and, each time an external operation finishes, the result is

sent back to the interpreter which re-evaluates the program term typically generating

new ready external operations. This process continues until the program term has

been evaluated to a value. Then, the interpreter terminates and outputs this result

value. If we expect a deterministic evaluation result given the non-determinism in the

order of external operation execution, we have to make a number of assumptions

about external operators; in particular, all operators are assumed (i) to terminate,

because only then the workflow as a whole can terminate, (ii) to be deterministic,

because intermediate results are memoized and reused wherever possible, and (iii) to

be independent, i.e., external operations without explicit data dependencies never

influence one another. Many scientific tools and libraries naturally fulfill these

properties. However, they are only assumed but not enforced by Cuneiform.

This presentation of Cuneiform’s semantics sticks closely to a simply typed lambda

calculus. One major benefit from adopting a lambda calculus is the ability to

express (unbounded) iteration as a recursive function call. This is especially useful

in research areas like machine learning where, often, an initial model is iteratively

improved until a target function has reached an optimum. With general recursion,

Cuneiform is not limited to applications in which a static dependency graph is known
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a priori, which is a practical limitation of many existing workflow languages like

DAGMan (Deelman et al., 2006; Kalayci et al., 2010) or Snakemake (Köster &

Rahmann, 2012). Furthermore, the relative proximity of Cuneiform to the simply

typed lambda calculus facilitates the reproduction of important properties like the

theorems of Church and Rosser (1936) or the language’s safety (Pierce, 2002). While

we do not present proofs for these properties, here we rely on the assertion that

the analogs of those results are in fact valid for Cuneiform. Section 7 shows how

random test generation can be used to informally assert these properties.

The scope of this paper is the Cuneiform interpreter, i.e., the component that per-

forms evaluation, on an abstract level. A description of the concrete syntax (Brandt

et al., 2015) and a distributed execution environment based on Hadoop (Bux et al.,

2015; Bux et al., 2017) have been presented in previous publications.

The remainder of this paper is structured as follows: Section 2 shows several

example workflows to demonstrate Cuneiform’s usability and expressiveness. We give

a more detailed overview over the goals, trade-offs, assumptions, and design decisions

for Cuneiform in Section 3. After introducing the notation used throughout this

paper in Sections 4 and 5 introduces Cuneiform’s abstract syntax, static semantics,

and type system. Section 6 describes the evaluation rules in terms of a structural

operational semantics. Section 7 briefly introduces a reference implementation

written in Erlang which exemplifies how the rules given in this paper can be

transcribed to a general purpose programming language. Section 8 reviews related

work and languages with similar design goals as Cuneiform. We conclude the paper

in Section 9.

2 Examples

In this section, we discuss several examples with the goal to demonstrate the features

of Cuneiform. In essence, a Cuneiform program consists of function (task) definitions

and function calls. Herein, a function body can be defined in Cuneiform or in any

of the supported external programming languages. For example, for defining a

function that calls the command line tool gzip to decompress a file, we would

define a function in Bash that consumes a gzipped file and outputs its decompressed

version.

deftask gunzip( out( File ) : gz( File ) ) in Bash *{

out=unzipped_${gz%.gz}

gzip -c -d $gz > $out

}*

This snippet defines the function gunzip producing one output named out and

consuming one input argument named gz. Both are flagged to be of type File

which prompts the (possibly distributed) execution environment to stage-in the

input file stored in the argument gz and, after function execution, to stage-out the

output file stored in the variable out. While we declared Bash to be the language

for the body of this function, any high-level programming language can be driven

this way, e.g., Python, R, or Perl. Thus, it is straightforward to integrate a given
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tool or library with an API in one of the supported languages. The first line of the

function body defines the string content of the variable out. We define the output

filename to be the prefix of the original filename, thereby omitting the “.gz” suffix.

In addition, we prefix the output filename with the string “unzipped ” to avoid a

name clash with the original filename in case it did not have a “.gz” suffix. With the

output filename defined, we can start the gzip command. The -c flag tells gzip to

write to the standard output while the -d flag instructs it to decompress. The third

parameter to gzip is the input file stored in the variable gz piping the output to the

previously specified file stored in the variable out.

We apply the function defined above by binding the function’s input argument gz

to a gzipped file or a list of gzipped files.

gunzip( gz: "archive1.gz" "archive2.gz" "archive3.gz" );

In the above snippet, we bind the argument gz to a three-element list of gzipped

files. The gunzip function does not consume the list as a whole. By default, the

function is implicitly mapped over the elements of the input file list, generating

three independent applications of gunzip which are scheduled and executed by the

Cuneiform execution environment.

Use cases that involve simulation experiments often incorporate sweeps over the

ranges of several arguments. For example, suppose we want to integrate a simulation

library having an API in Perl. It consumes a set of observations stored in a CSV file

and, given a temperature, a pH value, and a water activity, performs a simulation

which produces a prediction for these arguments.

deftask sim( predict : observ( File ) ph temp wa ) in Perl *{

predict = sim( $observ, $ph, $temp, $wa );

}*

observ = "observ.csv";

ph = 4 5 6 7 8 9 10;

temp = 16 18 20 22 24;

wa = "0.0" "0.5" "1.0";

sim( observ: observ, ph: ph, temp: temp, wa: wa );

The above code snippet calls the sim function for all combinations of seven pH

values, five temperature values, and three water activity values. By default, Cuneiform

takes the Cartesian product of all input arguments and instantiates a call to sim

for each distinct combination, i.e., the sim function is called 105 times in the above

example. In a similar way, bootstrapping (Efron & Tibshirani, 1994; Manly, 2006)

or n-fold cross validation (Bishop, 2006; Haykin et al., 2009; Duda et al., 2012) can

be expressed.

Often it is not enough to map a task to a number of data partitions. Many

algorithms, based on, e.g., gradient descent or expectation maximization, iteratively

improve on an initial solution terminating the iteration when a convergence criterion

is met. This iteration can be expressed in Cuneiform through recursion.
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deftask find_clusters( cls( File ) : data( File ) state( File ) ) {

clusters = cluster( data: data, state: state );

state1 = reevaluate( cls: clusters );

cls = if has_converged( old: state, new: state1 )

then

clusters

else

find_clusters( data: data, state: state1 )

end;

}

The above snippet implements a k-means algorithm by (i) associating all data

points with a cluster center using the cluster function and (ii) re-evaluating the

cluster centers using the reevaluate function. The function has converged checks

whether a convergence criterion is met and, if so, returns the current cluster centers.

Otherwise, the task calls itself with an updated state argument.1

In Appendix A, we demonstrate a more complex workflow from the field

of bioinformatics implementing a ChIP-Seq analysis (Myers et al., 2013). In a

ChIP-Seq experiment, the starting point is a set of sequenced DNA reads that

have been previously selected via immunoprecipitation. By detecting peaks in the

sequence coverage relative to a baseline coverage, it is possible to identify the

active genes in a cell under a given test condition. The workflow demonstrates how

sequence alignment to a reference genome, peak detection, peak annotation, and

quality control can be expressed in Cuneiform.2

In summary, Cuneiform enables direct integration of external tools and libraries

by allowing function definitions to use external programming languages, it implicitly

applies appropriate second-order functions to iterate over lists, and it allows

unbounded iteration through general recursion. The implicit application of second-

order functions to process lists is a way to make programs type check that otherwise

would not. It also relieves the programmer from using second-order functions

explicitly when their expedience is clear from the context. Implicit list processing

is also found in Taverna’s implicit iteration (Oinn et al., 2006) or in Matlab where

most arithmetic operations are defined for matrices and a number is treated as a

single-element matrix.

3 The Cuneiform approach

Cuneiform is an organizational language for distributed data analysis. Its goal is

the easy integration of external libraries and tools by allowing to write light-weight

wrappers around these tools and to parallelize them automatically. By providing

1 A full implementation of the k-means workflow example is available under https://github.com/
joergen7/kmeans.

2 Detailed information about the ChIP-Seq workflow example is available at http://cuneiform-
lang.org/examples/2016/04/29/chip-seq/.
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a generic black-box data model, Cuneiform can process data encoded in any

serializable data format. As such, Cuneiform is a hybrid of a functional programming

language, because, at its heart, it is a lambda calculus with black boxes, a database

query language, because its purpose is to coordinate parallel computation on data

sets potentially exceeding the disk size of a single computer, and a scientific workflow

language, because it integrates foreign tools and libraries producing and consuming

files in various domain-specific formats.

External black-box operations often involve complex computations that would be

expensive to repeat if a workflow is run more than once or if different workflows have

external operations in common. Thus, a Cuneiform execution environment should

memoize all external operations and reuse computation results where possible.

While exhaustive memoization may be problematic in situations where many

cheap computations are memoized, it becomes invaluable when the number of

computations is moderate but computations themselves are costly (e.g., take hours

or days to complete) as is often the case in data analysis application areas. For the

same reason, it is undesirable to execute any external operation that does not, in

some way, contribute to the final result of a workflow, i.e., if there is no explicit data

dependency between an external operation and the result term we want to dispose

of this external operation early. In functional programming languages, this can be

achieved by picking a call-by-name evaluation strategy (Michaelson, 2011). However,

since there is no way of substituting an unevaluated term into the body of a black-

box operator, Cuneiform resorts to a mixture of a call-by-name and a call-by-value

evaluation strategy. Herein, it gives precedence to call-by-name evaluation wherever

possible to discard non-contributing terms early on but it is uses a call-by-value

strategy when it needs to evaluate the arguments of external black-box operators.

Cuneiform is intended for the analysis of large data sets. Thus, Cuneiform

introduces “files” as a separate base data type for a finite-size addressable black-box

data object. As far as the Cuneiform semantics are concerned, both files and strings

behave identically. However, external operators need a hint whether a value is just

a string or whether it is an address referencing a data object which needs to be

made available prior to execution or published prior to communicating this address

to downstream operators. Herein, the Cuneiform interpreter does not need to care

whether access to a data object is implemented as a database access, as an API call

to a remote storage service, as the creation of a symbolic link in the local file system,

or as sending and receiving from a Unix pipe, a socket, or a distributed message

queue. All the interpreter needs to know is whether a string stands just for itself or

whether it is an address referencing a data object and treat these cases consistently.

Language features for managing concurrency, communication, or synchronization

are deliberately missing from Cuneiform. Details about the fact that computation

is eventually performed in a potentially large distributed system, organized as a

composition of web-services providing distributed storage and computation in the

presence of failures, should not leak into the organizational language itself. While

no explicit language features for managing concurrency are provided, concurrency

is achieved by treating external black-box operators like pure functions: If external

operations do not influence one another (i.e., if they are pure), then it is possible
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Fig. 1. Interpreter with user interface (Uin and Uout) and interface to execution environment

(Equery and Eresult). Interpretation starts when a Cuneiform term t appears on place Uin. This

term does not contain any futures yet so the multi-set of external operations A is initialized

empty. When the step transition fires, there a reduction rule is applied to the term t reducing

it to t′. When an external operation is encountered, the send transition fires, replacing the

external operation in t with a future resulting in t′ and adding the external operation a to the

multi-set A and also sending a to the execution environment via the place Equery. When an

external operation finishes, it appears together with its result term on the place Eresult. Now,

the recv transition can fire. It substitutes the result term r for any appearance of the future

embodying the external operation a in the term t, and also a is discarded from the multi-set

of external operations A. Evaluation continues until the term t is a value. In this event, it is

returned to the user.

to evaluate them independently. Herein, reading or writing to disk and even

communicating over the network is tolerable as long as operators are deterministic

and independent. Moreover, the Church–Rosser property allows us to substitute the

evaluation results in the order they arrive and continue evaluation as far as possible

as early as possible. Note that this makes Cuneiform inherently non-deterministic

since the order in which external operations are scheduled and results arrive is up

to the execution environment (see Figure 1).

By independently running black box-operations, task parallelism is achieved. Data

parallelism is a special case of task parallelism which is achieved by applying second-

order functions to lists of files representing data partitions. Execution environments

for Cuneiform also exploiting pipeline parallelism are feasible but have not been

conceived to date.

Following this approach, we introduce the structural operational semantics of

Cuneiform as a simply typed lambda calculus with black-box functions.

4 Preliminaries

A Cuneiform program is provided by the user in the form of a sequence of characters

constituting the concrete program. When execution finishes, the interpreter generates
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Fig. 2. Specification of a Cuneiform interpreter. A Cuneiform program is first parsed resulting

in an abstract program. This abstract program is then evaluated by the interpreter producing

the result value. Both the parser and the interpreter have formal specifications. While the

parser can be generated automatically from the specification in BNF, the specification of the

interpreter has to be manually transcribed.

the output in the form of a Cuneiform value. The overarching transformation process

is commonly separated in a parsing step and an interpretation step (see Figure 2).

First, the concrete program is parsed resulting in an abstract program having the

form of a Cuneiform term. For Cuneiform as for many programming languages, the

concrete syntax is specified in Backus–Naur Form (BNF) and a parser generator

can be used to automatically generate the parser from the syntax definition in

Backus–Naur Form. Herein, only part of a program string is actually to be parsed

as Cuneiform code. The body of any external operator definition in, e.g., R or

Python, is left unparsed. The lexer recognizes the beginning and end of a foreign

operator body via a matching pair of mickeymouse-eared curly braces: *{...}*.
where it is assumed that no such character combination is ever used inside a foreign

function body. When the parser encounters external code, it stores the code snippet

as is, i.e., still in its textual form, inside a foreign abstraction term. Only when the

execution environment schedules the external operation to run in an actual R or

Python instance, the foreign code is actually parsed (and run).

The discussion of Cuneiform’s semantics starts in Section 5 by giving the abstract

syntax which specifies the form that a Cuneiform term can assume and which terms

are also values. In addition, this section provides the typing rules for terms. If a

program adheres to the abstract syntax, it is well-formed. If it, additionally, adheres

to the typing rules, it is well typed. We demand that the interpreter only accepts

programs that are well typed. In Section 6, we present the rules for evaluating terms

in the form of a structural operational semantics. That is, evaluation is defined as a

series of small evaluation steps that are repeatedly applied until a Cuneiform term

results, that cannot be evaluated any further.

Commonly, in a safe programming language, the term that results when the

interpreter halts is guaranteed to be a value. In Cuneiform, there is another reason

for the interpreter to suspend evaluation: Any unfinished external operation appears
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as a future inside the Cuneiform term under evaluation. A future is neither a value

nor can it be further evaluated. Instead, it is substituted for its result value when the

corresponding external operation finishes. Thus, whenever a term contains external

operations, the interpreter eventually suspends evaluation while the result term is

not a value. In this event, the interpreter waits until an external operation finishes.

Upon substitution of a future for its result value, interpretation is resumed until the

interpreter is suspended again. Finally, the interpreter evaluates the term to a value

and the interpreter terminates.3 So for Cuneiform to be safe, we have to assume

that all futures are eventually substituted (i.e., we never lose external operations and

they always terminate) and that the return values of external operations match their

declared type.

In the two upcoming sections, the abstract syntax, typing rules, and evaluation

rules for Cuneiform are introduced. Herein, each syntactic category, is introduced

in turn, by first stating, how the set of terms and values is to be extended. For

example, for introducing the syntactic category of a string literal, we write t ::= str s

to say that a term t is defined to be the symbol str followed by an instance of the

meta-variable s. Together with a term definition, we also give a value definition of

the form v ::= str s to say that a string literal is not only a term but also a value.

While we explicitly define what form the meta-variables t and v can assume, the

definition of the abstract syntax contains the following other syntactic categories:

We write s for some string “ . . . ”, i for some positive natural number i ∈ {1, 2, . . .},
and k for some future identifier k ∈ K , where K is some set from which future

identifiers can be chosen. In practice, this can be a unique natural number or some

hash value represented by a binary. The meta-variable x denotes a name.

When introducing the abstract syntax of types, we distinguish between types

in general T and types that can be consumed or produced by external operators

U which we call ground types. Whenever we introduce types, e.g., by writing

T ::= Bool, to say that the meta-variable T can be the type Bool, we also state

whether we introduce it as a ground type by writing U ::= Bool to say that a

Boolean is not only a type but also a ground type.

Typing rules are given as a three-element relation written in the form Γ � t : T

meaning that in the context Γ, the term t is element of the set uniquely represented

by the type T . The context Γ itself is a two-element relation, associating some name

x with some type T . Herein, we use the fact that a two-element relation can be

represented as a set of pairs to construct it. We write Γ = ∅ to express that the

context relation Γ never holds. To extend Γ so that it additionally holds for the pair

x1 : T1 , we write Γ, x1 : T1 . To extend Γ with the set of pairs xi : Ti
i∈1..n, we write

Γ, (xi : Ti
i∈1..n). We write x1 : T1 ∈ Γ to say that the context relation Γ holds for a

name x1 of type T1. Function types play a special role Cuneiform. A function type

is written in the form
(
xi : Ti

i∈1..n
)

→τ Tret meaning the type of a function taking n

arguments with the names x1 to xn having the types T1 to Tn and returning a value

3 A Cuneiform term may diverge so termination is, in general, not guaranteed even if the language is
safe.
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of type Tret. Herein, τ is either “ntv,” if it is a native function, or “frn” if it is an

external operator, i.e., a foreign function.

After the abstract syntax and typing rules have been introduced, we give the

evaluation rules in Section 6. We write down the small-step evaluation rules in the

following way: To say that a term t can take an evaluation step to t′, we write

t −→ t′. To perform substitution, we write [x �→ t1]t2 to say that all occurrences

of the variable with the name x in the term t2 should be substituted for the term

t1 up to α-renaming. Thus, substitution is suspended for shadowed variables and is

capture avoiding.

5 Abstract syntax, static semantics, and types

This section introduces the abstract syntax and typing rules of Cuneiform. When

presenting the abstract syntax, we distinguish between terms t and values v. Any

valid Cuneiform program has the form of a term. Values are those terms that can

be the output of interpretation. They cannot be further evaluated. If a term already

is a value, then it is returned to the user as it is. Otherwise, it is evaluated until a

value results. In this section, we define both terms and values separately. Moreover,

we give typing rules to uniquely associate any term or value with its corresponding

type, given that the types of its sub-terms are known. Since external operators are an

integral part of the Cuneiform semantics, they are introduced as a syntactic category

in their own right. The arguments consumed by external operators as well as the

results they produce are always values, e.g., Booleans or string lists. However, while

native functions and the external operators themselves are also values, they cannot

be consumed (or produced) by external operations. Thus, we have to distinguish

between types in general T which include function types and those types that can

be arguments or results of external operators U which we call ground types. Both

types and ground types are separately defined.

We start the discussion of Cuneiform’s abstract syntax by giving an overview over

all syntactic categories:

t ::=

str s

file s

x

λntv (xi : Ti
i∈1..n) . t

λfrn (xi : Ui
i∈1..n) →frn U in l . s

t
(
xi = ti

i∈1..n
)

fut[U] k

true

false

if t then t else t

fix t

nil[T ]

cons[T ] t t

isnil[T ] t

zip[xi∈1..n
i |Tret] t

{tii∈1..n}
πi t

Πi t

let x : T = t in t

In the following, we introduce each of these syntactic categories in turn. We start

with the base types which are strings and files. Then we introduce the lambda

calculus with black boxes and continue by introducing Booleans and conditions,
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general recursion, and, eventually, compound data types like lists and tuples and

their respective constructors and accessors.

5.1 Files and string literals

String literals and files are important basic data types in Cuneiform. For example, the

arguments of external libraries can be encoded as a string data type. As an example,

consider the significance level of a p-value which can be encoded as str “0.99.”

Similarly, if a tool consumes a file, the filename can be encoded as a file data type.

As an example, consider a partition of a DNA sample which may be stored in a file

encoded as file “sample01.fastq.”

t ::=

str s

file s

v ::=

str s

file s

(1)

While not supported in the currently available Cuneiform implementations, it is

possible to include integers or floating point numbers.4 Care must be taken to take

into account differences in the definition ranges of these data types among different

external languages. To keep the notation concise, we do not extend the abstract

syntax to this level of detail here. Strings and files are not only terms but also

values, i.e., they can be the result of a Cuneiform program. Next, we introduce a

string type Str and a file type File. Both types Str and File are also ground types,

i.e., they can be arguments or the result of external operations.

T ::=

Str

File

U ::=

Str

File

(2)

The typing rules state that any term that has the form of a string (or file) is of the

type Str (or File) independent of the context Γ.

Γ � str s : Str (3)

Γ � file s : File (4)

5.2 Lambda calculus with black boxes

Cuneiform is presented here as a lambda calculus. However, to attribute for the

language modularity described earlier, Cuneiform includes, next to native functions,

the syntactic category of a foreign functions (i.e., an external black-box operator).

Herein, we need to account for the fact that the arguments of a foreign function

cannot be applied one argument at a time like it is done in the canonical lambda

4 Currently, numbers are distinct in the concrete syntax but are internally represented as strings and
handled accordingly.
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calculus but have to be applied all at once. To be as consistent as possible

between native and foreign functions, we allow both function types to bind multiple

arguments at once. Together with variables and function applications, we obtain the

following syntax for a lambda calculus with black boxes:

t ::= . . .

x

λntv (xi : Ti
i∈1..n) . t

λfrn (xi : Ui
i∈1..n) →frn U in l . s

t
(
xi = ti

i∈1..n
)

v ::= . . .

λntv (xi : Ti
i∈1..n) . t

λfrn (xi : Ui
i∈1..n) →frn U in l . s

(5)

Variables are represented just with their variable name x. We introduce function

values for both the native and the foreign case. A function binds a (possibly empty)

set of arguments x1 to xn having the types T1 to Tn. The return type of a native

function can be obtained by applying the typing rules presented in this section. The

body of a native function is a term. In the foreign case, the return type cannot be

inferred by applying the typing rules. Accordingly, the full function type (arguments

and return type) has to be part of the definition of a foreign function. Last, we need

to be told the body of the foreign function which is represented as an arbitrary

string s as well as the information in which external programming language l it is

written. Important external languages are

l ::=

Bash

Octave

Perl

Python

R

. . .

(6)

The only types that need to be added are the two function types: the native function

type and the foreign function type, while the foreign function type can assume only

ground types for each of its argument types and the return type.

T ::= . . .

(xi : Ti
i∈1..n) →ntv T

(xi : Ui
i∈1..n) →frn U

(7)

The function types are not added to the set of ground types since functions cannot

be an argument or the result of an external operation.

We, now, give typing rules for the four syntactic categories introduced: Variables,

native and foreign abstractions, and function applications. The type of a variable x

is looked up in the context Γ in which the variable term is located.

x1 : T1 ∈ Γ

Γ � x : T1
(8)

The function type of a native abstraction results from the argument types and

the inferred return type, while the foreign function type is part of the foreign
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abstraction’s definition.

Γ, (xi : Ti
i∈1..n) � t2 : Tret

Γ � λntv (xi : Ti
i∈1..n) . t2 : (xi : Ti

i∈1..n) →ntv Tret

(9)

Γ � λfrn (xi : Ui
i∈1..n) →frn Uret in l . s : (xi : Ui

i∈1..n) →frn Uret (10)

The type of an application is the return type of its left-hand term tf which needs to

be of a function type, native or foreign.

Γ � tf :
(
yi : Ti

i∈1..n
)

→τ Tret∀i (xi = yi ∧ Γ � ti : Ti)

Γ � tf
(
xi = ti

i∈1..n
)

: Tret

(11)

5.3 Futures

Futures are temporary placeholders for unfinished external operations. A future

denotes the return type U of the applied external operator (which must be a ground

type) as well as a future identifier k ∈ K from some set of possible future identifiers.

A typical choice for K would be the set of natural numbers �. Note that two

future names can be allowed to coincide only when they represent exactly the same

external operation. This can be achieved by assigning increasing numbers to futures

as they are encountered. We, thus, define the syntactic category of futures:

t ::= . . .

fut[U] k
(12)

Note that a future is not a value. The typing rules state that a future is always of

the ground type it denotes, so no additional types need to be introduced.

Γ � fut[U1] k1 : U1 (13)

5.4 Booleans and conditions

The only base data type in Cuneiform in addition to Str and File is the Boolean type

Bool. Boolean values are the symbols true and false. We use Booleans in conditional

terms which branch Cuneiform programs depending on a condition known only at

run time, e.g., to express the exit condition of a recursive function. For example, the

term

if true then (str “foo”) else (str “bar”)

evaluates to the string value str “foo.”

t ::= . . .

true

false

if t then t else t

v ::= . . .

true

false
(14)
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We extend the set of types for the type Bool which is also a ground type, i.e., it can

be an argument or the result of an external operation.

T ::= . . .

Bool

U ::= . . .

Bool
(15)

The typing rules state that the values true and false are of type Bool and that a

conditional term is well typed if its condition t1 is a Boolean and the then-term t2
has the same type as the else-term t3. The conditional term itself then has the type

of the then- and else-terms.

Γ � true : Bool (16)

Γ � false : Bool (17)

Γ � t1 : BoolΓ � t2 : T23Γ � t3 : T23

Γ � if t1 then t2 else t3 : T23
(18)

5.5 General recursion

Another important feature of Cuneiform is the possibility to define recursive

functions. This is achieved via the introduction of a fixpoint operator. To attain the

typability of such an operator, we do not introduce it as a derived form but as a

syntactic category in its own right. For example, say we have defined a function

f∗ := λntv (f : (x : File) →ntv Bool, x : File) . . . .

with two arguments: “f,” a function that consumes a file and “x,” a file. The function

f∗ returns a value of type Bool and its body may contain f as a free variable. We

can construct a recursive function from f∗ by using it in the following expression:

f := fix f∗

This way we construct a recursive function f : (x : File) →ntv Bool. Accordingly, we

extend the set of terms in the following way:

t ::= . . .

fix t
(19)

Since a fixpoint term can always be evaluated, we do not need to add fixpoint terms

to the set of values. The typing rule requires the first argument of a function term

t1 to be the name of the recursive function xf . Then, the remaining arguments and

the return type of t1 make up the type of fix t1.

Γ � t1 : (xf : (xi : Ti
i∈1..n) →ntv Tret , xi : Ti

i∈1..n) →ntv Tret

Γ � fix t1 : (xi : Ti
i∈1..n) →ntv Tret

(20)

5.6 Lists

In Cuneiform, data parallelism is achieved by partitioning a data set and applying

functions to lists of partitions. Thus, the list is an important compound data type.
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We introduce the empty list of type T nil[T ] and the list constructor cons[T ] t t as

list values. The isnil[T ] t predicate returns true if a list is empty. For example, the

list value nil[File] denotes the empty list of files, while the list value

cons[File] (file ”foo1.txt”) (cons[File] (file ”foo2.txt”) (nil[File]))

denotes the two-element list containing the files “foo1.txt” and “foo2.txt.” Thus, the

set of terms is extended to contain the empty list, the list constructor, and the isnil

predicate. Of these, the empty list is a value as well as the list constructor whose

head and tail are values.

t ::= . . .

nil[T ]

cons[T ] t t

isnil[T ] t

v ::= . . .

nil[T ]

cons[T ] v v
(21)

The list type is added to the set of types which is also a ground type. That is, lists

can be the arguments or return values of external operators.

T ::= . . .

List T

U ::= . . .

List U
(22)

We give typing rules for the empty list, the list constructor, and the isnil operator:

The empty list is of the list type it specifies.

Γ � nil[T1] : List T1 (23)

If the list constructor’s head is of the specified type and the tail is of the specified

list type, the constructor is also of this list type.

Γ � t1 : T1 Γ � t2 : List T1

Γ � cons[T1] t1 t2 : List T1
(24)

The isnil operator is of type Boolean if its argument is of the specified list type.

Γ � t1 : List T1

Γ � isnil[T1] t1 : Bool
(25)

5.7 Accessing lists using map, zip, or the Cartesian product

In the previous section, we have introduced constructors for lists (nil[T ] and

cons[T ] t t), but we have refrained from introducing list accessors like head or tail.

The reason for this restraint is that these accessors can be defined only as partial

functions over lists since they are undefined for the empty list nil[T ]. There are

several ways to deal with this partiality, e.g., to emit an error at run time. However,

since many data-intensive workloads run for hours or days, it is impractical to

detect an undefined list access only at run time when the program may already be

running for several hours. Cuneiform avoids this problem by constraining the user

to either apply an external operator that consumes the list as a whole or to access

the list via its zip operator, which implements list comprehensions. The zip operator

closely resembles Common Lisp’s mapcar or Racket’s for/list form. However, the
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interpreter does not suspend evaluation when an external operation is encountered.

Instead, all list elements are processed right away to detect and start as many

external operations as possible.

For example, say we have two equally long lists of Booleans and we want to per-

form pairwise Boolean conjunction over both lists. First, we define

f∗ : (a : Bool, b : Bool) →ntv Bool consuming two arguments with the names a and

b, both of which are of type Bool.

f∗ := λntv (a : Bool, b : Bool) . (if a then b else false)

From the function f∗, we create a new function f also consuming two arguments a

and b but of type List Bool by applying the zip operator. The new function returns

a term of type List Bool.

f := zip[a, b|Bool] f∗

If the above term is applied to two Boolean lists of equal length, the original function

f∗ is applied to each pair of elements from both lists, generating a new list of the

return type of f∗. As an example, we apply the function f to two lists of size

two:

l1 := cons[Bool] true (cons[Bool] false nil[Bool])

l2 := cons[Bool] true (cons[Bool] true nil[Bool])

f (a = l1, b = l2)

This term evaluates to the two-element list cons[Bool] true (cons[Bool] false

nil[Bool]).

In the following, we extend the term definition with the zip operator. Since its

evaluation rules are explained only in the context of function application, we need

to include the zip operator in the set of values to account for the possibility that it

is never applied.

t ::= . . .

zip[xi∈1..n
i |T ] t

v ::= . . .

zip[xi∈1..n
i |T ] t

(26)

The typing rules for the zip operator state that the zip operator alters the type of

its original function to return List Tret if the original function returns Tret and that

it alters the type Ti of each argument of the original function to be List Ti for each

argument xi that appears in the argument name list of the operator. Herein, the zip

operator has to specify at least one argument name.

m � 1 ∀j ∃i yj = xi Γ � tf :
(
xi : Ti

i∈1..n
)

→τ Tret

Γ � zip[yj∈1..m
j |Tret] tf :

(
xi :

{
List Ti , ∃j yj = xi
Ti , else

i∈1..n
)

→τ List Tret

(27)

Note that in the case of a single argument, the zip operator degenerates to a map.

Furthermore, by chaining map operators, we can achieve the effect of a Cartesian

product. With zip, we have, thus, introduced a powerful higher order operator that
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can be used in a variety of ways to process lists. Of course, it would also be possible

to introduce zip as a derived form instead of giving it the rank of a distinct syntactic

category. But not only is the zip operator an important feature in Cuneiform, it is

also a way to introduce some higher order constructs without making use of the

fixpoint operator (introduced in Section 5.5). In the absence of general recursion,

the assertion of progress (which is part of the safety argument for Cuneiform) also

is an assertion of termination. That is, Cuneiform programs not using the fixpoint

operator are guaranteed to terminate (Pierce, 2002) under the assumption that all

external operations terminate. By introducing the zip operator this way, termination

can be argued for all programs that use the zip operator but not the fixpoint

operator.

5.8 Tuples

External operators can have multiple outputs. To account for this, Cuneiform

introduces tuples and the projection operation allowing the extraction of the ith

tuple element. So an external operator producing n outputs returns an n-ary tuple in

Cuneiform. Since external operators are often mapped over lists of data partitions, a

very common situation is that we have lists of tuples from which we need to obtain

a list comprising only the ith element of each tuple. This is why we also introduce a

projection through lists (which we call a list projection). For example, say that the

application of an external operator that yields two output files has been mapped

over a list of input files resulting in the following output list of type List {File, File}:

cons[{File, File}] {(file ”foo1.txt”), (file ”bar1.txt”)}
(cons[{File, File}] {(file ”foo2.txt”), (file ”bar2.txt”)}

nil[{File, File}])

If we are interested in a list containing only the files of the first operator output, we

can use the list projection Π1 (cons[{File, File}] . . . ) to obtain a list of type List File.

The set of terms is, thus, extended for the syntactic category of tuples, projections,

and list projections where only tuples are values.

t ::= . . .

{tii∈1..n}
πi t

Πi t

v ::= . . .

{vii∈1..n}
(28)

We add the tuple type to the set of types. Herein, a tuple type containing only

ground types is itself a ground type. This way tuples can be the input or output of

external operators.

T ::= . . .

{T i∈1..n
i }

U ::= . . .

{Ui∈1..n
i } (29)

The typing rules state that the tuple type enumerates the types of all its elements.

∀i Γ � ti : Ti

Γ � {ti∈1..n
i } : {T i∈1..n

i }
(30)
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Furthermore, if a projection is applied to a tuple, this projection has the type of the

corresponding tuple element.

Γ � t1 : {T i∈1..n
i }

Γ � πj t1 : Tj

(31)

Accordingly, if a list projection is applied to a list of tuples, this list projection has

the list type of the corresponding tuple element.

Γ � t1 : List {T i∈1..n
i }

Γ � Πj t1 : List Tj

(32)

5.9 Let bindings

The last syntactic category we need to define are let bindings.

t ::= . . .

let x : T = t in t
(33)

and give their typing rule:

Γ � t1 : T1Γ, (x : T1) � t2 : T2

Γ � let x : T1 = t1 in t2 : T2
(34)

6 Evaluation

Having defined the abstract syntax and typing rules, we can define the evaluation

rules for Cuneiform. We give a formal definition of term evaluation in the form

of a structural operational semantics (Plotkin, 1981). In contrast to the alternative

natural semantics (Kahn, 1987) (big-step semantics) in which evaluation is defined

as a single recursive transformation, structural operational semantics is defined as

the repeated application of a standard reduction relation. This relation defines a

reduction step that transforms a term to a (possibly) simpler equivalent term. To

express that the standard reduction relation holds for a pair of terms t and t′, we

write t −→ t′. We repeatedly apply the standard reduction relation until none of

the reduction rules can be applied. The term we obtain by applying the standard

reduction relation n times to an initial term t1 is the evaluation result t∗.

t1 −→ t2 −→ . . . −→ tn−1 −→ t∗

The safety argument for Cuneiform’s typing rules asserts that the term t∗ for

which no evaluation rules apply, either is a value or still contains futures acting

as placeholders for external operations to become available later in time. If t∗ is a

value, it is returned to the user. Otherwise, evaluation is suspended until the result of

some external operation becomes available, in which event the corresponding future

is substituted for its result and evaluation is resumed.

This section introduces the standard reduction relation, i.e., the small-step evalua-

tion rules for well-typed terms by extending a notion of reduction with an evaluation

strategy. First, we give the evaluation rules for a lambda calculus with black boxes

and show how external operations are represented with futures. Then, we introduce
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conditionals. After giving the evaluation rules for the fixpoint operator, we state

how list and tuple accessors are evaluated. Last, let bindings are discussed. These

rules make up the notion of reduction for Cuneiform.

Cuneiform’s evaluation strategy is a mixture of call-by-name and a non-

deterministic variant of call-by-value. Many general purpose programming languages

fix the order in which sub-terms are evaluated to ensure that side effects of sub-terms

are not only guaranteed to occur but also that they occur in a deterministic order.

This ordering is important since operations in such languages usually dependent

on the order of side effects. In contrast, Cuneiform’s external operations must be

independent (i.e., they must not influence the result of other external operations).

Since operators are black boxes, independence can only be assumed but not enforced.

Independence allows us to discard unneeded sub-terms and to reorder, or restart

sub-term evaluation where most programming languages need to take great care for

side effects to occur in a foreseeable order and at most once.

Moreover, independence allows us to relax the evaluation strategy mixing the

call-by-name strategy (for early discarding of unnecessary computations) and a

non-deterministic variant of the call-by-value strategy (for evaluating the arguments

of external operators in parallel). This mixed evaluation strategy is defined by the

congruence rules we give in Section 6.8 which extend the previously given notion of

reduction to form the standard reduction relation.

6.1 Beta reduction

Here, we describe how the beta reduction of the canonical lambda calculus translates

to Cuneiform’s lambda calculus with black boxes. First, a native function application

not binding any arguments trivially evaluates to the unaltered function body.

(λntv () . tb) () −→ tb (35)

A native function application binding one or more arguments substitutes the first

bound argument into the function body, thereby removing the argument from

the function term as well as the argument binding on the right-hand side of the

application.

(λntv (x1 : T1 , xi : Ti
xi∈2..n) . tb)

(
x1 = t21 , xi = t2i

i∈2..n
)

−→ (λntv (xi : Ti
xi∈2..n) . ([x1 �→ t21]tb))

(
xi = t2i

i∈2..n
) (36)

Note that this is an instance of an evaluation rule where unnecessary terms may be

disposed since the bound variable x1 may not actually appear free in the body tb of

the native function. Thus, we prioritize this evaluation rule over the other ones.

The previous two computation rules describe how native function applications

are evaluated. In the case of a foreign function, we have to make sure that both the

left-hand term as well as all the argument terms of the application are values. If this

is the case, we can schedule the external operation and replace the application with

a future term.

(λfrn (xi : Ui
i∈1..n) →frn Uret in l . s)

(
xi = vi

i∈1..n
)

−→ fut[Uret] k1 (37)
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Scheduling of an external operator should be done only if absolutely necessary. If

there is any other evaluation rule, it should take precedence over the above rule to

account for the possibility that an unnecessary computation can be disposed of.

6.2 Conditionals

The evaluation rules for conditionals are straightforward. In case the condition-term

evaluates to true the conditional evaluates to the then-term, otherwise it evaluates

to the else-term.

if true then t2 else t3 −→ t2 (38)

if false then t2 else t3 −→ t3 (39)

6.3 General recursion

We achieve general recursion in the presence of a simple type system by explicitly

adding a fixpoint operator as a syntactic category. Here, we give its evaluation

rules. Evaluation of the fixpoint operator replaces all occurrences of the name of

the function xf in the body term tb with the fixpoint operator itself, resulting in a

non-fixpointed term possibly containing the fixpoint operator again.

fix λntv (xf : Tf , xi : Ti
i∈1..n) . tb

−→ λntv (xi : Ti
i∈1..n) . [xf �→ (fix λntv (xf : Tf , xi : Ti

i∈1..n) . tb)]tb
(40)

6.4 The isnil operator

The isnil operator determines whether a list is empty. Its evaluation rules are

straightforward.

isnil[S] (nil[T ]) −→ true (41)

isnil[S] (cons[T ] t1 t2) −→ false (42)

Note that in the last rule, we do not need to evaluate the head t1 and tail t2 of the

list. Since this rule is also one that potentially disposes of unnecessary computation

it should be given precedence over the other rules.

6.5 The zip operator

Here, we give evaluation rules for the case that the left-hand side of an application

is the zip operator. The typing rules of the zip operator (see Section 5.7) guarantee

us that any zipped argument has to be of list type. The first rule states that if any of

the zipped arguments is the empty list nil[S], then the whole application evaluates

to the empty list nil[Tret]. Thus, if the zipped argument lists have different lengths,

the shortest of the argument lists determines the length of the result list.

∃j, i (yj = xi ∧ ti = nil[S])

(zip[yj∈1..m
j |Tret] tf)

(
xi = ti

i∈1..n
)

−→ nil[Tret]
(43)
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Now the only other possibility is that each of the zipped arguments is the non-empty

list. In this case, the function term tf is applied to the head of each list (together with

any remaining non-zipped arguments). This way, a list of applications is constructed.

∀j ∃i (yj = xi ∧ ti = cons[S] tihd titl)

(zip[yj∈1..m
j |Tret] tf)

(
xi = ti

i∈1..n
)

−→ cons[Tret] (tf

(
xi =

{
tihd , ∃j yj = xi
ti , else

i∈1..n
)

)

((zip[yj∈1..m
j |Tret] tf)

(
xi =

{
titl , ∃j yj = xi
ti , else

i∈1..n
)

)

(44)

The zip operator is important because it allows the processing of lists without

directly decomposing them with head or tail and has the map operator as a special

case. Its evaluation is recursively defined but on the level of the meta-language

instead of the target language. This lets us avoid the use of the fixpoint operator. In

the consequence, we can create data-parallel programs without making explicit use

of general recursion.

6.6 Tuples

Like lists tuples are a compound data type in Cuneiform. Again, the following

evaluation rule rids us of unnecessary computation and, thus, should be given

precedence over other rules.

πj {ti∈1..n
i } −→ tj (45)

The remaining rules show how a list projection is transformed into a list of ordinary

projections.

Πj (nil[{T i∈1..n
i }]) −→ nil[Tj] (46)

Πj (cons[{T i∈1..n
i }] t11 t12) −→ cons[Tj] (πj t11) (Πj t12) (47)

6.7 Let bindings

The evaluation of let bindings is straightforward.

let x : T1 = t1 in t2 −→ [x �→ t1]t2 (48)

6.8 Congruence rules

The reduction rules given in the previous sections establish a notion of reduction.

To turn this notion of reduction into a standard reduction relation, we need to

determine how sub-terms should be evaluated. This is done by augmenting the

notion of reduction with the following congruence rules:

t1 −→ t′1
t1

(
xi = t2i

i∈1..n
)

−→ t′1
(
xi = t2i

i∈1..n
) (49)
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tj −→ t′j

(λfrn (xi : Ui
i∈1..n) →frn Uret in l . s)

(
xi = ti

i∈1..j−1, xj = tj , xi = ti
i∈j+1..n

)
−→ (λfrn (xi : Ui

i∈1..n) →frn Uret in l . s)
(
xi = ti

i∈1..j−1, xj = t′j , xi = ti
i∈j+1..n

)
(50)

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

(51)

t1 −→ t′1
cons[T ] t1 t2 −→ cons[T ] t′1 t2

(52)

t2 −→ t′2
cons[T ] t1 t2 −→ cons[T ] t1 t′2

(53)

t1 −→ t′1
isnil[T ] t1 −→ isnil[T ] t′1

(54)

tj −→ t′j

{ti∈1..j−1
i , tj , t

k∈j+1..n
k } −→ {ti∈1..j−1

i , t′j , t
k∈j+1..n
k }

(55)

t1 −→ t′1
πi t1 −→ πi t

′
1

(56)

t1 −→ t′1
Πi t1 −→ Πi t

′
1

(57)

The standard reduction relation does not traverse all possible sub-terms: Native

function bodies and the then- and else-branches of conditionals are left unevaluated.

Reduction also does not traverse inside the fixpoint operator or the zip operator.

Function arguments are evaluated only if the function term is a foreign function.

Note that the congruence rules leave open, which function argument to evaluate

first. Also, list or tuple elements may be evaluated in any order. This non-determinism

reflects the frankness with which we look for relevant foreign operations where they

first appear in the program term.

7 Implementations

The primary purpose of defining the computation semantics of Cuneiform is to

ease the implementation of Cuneiform interpreters and to ensure consistency among

implementations, thus improving portability. Ideally, each of the inference rules given

in this paper corresponds to one statement in whatever programming language

is chosen as a host language for a Cuneiform interpreter. The more the host

language lends itself to the step-wise premise–conclusion style of notation used in the

definitions of operational semantics, the more directly a semantics can be transcribed

into this host language. Functional programming languages with support for pattern

matching like Standard ML, OCaml, Haskell, pattern matching-enabled Lisps, or

Erlang are particularly suitable for unlabored transcription although any general

purpose programming language can do. For the sake of demonstration, we present a

reference implementation of a Cuneiform interpreter in Erlang plainly implementing
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the abstract syntax, typing rules, and reduction rules.5 However, this reference

implementation lacks a number of components for making it actually usable. It has

neither a parser to produce the in-memory representation of the program term from

an input string constituting the concrete program nor an execution environment

that could actually perform foreign language computations. Its sole purpose is to

show how the rules given in this paper can be transcribed in a general purpose

programming language. In addition to demonstrating how an interpreter can be

created from the reduction rules shown in this paper, the reference implementation

served as a test bed in which we tried out simple programs and refined the reduction

rules according to the experiences we have made. A collection of unit tests solidifies

these experiences. Last, we used Erlang QuickCheck (Arts et al., 2006; Hughes, 2007)

to informally convince ourselves of the validity of important language properties

like progress, preservation, or the assertion that evaluation is total for well-typed

non-value terms. A formal treatment of these properties is, however, left for future

work.

A complete, yet more convoluted, implementation of Cuneiform, including a

Leex/Yecc-based parser, a local execution environment as well as an execution

environment running on HTCondor are also available.6 Finally, Hi-WAY7 is an

execution environment based on Hadoop. It supports Cuneiform and a number of

other workflow languages (Bux et al., 2017).

8 Related work

A formal specification of syntax or semantics is missing for the majority of workflow

languages in use today. However, for a number of languages, formal models have

been developed, notably Pegasus (Budiu & Goldstein, 2002) and Kepler (McPhillips

et al., 2006; Goderis et al., 2007; Zinn et al., 2009). A scientific workflow language

with an extensive body of work regarding its semantics is Taverna (Hull et al., 2006).

Taverna is a graphical scientific workflow language targeting users in bioinformatics

and other life sciences. It focuses on the integration of heterogeneous software and

web-services. The original formulation of Taverna’s semantics (Turi et al., 2007) is

formulated as a natural semantics based on computational lambda calculus (Moggi,

1991). It was succeeded by a number of refinements formulated as state transitions

with trace semantics (Hidders & Sroka, 2008; Sroka & Hidders, 2009a; Sroka &

Hidders, 2009b; Sroka et al., 2010) pushing the understanding of Taverna’s semantics

in a process-oriented direction. The publications characterizing Taverna’s semantics

emphasize the fact that Taverna services can have side effects or be non-deterministic,

i.e., that the order in which services are invoked potentially influences the workflow

result.

The idea that data dependencies in scientific workflows can be expressed in lambda

calculus has been formulated several times. Ludäscher and Altintas presented a way

5 https://github.com/joergen7/cf reference
6 https://github.com/joergen7/cuneiform
7 https://github.com/marcbux/Hi-WAY
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to express scientific workflows in Haskell syntax (Ludäscher & Altintas, 2003) and

observed that parallelization is directly derivable. Kelly et al. (2009; 2011) have

defined data dependencies among web-services directly in untyped lambda calculus.

Cuneiform differs from Kelly’s approach in that we make a minor modification

to the canonical presentation of the simply typed lambda calculus allowing the

uniform notation of abstractions (native functions) and external operators (foreign

functions).

Apart from this modification, we have stuck as closely as possible to a simply

typed lambda calculus. However, existing scientific workflow languages are rooted

in various formalisms. For example, Pig Latin is inspired by SQL and is, thus,

rooted in relational algebra. Taverna started out with a functional formulation

but turned in the direction of trace semantics. Kepler emphasizes its relationship

with process networks and the actor model but its orchestrator concept makes

execution behavior actually exchangeable. Nextflow (Di Tommaso et al., 2017) has

been designed around the concept of channels and is, therefore, closely related

to process calculi like CSP. Finally, some workflow languages have been designed

around Petri Nets, e.g., Grid-Flow (Guan et al., 2006).

Similar to Turi et al., we introduce Cuneiform’s semantics by first introducing its

syntax and typing rules and then discuss its evaluation rules. In contrast, we intro-

duced those evaluation rules in the form of a structural operational semantics (Plotkin,

1981) which defines evaluation as the repeated application of small-step evaluation

rules. An alternative way to present an operational semantics is the form of natural

semantics, which defines evaluation of a program in a single big step (Kahn, 1987).

Yet, another candidate would have been a denotational semantics which transforms

an expression until it is composed only of symbols and operations with an intuitive

interpretation (Tennent, 1976).

Cuneiform’s approach and parallel execution is inspired by distributed functional

programming languages like Eden (Breitinger et al., 1998; Loogen et al., 2005)

or the distributed Haskell implementation GDH (Pointon et al., 2001). Its take

on large-scale data analysis on top of a distributed file system is inspired by

MapReduce (Dean & Ghemawat, 2008; White, 2012) and Spark (Zaharia et al.,

2010; Zaharia et al., 2012). Eventually, Cuneiform’s integration of external software

is inspired by scientific workflow languages like Taverna (Hull et al., 2006) or

Galaxy (Goecks et al., 2010). However, a language combining these advantages

in a large-scale functional language that is agnostic about a function body’s

implementation language has, to our knowledge, not been otherwise conceived.

9 Conclusion

We have introduced the formal semantics of Cuneiform,8 a minimal language for

large-scale scientific data analysis by establishing its abstract syntax, type system,

and evaluation rules and exemplified their implementation in Erlang. The definition

8 https://cuneiform-lang.org/
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of Cuneiform’s semantics reduces the time and effort necessary to create a consensual

language interpreter and, thus, improves the language’s portability. At the same time,

the type system is the foundation for the deduction of the language’s safety up to

black-box operators. Cuneiform is rooted in functional programming and, to be

comparable, sticks as closely as possible to the simply typed lambda calculus.

Being an organizational language, Cuneiform focuses on expressing data depen-

dencies among external operations while the actual computation is deferred to

an external language. In contrast, general purpose programming languages take

control not only over the management of data dependencies but also over the low-

level computation at the operator level. This distinction between the organizational

part, the programming in the large, and the computational part, the programming

in the small (DeRemer & Kron, 1976), allows us to consider the feature set, of

the organizational language independent from the feature set of the operator-level

programming language. Design decisions about type systems, error handling, or

state can be decoupled. Independence, which enables parallelism, can be emphasized

on the organizational level at the price of determinism while performance can be

emphasized on the operator level. This separation also allows Cuneiform to be

liberal toward the language, an external operator is implemented in. All that matters

is that there is a defined interface between both the organizational and the operator

level.

For future work, it may be desirable to extend Cuneiform with more sophisticated

base data types like integers and floating point numbers and compound data types

like maps. Another possibility is to develop the language features shown here to more

sophistication. For example, pattern matching may be added or a more versatile and

extensible type system with subtyping may replace the simple type system to better

account for the meaning and compatibility of user-specified data formats. Finally,

it should be possible to use Cuneiform as a compilation target for a more derived

language with a different focus or application scenario, adding syntactic sugar to

ease the expression of common use cases in different research areas. Cuneiform may

be seen as a kernel language for a family of distributed programming languages

just like the lambda calculus is a suitable kernel language for a large variety of

programming languages beyond the functional programming paradigm.
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A ChIP-Seq workflow

%% TASK DEFINITIONS

% sra-tools
deftask fastq-dump( fastq( File ) : sra( File ) )in bash *{

fastq=$sra.fastq
fastq-dump -Z $sra > $fastq

}*

% FastQC
deftask fastqc( zip( File ) : fq( File ) )in bash *{

fastqc -f fastq --noextract -o ./ $fq
zip=‘ls *.zip‘

}*

deftask bowtie-build( idx( File ) : fa( File ) )in bash *{
bowtie-build $fa btidx
idx=idx.tar
tar cf $idx btidx.* --remove-files

}*

deftask bowtie-align( sam( File ) : idx( File ) fq( File ) )in bash *{
tar xf $idx
sam=$fq.sam
bowtie btidx -q $fq -v 2 -m 1 -3 1 -S -p 2 > $sam

}*

deftask macs(
peaks( File ) summits( File ) <xls( File )>
bedgraph_tag( File ) bedgraph_ctl( File )

: tag_sam( File ) ctl_sam( File ) )in bash *{

macs14 -t $tag_sam -c $ctl_sam --format SAM --gsize 4639675 --name "macs14" \
--bw 400 --keep-dup 1 --bdg --single-profile --diag

peaks=macs14_peaks.bed
summits=macs14_summits.bed
xls=(macs14_diag.xls macs14_negative_peaks.xls)
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bedgraph_tag=macs14_MACS_bedGraph/treat/macs14_treat_afterfiting_all.bdg.gz
bedgraph_ctl=macs14_MACS_bedGraph/control/macs14_control_afterfiting_all.bdg.gz

}*

deftask samtools-sort( sorted_bam( File ) : sam( File ) )in bash *{
sorted_bam=sorted.bam
samtools view -bS $sam | samtools sort -o $sorted_bam -

}*

deftask samtools-rmdup( dedup_bam( File ) : bam( File ) )in bash *{
dedup_bam=dedup.bam
samtools rmdup -s $bam $dedup_bam

}*

deftask samtools-index( bai( File ) : bam( File ) )in bash *{
bai=$bam.bai
samtools index $bam $bai

}*

deftask samtools-faidx( fai( File ) : fa( File ) )in bash *{
fai=$fa.fai
samtools faidx $fa

}*

deftask bamcoverage( bedgraph( File ) : bam( File ) bai( File ) )in bash *{
bedgraph=$bam.bedgraph
ln -sf $bai $bam.bai
bamCoverage --bam $bam --outFileName $bedgraph --normalizeTo1x 4639675 \
--outFileFormat bedgraph

}*

deftask deeptools( bedgraph( File ) : sam( File ) ) {
sorted_bam = samtools-sort( sam: sam );
dedup_sorted_bam = samtools-rmdup( bam: sorted_bam );
dedup_sorted_bai = samtools-index( bam: dedup_sorted_bam );
bedgraph = bamcoverage( bam: dedup_sorted_bam, bai: dedup_sorted_bai );

}

deftask bedtools-getfasta(
bed_fa( File )

: fa( File ) fai( File ) bed( File ) )in bash *{

bed_fa=$bed.fa
ln -sf $fai $fa.fai
bedtools getfasta -fi $fa -bed $bed -fo $bed_fa

}*

deftask restrict-peaks( restricted_bed( File ) : bed( File ) )in bash *{
restricted_bed=$bed.100.bed
perl -lane ’$start=$F[1]+100; $end = $F[2]-100 ; print "$F[0]\t$start\t$end"’ \

$bed > $restricted_bed
}*

%% INPUT DATA

tag_sra = "sra/SRR576933.sra";
ctl_sra = "sra/SRR576938.sra";
fa = "ref/Escherichia_coli_K_12_MG1655.fasta";

%% WORKFLOW DEFINITION

tag_fq = fastq-dump( sra: tag_sra );
ctl_fq = fastq-dump( sra: ctl_sra );

qc = fastqc( fq: tag_fq ctl_fq );

fai = samtools-faidx( fa: fa );

idx = bowtie-build( fa: fa );
tag_sam = bowtie-align( idx: idx, fq: tag_fq );
ctl_sam = bowtie-align( idx: idx, fq: ctl_fq );

https://doi.org/10.1017/S0956796817000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000119


Cuneiform computation semantics 31

peaks summits xls tag_macs_bedgraph ctl_macs_bedgraph = macs(
tag_sam: tag_sam, ctl_sam: ctl_sam );

tag_deeptools_bedgraph = deeptools( sam: tag_sam );
ctl_deeptools_bedgraph = deeptools( sam: ctl_sam );

peaks_100 = restrict-peaks( bed: peaks );

peaks_fa = bedtools-getfasta( fa: fa, fai: fai, bed: peaks );
peaks_100_fa = bedtools-getfasta( fa: fa, fai: fai, bed: peaks_100 );

%% QUERY

qc peaks peaks_fa peaks_100_fa
tag_macs_bedgraph ctl_macs_bedgraph
tag_deeptools_bedgraph ctl_deeptools_bedgraph;
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