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PIECEWISE-MULTILINEAR INTERPOLATION
OF A RANDOM FIELD
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Abstract

We consider a piecewise-multilinear interpolation of a continuous random field on a
d-dimensional cube. The approximation performance is measured using the integrated
mean square error. Piecewise-multilinear interpolator is defined by N -field observations
on a locations grid (or design). We investigate the class of locally stationary random
fields whose local behavior is like a fractional Brownian field, in the mean square sense,
and find the asymptotic approximation accuracy for a sequence of designs for large N .
Moreover, for certain classes of continuous and continuously differentiable fields, we
provide the upper bound for the approximation accuracy in the uniform mean square
norm.
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1. Introduction

Let a random field X(t), t ∈ [0, 1]d , with finite second moment be observed at a finite
number of points. Suppose further that the points are vertices of hyperrectangles generated
by a grid in a unit hypercube. At any unsampled point we approximate the value of the
field by a piecewise-multilinear interpolator, which is a natural extension of a conventional
one-dimensional (d = 1) piecewise-linear interpolator. For this interpolator, a compact
representation and probabilistic interpretation is given. The approximation accuracy is
measured by the integrated mean squared error. In this paper we aim to model random fields to a
given accuracy based on a finite number of observations. Following Berman (1974), we extend
the concept of local stationarity for random fields and focus on fields satisfying this condition.
For quadratic mean (q.m.), continuous, locally stationary random fields, we derive the exact
asymptotic behavior of the approximation error. A method is proposed for determining the
asymptotically optimal knot (sample points) distribution between the mesh dimensions. We
also study optimality of knot allocation along coordinates of the sampling grid. Additionally,
for q.m. continuous and continuously differentiable fields satisfying Hölder-type conditions,
we determine asymptotic upper bounds for the approximation accuracy.

The problem of random field approximation arises in many research and applied areas, such
as Gaussian random fields modeling (see Adler and Taylor (2007) and Brouste et al. (2007)),
environmental and geosciences (see Christakos (1992) and Stein (1999)), sensor networks
(see Zhang and Wicker (2005)), and image processing (see Pratt (2007)). The upper bound
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946 K. ABRAMOWICZ AND O. SELEZNJEV

for the approximation error for isotropic random fields satisfying Hölder-type conditions is
given in Ritter et al. (1995). Müller-Gronbach (1998) considered affine linear approximation
methods and hyperbolic cross designs for fields with a covariance function of tensor type. An
optimal allocation of the observations for Gaussian random fields with product-type kernel
is investigated in Müller-Gronbach and Schwabe (1996). Su (1997) studied limit behavior
of the piecewise-constant estimator for random fields with a particular form of covariance
function. Benhenni (2001) investigated exact asymptotics of a stationary spatial process
approximation based on an equidistant sampling. The approximation complexity and the curse
of dimensionality for additive random fields are broadly discussed in Lifshits and Zani (2008). In
the one-dimensional case, the piecewise-linear interpolation of continuous stochastic processes
is considered in, e.g. Seleznjev (1996). Results for the approximation of locally stationary
processes can be found in, e.g. Seleznjev (2000), Hüsler et al. (2003), and Abramowicz and
Seleznjev (2011). Ritter (2000) contains a very detailed survey of various random process
and field approximation problems. For an extensive study of approximation problems in the
deterministic setting, we refer the reader to, e.g. Nikolskii (1975), de Boor et al. (2008), and
Kuo et al. (2009).

The paper is organized as follows. First we introduce the basic notation. In Section 2,
we consider a piecewise-multilinear approximation of locally stationary random fields. We
derive exact asymptotics and a formula for the optimal interdimensional knot distribution. In
the second part of this section, we provide an asymptotic upper bound for the approximation
accuracy for q.m. continuous and differentiable fields satisfying Hölder-type conditions. In
Section 3, we present the results of numerical experiments, while Section 4 contains the proofs
of the statements from Section 2.

1.1. Basic notation

Let X = X(t), t ∈ D := [0, 1]d , be a real-valued random field defined on a probability
space (�, F , P). Assume that, for every t , the random variable X(t) lies in the normed linear
space L2(�) = L2(�, F , P) of random variables with finite second moment and identified
equivalent elements with respect to P. We set ‖ξ‖ := (E(ξ2))1/2 for all ξ ∈ L2(�) and consider
the approximation based on the normed linear spaces of q.m. continuous and continuously
differentiable random fields denoted by C(D) and C1(D), respectively. We define the following
norms for any X ∈ C(D) by setting

‖X‖2 :=
(∫

D
‖X(t)‖2 dt

)1/2

, ‖X‖∞ := max
t∈D

‖X(t)‖.

For k ≤ d, let l = (l1, . . . , lk) be a vector of positive integers such that
∑k

j=1 lj = d, and
let Li := ∑i

j=1 lj , i = 0, . . . k, L0 = 0, be the sequence of its cumulative sums. Then
the vector l defines the l-decomposition of D into D1 × D2 × · · · × Dk , with the lj -cube
Dj := [0, 1]lj , j = 1, . . . , k. For any s ∈ D , we denote the coordinates vector corresponding
to the j th component of the decomposition by

sj = sj (l) := (sLj−1+1, . . . , sLj
) ∈ Dj , j = 1, . . . , k.

For a vector α = (α1, . . . , αk), 0 < αj < 2, j = 1, . . . , k, and the decomposition vector
l = (l1, . . . , lk), we define

|s|α :=
k∑

j=1

|sj |αj for all s = (s1, . . . , sk) ∈ D
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with the Euclidean norms |sj |, sj ∈ Dj , j = 1, . . . , k. Similarly, for any r ∈ R
d , let

r = (r1, . . . , rk) with the j th component rj ∈ R
lj , j = 1, . . . , k.

1.2. Classes of random fields

Now we introduce the classes of random fields considered in this paper.

Definition 1. Let X ∈ C(D). For fixed vectors α and l, and a positive constant C, we define
the class Cα

l (D, C) of random fields satisfying Hölder’s condition, and say that X ∈ Cα
l (D, C)

if
‖X(t + s) − X(t)‖2 ≤ C|s|α for all t, t + s ∈ D . (1)

Definition 2. Let X ∈ C(D). For fixed vectors α and l, and a vector function c(t) =
(c1(t), . . . , ck(t)), t ∈ D , with positive and continuous functions c1(·), . . . , ck(·), we define
the class Bα

l (D, c(·)) of locally stationary random fields, and write X ∈ Bα
l (D, c(·)) if

‖X(t + s) − X(t)‖2∑k
j=1 cj (t)|sj |αj

→ 1 as s → 0 uniformly in t ∈ D . (2)

We assume additionally that, for j = 1, . . . , k, the function cj (·) is invariant with respect to
permutations of coordinates within the j th component.

For the classes Cα
l and Bα

l , the within-component smoothness is defined by the vector
α = (α1, . . . , αk). We denote the vector describing the smoothness for each coordinate by
α∗ = (α∗

1 , . . . , α∗
d), where α∗

i = αj , i = Lj−1 + 1, . . . , Lj , j = 1, . . . , k.

Example 1. Let m = (m1, . . . , mk) be a decomposition vector of [0, 1]m, and let m =∑k
j=1 mj . Denote by Bβ,m(t) for t ∈ [0, 1]m and β = (β1, . . . , βk), 0 < βj < 2,

j = 1, . . . , k, an m-dimensional fractional Brownian field (FBF) with covariance function
r(t, s) = 1

2 (|t |β + |s|β − |t − s|β). Then Bβ,m has stationary increments,

‖Bβ,m(t + s) − Bβ,m(t)‖2 = |s|β , t, t + s ∈ [0, 1]m,

and, therefore, Bβ,m ∈ B
β
m([0, 1]m, c(·)) with local stationarity functions c1(t) = · · · =

ck(t) = 1, t ∈ [0, 1]m. In particular, if k = 1 then Bβ,m(t) for t ∈ [0, 1]m, 0 < β < 2 and
m ∈ N, is an FBF with covariance function

r(t, s) = 1
2 (|t |β + |s|β − |t − s|β), t, s ∈ [0, 1]m. (3)

For X ∈ C1(D), let X′
j (t), t ∈ D , denote a q.m. partial derivative of X with respect to the j th

coordinate.

Definition 3. Let X ∈ C1(D). For a fixed vector α∗ = (α∗
1 , . . . , α∗

d) and a positive constant C,
we define the class of random fields C1,α∗

(D, C), and say that X ∈ C1,α∗
(D, C) if, for all

t, t + s ∈ D ,

‖X′
j (t1, . . . , tj + sj , . . . , td ) − X′

j (t1, . . . , tj , . . . , td )‖2 ≤ C|sj |α
∗
j , j = 1, . . . , d. (4)

Moreover, we say that X ∈ C1,α
l (D, C) with α = (α1, . . . , αk) if X ∈ C1,α∗

(D, C) and,
for a given partition vector l, αi := α∗

Li−1+1 = · · · = α∗
Li

, i = 1, . . . , k.
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1.3. Cross regular designs

Let X be sampled at N distinct design (grid) points TN := {ti = (t1,i1 , . . . , td,id ) : i =
(i1, . . . , ij ), 0 ≤ ij ≤ n∗

j , j = 1, . . . , d}, where

d∏
j=1

(n∗
j (N) + 1) = N. (5)

Since optimal designs for a fixed N are difficult to construct, for asymptotic results, we develop
the approach introduced by Sacks and Ylvisaker (1966) for some time series models (for
approximation problems, see, for example, Su and Cambanis (1993) and Seleznjev (2000)).
For s ∈ [0, 1], j = 1, . . . , d, let h∗

j (s) be positive and continuous density functions, called
within-dimensional densities, and

h∗(t) := (h∗
1(t1), . . . , h

∗
d(td)), t ∈ [0, 1]d .

We define the inter-dimensional knot distribution determined by a vector function

π∗(N) := (n∗
1(N), . . . , n∗

d(N)), N ∈ N,

where n∗
j (N) ∈ N, limN→∞ n∗

j (N) = ∞, j = 1, . . . , d, and (5) holds. We suppress the
argument N for the sampling grid sizes n∗

j = n∗
j (N), j = 1, . . . , d, when doing so causes no

confusion.

Definition 4. (Cross regular designs.) For functions h∗(·) and π∗(·), the corresponding cross
regular sequence of sampling designs TN := {ti = (t1,i1 , . . . , td,id ) : i = (i1, . . . , id),

0 ≤ ij ≤ n∗
j , j = 1, . . . , d} is generated by the equations

∫ tj,i

0
h∗

j (v) dv = i

n∗
j

, i = 0, 1, . . . , n∗
j , j = 1, . . . , d.

The introduced classes of random fields have the same smoothness and local behavior for
each coordinate of the components generated by a decomposition vector l. Therefore, in the
following, we use only approximation designs with the same within- and inter-dimensional
knot distributions within the components. Formally, for the partition generated by the vector
l = (l1, . . . , lk), we consider cross regular sequences of designs TN , defined by the vector
functions h := (h1, . . . , hk) and π(N) := (n1(N), . . . , nk(N)), as follows:

h∗
i (·) ≡ hj (·), n∗

i = nj , i = Lj−1 + 1, . . . , Lj , j = 1, . . . , k.

We call the functions h1(·), . . . , hk(·) and π(·) within-component densities and inter-component
knot distribution, respectively. The corresponding property of the sequence of designs TN is
denoted by: TN is cRS(h, π, l).

1.4. Piecewise-multilinear interpolator

For a given cross regular sequence of sampling designs TN , the hypercube D is partitioned
into M = ∏d

j=1 n∗
j disjoint hyperrectangles Di , where i = (i1, . . . , id), 0 ≤ ij ≤ n∗

j − 1, and
j = 1, . . . , d. Let 1d = (1, . . . , 1) denote a d-dimensional vector of 1s. The hyperrectangle
Di is determined by the vertex ti = (t1,i1 , . . . , tj,id ) and the main diagonal ri = ti+1d

− ti , i.e.

Di := {t : t = ti + ri ∗ s, s = (s1, . . . , sd) ∈ [0, 1]d}, (6)
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where ‘∗’ denotes the coordinatewise multiplication, i.e. for x = (x1, . . . , xd) and y =
(y1, . . . , yd), x ∗ y := (x1y1, . . . , xdyd). For a random field X ∈ C(D), define a piecewise-
multilinear interpolator (PMI) with knots TN by

XN(t) := XN(X, TN)(t) = EηX(ti + ri ∗ η), t ∈ Di, t = ti + ri ∗ s,

where η = (η1, . . . , ηd) and η1, . . . , ηd are auxiliary independent Bernoulli random variables
with means s1, . . . , sd , respectively, i.e. ηj ∈ Be(sj ), j = 1, . . . , d. This interpolator is
continuous and piecewise linear along all coordinates.

Example 2. Let d = 2, N = 4, and D = [0, 1]2. Then t = s, r = (1, 1),

XN(t) = EηX(η)

= X(0, 0)(1 − t1)(1 − t2) + X(1, 0)t1(1 − t2) + X(0, 1)(1 − t1)t2 + X(1, 1)t1t2,

and XN is a conventional bilinear interpolator (see, e.g. Lancaster and Šalkauskas (1986)).

In this article, we consider the accuracy of the approximation to X by XN with respect to
the integrated mean-squared error (IMSE)

e2
N = eN(X, h, π, l)2 := ‖X − XN‖2

2 :=
∫

D
eN(t)2 dt, eN(t)2 := ‖X(t) − XN(t)‖2.

We introduce some additional notation used throughout the paper. For sequences of real
numbers un and vn, we write un � vn if limn→∞ un/vn ≤ 1, un ∼ vn if limn→∞ un/vn = 1,
and un � vn if there exist positive constants c1 and c2 such that c1un ≤ vn ≤ c2un for large
enough n.

2. Results

Let Bβ,m(t) for t ∈ R
m+, 0 < β < 2, and m ∈ N denote an FBF with covariance function (3).

For any u ∈ R
m+, we define

bβ,m(u) :=
∫

[0,1]m
‖Bβ,m(u ∗ s) − EηBβ,m(u ∗ η)‖2 ds, (7)

where η = (η1, . . . , ηm) and η1, . . . , ηm are independent Bernoulli random variables
ηj ∈ Be(sj ), j = 1, . . . , m. Then bβ,m(u) is the IMSE of approximation for Bβ,m(u ∗ t),

t ∈ [0, 1]m, by the PMI with 2m observations of the vertices of the unit hypercube.
Consider first the interpolation of a random field X by the PMI I (t) = I (X, τ , r, t) on

a small hyperrectangle K = K(τ , r) := {t : t = τ + r ∗ s, s = (s1, . . . , sd) ∈ [0, 1]d},
K ⊂ D , with observations of the vertices of K . Let the corresponding IMSE

e(τ , r)2 := ‖X − I (X, τ , r)‖2
2 =

∫
K

e(τ , r, t)2 dt,

with the mean-squared error e(τ , r, t)2 := ‖X(t) − I (X, τ , r, t)‖2. For the mean-squared
error e(τ , r, t)2, by the Cauchy–Schwarz inequality, we obtain

eN(τ , r, t)2 = E(Eη(X(τ + r ∗ s) − X(τ + r ∗ η)))2

≤ E(Eη(X(τ + r ∗ s) − X(τ + r ∗ η))2)

= Eη‖X(τ + r ∗ s) − X(τ + r ∗ η)‖2. (8)

Denote by V (K) the volume of the hyperrectangle K .
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Lemma 1. Let X ∈ Bα
l (D, c(·)) be a locally stationary random field approximated on K ⊂ D

by the PMI I (t) = I (X, τ , r, t). Then

e(τ , r)2 =
( k∑

j=1

cj (τ )bαj ,lj (r
j )

)
V (K)(1 + ε(τ , r)),

where ε(r) := max{|ε(τ , r)|, τ ∈ D} = o(1) as |r| → 0.

In the following theorem, we provide an exact asymptotic for the IMSE e2
N of a PMI

approximation of a local stationary field when a cross regular sequence of sampling designs is
used.

Theorem 1. Let X ∈ Bα
l (D, c(·)) be a locally stationary random field approximated by the

PMI XN(X, TN), where TN is cRS(h, π, l). Then

‖X − XN‖2
2 ∼

k∑
j=1

vj

n
αj

j

> 0 as N → ∞,

where

vj :=
∫

D
cj (t)bαj ,lj (Hj (t

j )) dt > 0,

and Hj(t
j ) := (1/hj (tLj−1+1), . . . , 1/hj (tLj

)), j = 1, . . . , k.

Remark 1. If, for the j th component, the uniform within-component knot distribution is used,
i.e. hj (s) = 1, s ∈ [0, 1], then the asymptotic constant is reduced to

vj = b̃αj ,lj

∫
D

cj (t) dt,

where b̃αj ,lj := bαj ,lj (1lj ), 1lj := (1, . . . , 1) ∈ R
lj , j = 1, . . . , k.

In Theorem 1, the approximation accuracy is determined by the sampling grid sizes nj . The
next theorem provides the asymptotically optimal inter-component knot distribution for a given
total number of observation points N . Define

ρ :=
( k∑

i=1

li

αi

)−1

=
( d∑

i=1

1

α∗
i

)−1

, κ :=
k∏

j=1

v
lj /αj

j ,

where d · ρ is the harmonic mean of the smoothness parameters α∗
j , j = 1, . . . , d.

Theorem 2. Let X ∈ Bα
l (D, c(·)) be a locally stationary random field approximated by the

PMI XN(X, TN), where TN is cRS(h, π, l) with l = (l1, . . . , lk). Then

‖X − XN‖2
2 � k

κρ

Nρ
as N → ∞. (9)

Moreover, for the asymptotically optimal inter-component knot allocation πopt = (n1,opt, . . . ,

nk,opt) with

nj,opt ∼ Nρ/αj v
1/αj

j

κρ/αj
as N → ∞, j = 1, . . . , k, (10)

the equality in (9) is attained asymptotically.
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The above result agrees with the intuition that more points should be distributed in directions
with lower smoothness parameters. Note that the optimal inter-component knot distribution
leads to an increased approximation rate.

Remark 2. Let X ∈ Bα
l (D, c(·)) with k = d and αi 
= αj for some i, j = 1, . . . , d, and

α := mini=1,...,d αi , i.e. ρ > α/d . Consider the approximation errors eN(πuni) and eN(πopt)

corresponding to the uniform inter-component knot distribution, n1 = · · · = nd ∼ N1/d , and
the sampling distribution (10), respectively. Then by Theorems 1 and 2 we have

eN(πopt)

eN(πuni)
� Nα/(2d)

Nρ/2 = 1

Nγ
as N → ∞, γ := ρ

2
− α

2d
> 0.

Example 3. Let d = k = 2, α1 = 2
3 , and α2 = 5

3 . Then, for n1 = n2, the approximation rate
is N−α/2d = N−1/6, while, using the asymptotically optimal inter-component distribution, we
obtain the rate N−ρ/2 = N−1/4.2 = o(N−1/6) as N → ∞.

In a general setting, numerical procedures can be used to find optimal densities. However,
in practice such methods are very computationally demanding. We present a simplification of
the expression for the asymptotic constant for one-dimensional components. Furthermore, in
this case, we provide the exact formula for the density minimizing the asymptotic constant. For
a random field X ∈ Bα

l (D, c(·)), define the integrated local stationarity functions

Cj (tLj
) :=

∫
[0,1]d−1

cj (t) dt1 · · · dtLj −1 dtLj +1 · · · dtd , tLj
∈ [0, 1], j = 1, . . . , k.

Moreover, for 0 < β < 2, let

aβ := 2

(β + 1)(β + 2)
− 1

6
. (11)

Proposition 1. Let X ∈ Bα
l (D, c(·)) be a random field approximated by the PMI XN(X, TN),

where TN is cRS(h, π, l). If, for some j, 1 ≤ j ≤ k, lj = 1, then, for any regular density
hj (·), we have

vj = aαj

∫ 1

0
Cj (tLj

)hj (tLj
)−αj dtLj

.

The density minimizing vj is given by

hj,opt(tLj
) = Cj (tLj

)γj∫ 1
0 Cj (τLj

)γj dτLj

, tLj
∈ [0, 1],

where γj := 1/(1 + αj ). Furthermore, for such a chosen density, we obtain

vj,opt = aαj

(∫ 1

0
Cj (tLj

)γj dtLj

)1/γj

.

In the next proposition, we give an upper bound for the approximation error together with
expressions for generating densities minimizing this upper bound, called suboptimal densities.

Proposition 2. Let X ∈ Bα
l (D, c(·)) be a random field approximated by the PMI XN(X, TN),

where TN is cRS(h, π, l). Then

‖X − XN‖2
2 �

k∑
j=1

wj

n
αj

j

as N → ∞,
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where

wj = l
1+αj /2
j

(
aαj

+ 1

6

) ∫ 1

0
Cj (tLj

)hj (tLj
)−αj dtLj

, j = 1, . . . , k.

The density minimizing wj is given by

hj,subopt(tLj
) = Cj (tLj

)γj∫ 1
0 Cj (τLj

)γj dτLj

, tLj
∈ [0, 1],

where γj := 1/(1 + αj ), j = 1, . . . , k. Furthermore, for such chosen densities, we obtain

wj,subopt = l
1+αj /2
j

(
aαj

+ 1

6

)(∫ 1

0
Cj (tLj

)γj dtLj

)1/γj

, j = 1, . . . , k.

Now we focus on random fields satisfying the introduced Hölder-type conditions. In
this case, we provide results for the uniform mean-squared norm of the approximation error
‖X − XN‖∞. The following proposition provides an upper bound for the accuracy of the PMI
for Hölder classes of continuous and continuously differentiable fields.

Proposition 3. Let X ∈ C(D) be a random field approximated by the PMI XN(X, TN), where
TN is cRS(h, π, l).

(i) If X ∈ Cα
l (D, C) then, for some positive constants c1, . . . , ck ,

‖X − XN‖∞ ≤ √
C

k∑
j=1

cj

n
αj /2
j

. (12)

(ii) If X ∈ C1,α
l (D, C) then, for some positive constants d1, . . . , dk ,

‖X − XN‖∞ ≤ √
C

k∑
j=1

dj

n
1+αj /2
j

. (13)

Remark 3. It follows from the proof of Proposition 3 that inequality (12) holds if c2
j =

2−αj l
1+αj /2
j D

αj

j , j = 1, . . . , k, where Dj := 1/ mins∈[0,1] hj (s), j = 1, . . . , k. Therefore,
the constants depend only on the parameters of the Hölder class and the corresponding sampling
design. Similar formulas can be obtained for d1, . . . , dk in (13).

In addition, we provide the inter-component knot distribution leading to an increased rate
of the upper bounds obtained in Proposition 3.

Remark 4. Let X ∈ C(D) be a random field approximated by the PMI XN(X, TN), where
TN is cRS(h, π, l).

(i) If X ∈ Cα
l (D, C) and nj ∼ Nρ0/αj , j = 1, . . . , k, where ρ0 := (

∑k
i=1 li/αi)

−1, then

‖X − XN‖∞ = O(N−ρ0/2) as N → ∞.

(ii) If X ∈ C1,α
l (D, C) and nj ∼ Nρ1/(2+αj ), j = 1, . . . , k, where ρ1 := (

∑k
i=1li/(2 +

αi))
−1, then

‖X − XN‖∞ = O(N−ρ1/2) as N → ∞.

The approximation rates obtained in the above remark are optimal in a certain sense, i.e. the
rate of convergence cannot be improved in general for random fields satisfying the Hölder-
type condition (see, e.g. Ritter (2000)). Moreover, these rates correspond to the optimal
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approximation rates for anisotropic Nikolskii–Hölder classes (see, e.g. Yanjie and Yongping
(2000)), which are deterministic analogues of the introduced Hölder classes.

3. Numerical experiments

In this section, we present some examples illustrating the obtained results. For given
knot densities and covariance functions, first the pointwise approximation errors are found
analytically. Then numerical integration is used to evaluate the approximation errors on the
entire unit hypercube.

In what follows, we use eN(h, π)2 = eN(X, h, π, l)2 to denote the IMSE of a PMI approx-
imation of a local stationary field when a cross regular sequence of sampling designs is used.
We write huni(·), to denote the vector of within-component uniform densities. Analogously,
by πuni(·) we denote the uniform inter-dimensional knot distribution, i.e. n1 = · · · = nk .
Henceforth, we use log x to denote the natural logarithm of x.

Example 4. Let D = [0, 1]3 and X(t) = Bα,l(t), where α = ( 1
2 , 3

2 ) and l = (1, 2)

(cf. Example 1). Then X ∈ Bα
l ([0, 1]3, c(·)), with c(t) = (1, 1), t ∈ [0, 1]3, k = 2, and

α∗ = ( 1
2 , 3

2 , 3
2 ). We compare the behaviors of eN(huni, πuni) and eN(huni, πopt), where πopt

is given in Theorem 2. Observe that, by using the asymptotically optimal inter-component
distribution, we obtain a gain in the rate of approximation. In Figure 1 we present the (fitted)
values of the IMSEs eN(huni, πuni)

2 and eN(huni, πopt)
2 in a log-log scale. In such a scale,

the slopes of fitted lines correspond to the rates of approximation. These plots represent the
following asymptotic behavior:

eN(huni, πuni)
2 ∼ 0.3667N−1/6 + 0.0935N−1/2 ∼ 0.3667N−1/6 as N → ∞,

eN(huni, πopt)
2 ∼ 0.4245N−3/10 as N → ∞.

Example 5. Let D = [0, 1]2, and define Y (t) = Y (t1, t2) to be a zero-mean Gaussian field
with exponential covariance function, i.e. cov(Y (t), Y (s)) = exp(−|t − s|). Define X(t) =
(|t |2 + 0.1)−1Y (t), t ∈ D . Then

cov(X(t), X(s)) = 1

(|t |2 + 0.1)

1

(|s|2 + 0.1)
exp(−|t − s|)

πuni
πopt

log(N )

–1.5

–2.0

–2.5

–3.0

–3.5

–4.0

–4.5

–5.0
4 5 6 7 8 9 10 11 12 13 14

Figure 1: The (fitted) plots of eN (huni, πuni)
2 (solid line) and eN (huni, πopt)

2 (dashed line) versus N in
a log-log scale.
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0.5
0.0

–0.5
–1.0
–1.5
–2.0
–2.5

2.5 3.0 3.5 4.0 4.5
log(N )

(a)

5.0 5.5 6.0 6.5 7.0

hsubopt

huni

6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0

0 100 200 300 400
N
(b)

500 600 700 800 900

Figure 2: (a) The (fitted) plots of eN (huni, πuni)
2 (dashed line) and eN (hsubopt, πuni)

2 (solid line) versus
N in a log-log scale. (b) The convergence of N0.5eN (hsubopt, πuni)

2 (solid line) to the asymptotic constant
(dashed line).

and X ∈ Bα
l ([0, 1]2, c(·)) with c(t) = c1(t) = 2/(|t |2 + 0.1)2, t ∈ [0, 1]2, α = 1,

α∗ = (1, 1), l = 2, and k = 1. The field has one component; hence, the uniform inter-
dimensional knot distribution is used. Theorem 2 provides the formula for the subopti-
mal within-component density. In Figure 2(a) we present the (fitted) values of the IMSEs
eN(huni, πuni)

2 and eN(hsubopt, πuni)
2. In Figure 2(b) we present the convergence of the scaled

squared approximation error N0.5eN(hsubopt, πuni)
2 to the asymptotic constant obtained in

Theorem 1. Note that utilizing the suboptimal within-component density leads to a significant
reduction of the asymptotic constant, as compared to the uniform within-component knot
distribution.

4. Proofs

Proof of Lemma 1. We start by observing that, by the definition of the interpolator,

e(τ , r, t)2 = E(X(t) − I (X, τ , r, t))2

= E(Eη(X(τ + r ∗ η) − X(t)))2

= Eη,ξE((X(τ + r ∗ η) − X(t))(X(τ + r ∗ ξ) − X(t)))

= 1
2 Eη,ξE((X(τ + r ∗ η) − X(t))2 + (X(τ + r ∗ ξ) − X(t))2

− (X(τ + r ∗ η) − X(τ + r ∗ ξ))2),

where ξ is an independent copy of η. Furthermore, property (2) together with the uniform
continuity and positiveness of the local stationarity functions c1(·), . . . , ck(·) imply that

e(τ , r, t)2 = 1

2

( k∑
j=1

cj (τ )Eη,ξ (|rj ∗ (ηj − sj )|αj + |rj ∗ (ξ j − sj )|αj

− |rj ∗ (ηj − ξ j )|αj )

)
(1 + ε(τ , r)), (14)

where s is defined by (6) and ε(r) := max{|ε(τ , r)|, τ ∈ D} = o(1) as |r| → 0 (cf. the proof
of Theorem 1 of Seleznjev (2000)). Define

Cαj ,lj (s
j , rj ) := 1

2 Eη,ξ (|rj ∗ (ηj − sj )|αj + |rj ∗ (ξ j − sj )|αj − |rj ∗ (ηj − ξ j )|αj )

= ‖Bαj ,lj (r
j ∗ sj ) − EηBαj ,lj (r

j ∗ ηj )‖2
2, j = 1, . . . , k.
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Then by the definition we obtain

e(τ , r)2 =
∫

K
e(τ , r, t)2 dt

=
(∫

K

k∑
j=1

cj (τ )Cαj ,lj (s
j ; rj ) dt

)
(1 + o(1))

=
( k∑

j=1

cj (τ )

∫
Dj

Cαj ,lj (s
j ; rj ) dsjV (K)

)
(1 + o(1))

=
( k∑

j=1

n
−αj

j

∑
i∈I

cj (ti )bαj ,lj (r
j )

)
V (K)(1 + o(1)) as |r| → 0

with term o(1) being uniformly small over all τ ∈ D . This completes the proof.

Proof of Theorem 1. For any hyperrectangle Di, i ∈ I , where I := {i = (i1, . . . , id),

0 ≤ ik ≤ n∗
k − 1, k = 1, . . . , d}, it follows from the definition and the mean (integral) value

theorem that its diagonal ri satisfies

ri =
(

1

n∗
1h

∗
1(w1,i1)

, . . . ,
1

n∗
dh∗

d(wd,id )

)

for appropriate wj,ij ∈ [tj,ij , tj,ij +1], j = 1, . . . , d. Define wi := (w1,i1 , . . . , wd,id ). Now
the definition of cRS(h, π, l) implies that, for the j th component of the diagonal ri , we have

r
j

i = 1

nj

(
1

hj (wLj−1+1,iLj−1+1)
, . . . ,

1

hj (wLj ,iLj
)

)
= 1

nj

Hj (w
j

i ), j = 1, . . . , k,

where Hj(t
j ) := (1/hj (tLj−1+1), . . . , 1/hj (tLj

)), j = 1, . . . , k. Applying Lemma 1 for
hyperrectangles {Di} and the uniform continuity of h(·) we obtain

e2
N =

( k∑
j=1

∑
i∈I

cj (ti )bαj ,lj (ri)V (Di)

)
(1 + o(1))

=
( k∑

j=1

n
−αj

j

∑
i∈I

cj (ti )bαj ,lj (Hj (w
j

i ))V (Di)

)
(1 + o(1))

=
( k∑

j=1

n
−αj

j

∑
i∈I

cj (ti )bαj ,lj (Hj (t
j

i ))V (Di)

)
(1 + o(1)) as N → ∞.

Now the Riemann integrability of the functions t → cj (t)bαj ,lj (Hj (t
j )), j = 1, . . . , k, gives,

as N → ∞,

e2
N =

( k∑
j=1

n
−αj

j

∫
D

cj (t)bαj ,lj (Hj (t
j )) dt

)
(1 + o(1)) =

( k∑
j=1

vj

n
αj

j

)
(1 + o(1)).

Note that, for any u ∈ R
m+, we have bβ,m(u) > 0; otherwise, the fractional Brownian field is

degenerate (cf. Seleznjev (2000)). Consequently, vj > 0, j = 1, . . . , k. This completes the
proof.
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Proof of Theorem 2. By the inequality for the arithmetic and geometric means,

1

k

k∑
j=1

vj

n
αj

j

≥
( k∏

j=1

vj

n
αj

j

)1/k

with equality if and only if ν−1 = vj /n
αj

j , j = 1, . . . , k. Hence, the equality is attained for

ñj = (νvj )
1/αj , j = 1, . . . , k. Let

nj = �ñj � ∼ (νvj )
1/αj as N → ∞. (15)

The total number of observations satisfies

N = (n∗
1 + 1) · · · (n∗

d + 1) ∼
d∏

i=1

n∗
i =

k∏
j=1

n
lj
j = M as N → ∞.

This implies that, for the asymptotically optimal inter-component knot distribution, we have

N ∼ M ∼ ν1/ρ
k∏

j=1

v
lj /αj

j ,

and, therefore, ν ∼ Nρκ−ρ as N → ∞. By (15), the asymptotically optimal inter-component
knot distribution is

nj ∼ Nρ/αj v
1/αj

j

κρ/αj
as N → ∞, j = 1, . . . , k.

Moreover, with such a chosen knot distribution, the equality in (9) is attained asymptotically.
This completes the proof.

Proof of Proposition 1. The proof is a straightforward implication of the assumptions and
(14). The exact constant and the expression for the optimal density are due to Seleznjev (2000).

Proof of Proposition 2. Consider the random variable η ∈ Be(s). For any 0 < β < 2, we
define

Aβ(s) := Eη|η − s|β = (1 − s)βs + (1 − s)sβ

and

Aβ :=
∫ 1

0
Aβ(s) ds = 2

(β + 1)(β + 2)
= aβ + 1

6
,

where aβ is defined by (11). It follows from (7) and (8) that, for any u ∈ R
m+,

bβ,m(u) =
∫

[0,1]m
‖Bβ,m(u ∗ s) − EηBβ,m(u ∗ η)‖2 ds

≤
∫

[0,1]m
Eη|u ∗ (s − η)|β ds

≤ mβ/2
m∑

i=1

u
β
i

∫
[0,1]m

Aβ(si) ds

= mβ/2Aβ

m∑
i=1

u
β
i , (16)
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where the second inequality is due to the following property for any nonnegative numbers
a1, . . . , ak and any α ∈ R+: ( k∑

i=1

ai

)α

≤ kα
k∑

i=1

aα
i . (17)

Applying (16) yields

vj =
∫

D
cj (t)bαj ,lj (Hj (t

j )) dt

≤ l
αj /2
j Aαj

Lj∑
m=Lj−1+1

∫
D

cj (t)hj (tm)−αj dt

= l
1+αj /2
j Aαj

∫ 1

0
Cj (tLj

)hj (tLj
)−αj dtLj

, j = 1, . . . , k.

The assertion now follows by Theorem 1. This completes the proof.

Proof of Proposition 3. We start by proving (i). Let X ∈ Cα
l ([0, 1]d , C), and consider

t ∈ Di, i ∈ I . Applying (8) and Hölder’s condition (1) we obtain, for t = ti + ri ∗ s,

eN(t)2 = E(Eη(X(t) − X(ti + ri ∗ η)))2

≤ Eη‖X(t) − X(ti + ri ∗ η)‖2

≤ CEη|ri ∗ η|α

= CEη

k∑
j=1

|rj

i ∗ ηj |αj

≤ C

k∑
j=1

l
αj /2
j

Lj∑
m=Lj−1+1

ri,mAαj
(s),

where the last inequality follows from (17). Furthermore, since maxs∈[0,1] Aαj
(s) = 2−αj , we

obtain

eN(t)2 ≤
k∑

j=1

2−αj l
αj /2
j

Lj∑
m=Lj−1+1

r
αj

i,m.

By the regularity of the generating densities, we have ri,m ≤ 1/(n∗
m mins∈[0,1] h∗

m(s)), i ∈ I ,

m = 1, . . . , d. Moreover, the definition of cRS(h, π, l) implies a uniform bound for the
squared approximation accuracy

‖X − XN‖2∞ = max
t∈D

e2
N(t) ≤ C

k∑
j=1

2−αj l
1+αj /2
j

D
αj

j

n
αj

j

with Dj = 1/ mins∈[0,1] hj (s), j = 1, . . . , k. Finally, we obtain the required assertion

‖X − XN‖∞ ≤ √
C

k∑
j=1

cj

n
αj /2
j

,

where c2
j := 2−αj l

1+αj /2
j D

αj

j > 0, j = 1, . . . , k.
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For the smooth case (ii), we use the multivariate Taylor formula to obtain the following
representation of the deviation field for t ∈ Di, t = ti + s ∗ ri :

δn(t) := X(t) − XN(t) = Eη

(∫ 1

0

d∑
j=1

X′
j (ti + uri ∗ (η − s))ri,j (ηj − sj ) du

)
.

Here η = (η1, . . . , ηd) and η1, . . . , ηd are independent Bernoulli random variables, ηj ∈
Be(sj ), j = 1, . . . , d. Introducing an auxiliary uniform random variable U ∈ U(0, 1) we
obtain

δn(t) =
d∑

j=1

Eη,U (X′
j (ti + U(η − s) ∗ ri)ri,j (ηj − sj ))

=
d∑

j=1

Eη,U (X′
j (ti,1 + U(η1 − s1)ri,1, . . . , ti,j + U(ηj − sj )ri,j ,

. . . , ti,d + U(ηd − sd)ri,d )

− X′
j (ti,1 + U(η1 − s1)ri,1, . . . , ti,j ,

. . . , ti,d + U(ηd − sd)ri,d ))(ηj − sj ),

since, for any j = 1, . . . , d,

Eη(X
′
j (ti,1 + U(η1 − s1)ri,1, . . . , ti,j , . . . , ti,d + U(ηd − sd)ri,d )(ηj − sj ))

= Eη(X
′
j (ti,1 + U(η1 − s1)ri,1, . . . , ti,j , . . . , ti,d + U(ηd − sd)ri,d )Eηj

(ηj − sj ))

= 0.

The triangle inequality and condition (4) imply that

eN(t) ≤
d∑

j=1

√
CVj r

1+αj /2
i,j

for some positive constants Vj , j = 1, . . . , d. Analogously to (i), the required assertion
follows from the regularity of the generating densities and the definition of cRS(h, π, l). This
completes the proof.
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