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AN INEQUALITY CHARACTERIZES THE TRACE 

L. T E R R E L L GARDNER 

1. Introduction. While analogues of the Schwarz inequality have been 
much studied in the context of positive linear maps of operator algebras 
([!]» [2], [6], [7], [10]) the simpler triangle inequality \<t>(x)\ ^ c/>(|x|) has been 
neglected, outside of (possibly non-commutative) integration theory—per
haps partly because except for the important and familiar example of traces, 
scalar maps satisfying the triangle inequality are rarely encountered. In fact 
we here prove that they are never encountered: every such map is a trace. 

For C*-algebras (norm-closed self-ad joint algebras of bounded operators on 
a Hilbert space) this means, for instance, that if the linear functional <j> on the 
C*-algebra se satisfies 

(t) |0(*)| ^ 0(|*|) for all x inJ/ , 

then cj) satisfies also the equivalent conditions 

(i) 4>(xy) = <j>(yx) for all x, y i n s / ; 
(ii) cj)(x*x) = </>(xx*) for all x ins/; 

(iii) 0(x) = <t>(uxu*) for all xms$ and all unitary u in Ae, the C*-algebra 
formed froms/ by adjunction of a unit element. 

The equivalence of these three conditions is well known; they together with 
linearity and positivity—</> (x*x) ^ 0 for all x insf—are the defining conditions 
of a (finite) trace <£ ons/. 

It is well-known and easy to prove that every finite trace o n s / does satisfy 
(t). The converse, proved here (Theorem 1) appears to have escaped notice. 

If 0 is a trace on the W*-algebra,se (for definitions, see § 2), it satisfies the 
triangle inequality in the following sense: 

(T) If x Ç srf and </>(|x|) < + oo, x lies in the linear span L of 
{a G s/+: <j>(a) < + oo } ; on L, </> has a unique extension as a linear functional, 
so </>(x) is defined and finite. Moreover, |</>(x)| t^ <t>(\x\)> 

An apparently weaker condition, easier to prove necessary for a trace 
</> ons/ is: 

(WT) For every projection e in s/ with <j>{e) < + oo , |#(x)| ^ <t>(\x\) for 
all x in 

Here <t>(x) makes sense as in (T), since eS$e C L. Conversely, we prove 
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(Theorem 2) that for a normal, strongly semifinite weight <f> on a W*-algebraj/, 
(WT) is a sufficient condition that 0 be a trace. 

The proofs depend essentially on the special case of Theorem 1 : se = M2 (C ), 
the *-algebra of 2 X 2 complex matrices (Main Lemma). Using this, we prove 
Theorem 2 by showing first that </> must preserve equivalence of orthogonal 
projections, then reducing the problem in effect to the case in which </> is 

faithful and finite, and s/ is finite. The comparison theory of projections is our 

chief tool here. 
Finally, to extract Theorem 1 from Theorem 2, we observe tha t the hypo

thesis persists for 0dd on j / d d , the second adjoint space of s/, which by Sher
man 's theorem [9] is a l/F*-algebra. This argument requires an adapta t ion of 
Kaplansky 's density theorem [8] to the *-strong topology, for which see [5]. 

In § 2 we set forth the basic definitions and conventions used in the rest of 
the paper; in § 3, the main results are s ta ted; in § 4, the proofs and some sub
sidiary results appear. 

2. Def in i t ions a n d c o n v e n t i o n s . For the basic theory of C*-algebra and 
IF*-algebra (von-Neumann algebras), we refer the reader to the books of 
J. Dixmier ([4], [3]). 

Us/ is a C*-algebra, s/+ = {x*x; x £ s/\ is a proper closed convex cone, 
linearly s p a n n i n g ^ . Every element a of A+ has a unique square root a112 in 
j / + . If x £ j / , \x\ = (x*x)U2, and R e x = (x + x*)/2. 

A weight on a W*-algebra s/ is an additive, positively homogeneous map <j> 
defined on the positive con<dS/+ of s/ with values in [0, + oo]. <j> is normal if 
for increasing, bounded nets (av)v in s/+, sup [4>(av)] = $ (sup [ a j ) , and 
strongly semifinite if for each a in A+ there exists a non-zero a' in A+ dominated 
by a, with </>(a') < + oo. </> is faithful if 0 ^ a Ç s/+ implies <j>(a) > 0. A 
weight 0 is a trace if it is unitarily invariant ; tha t is, if <f>(a) = <t>(uau*) for all 
a ms/+ and all uni tary u in s/. An equivalent condition is tha t <j>(x*x) = 
<j)(xx*) for all x ms/. 

If # is a weight o n j / , and e a projection in s/ with <j>(e) < -f oo , call e 
<j>-finite. Then <£ is finite on the cone (es/e)+ = es/+e, and so extends uniquely 
to a positive linear functional on es/e. Since it wTill not cause confusion, this 
functional will also be called </>. 

3. S t a t e m e n t of m a i n re su l t s . We s ta te our results in the order of their 
decreasing intelligibility. 

M A I N LEMMA. Let <j> be a linear functional ons/ — M 2 ( C ) , the *-algebra of all 

2 X 2 complex matrices, satisfying |</>(x)| S 4>(\x\) for all x of rank 1 ins/. Then 
</> is a non-negative scalar multiple of the trace. 

T H E O R E M 1. The finite traces on a C*-algebras/ are precisely those (positive) 
linear functional s <$> onsé which satisfy 

|</>(x)| ^ </>(W) for all x ins/. 
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THEOREM 2. Let stf be a W*-algebra, and 0 a normal, strongly semifinite weight 
on se satisfying the condition 

(WT) For every <j>-finite projection e in se, 

|0(x)| tk <t>{\x\) for all x in esxfe. 

Then 0 is a trace on s$. 

4. Proofs. We prove first the Main Lemma, then Theorem 2, by way of 
some preliminaries and, finally, Theorem 1. 

Proof of the Main Lemma. Well known, implicit in each of the Main Lemma 
and Theorem 2, and explicit in Theorem 1 is that traces satisfy the triangle 
inequality. As a gesture towards completeness, we prove this here for a finite 
trace 0 on a W*-algebra s/; the other cases can be inferred from this. In fact, 
for 0 finite, the triangle inequality is equivalent to 

Re0(x) ^ 0(|x|), x f i . 

Let x = v\x\ be the polar decomposition of x in sf. Then x* = \x\v*, and 
since 0 is positive, so self-adjoint 

Re 0(x) = 0(Rex) = 0 

= * ( -* -^" - | ^ l ) = <K\x\HRev)\x\^) ^ </>(|*|), 

since \\v\\ ^ 1 implies ||Rez/|| ^ 1, so Re v S I, and a —> \x\1/2a\x\1/2 is a 
positive map. 

Now suppose 0 F^ 0 is a (necessarily positive) linear functional on 
stf = M2(C) satisfying 

(Î) |0(*)| ^ 0(|x|) for all * e sé of rank 1. 

Then if u is unitary in A and if we define 

<t>u(x) = <f)(uxu*) (x G se), 

it is easy to check that <t>u also satisfies (J), and of course if 0M is a trace, so is 
0. Replacing 0 by an appropriate 0W we may therefore suppose that 0(x) = 
tr (ax) where a is a diagonal positive matrix with a22 5* 0; and then, replacing 
0 by a22_10, that 

0(x) = TXn + *22 for T = <2na22
_1 ^ 0. 

If we show on this assumption that r ^ 1, then in particular r > 0, so by 
symmetry T ^ 1, so T = 1 and 0 = tr, as desired. But consider the rank 1 
matrices 

/ \x\v* + v\x\\ 

X = 
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For such x, 

. i \p2 p] 

so by (Î), 

rp + p ^ rp2 + 1 for p > 1. 

Then 

r{p - p2) ^ 1 - p, or 

r è l / £ for all £ > 1. 

T h u s r ^ 1, and the proof is complete. 

yl Geometric Corollary. Let J ^ be a Hilbert space with inner product ( , ), 
and [ , ] a second inner product on 3f with the property t ha t for every pair 
of uni t vectors x, y in (H, ( , )), |[x, y]\ ^ [y, y]. Then [ , ] is proportional to 

Proof. I t is routine to reduce the problem to the case 

H = C2 , (x, y) = x i j i + x2?2. 

If we use the canonical identifications of J f 0 J f with M 2 ( C ) O^L L {<#?), 
whereby x ® y(z) = (z, y) x (x, y, z £ H), then (x, y) = tr (x ® 3/). If we 
define 

4>{x ® y) = [x,y], 

0 extends to a linear functional on M2(C), and since if y F^ 0, 

|* ® ? | = [ ( j (8) x) (x ® y)] 1 7 2 = y ® y ||x||/||;y|[, 

the hypothesis reads 

\4>(x ® y)\ ^ 4>(\x ® y|) 

for all rank 1 elements x ® y of M 2 ( C ) . T h u s by the Main Lemma, <j> = k t r 
for some & > 0, and [ , ] = k ( , ), as desired. 

Alternate Proof of the Corollary. Instead of forcing the proof in series with the 
Main Lemma, we could give a simpler, parallel proof thus : As before, reduce 
to the case of a two dimensional Hilbert space, for which choose an or thonormal 
basis diagonalizing the positive, non-singular operator a defined by [x, y] = 
(ax, y). We may assume a has eigenvalues r and 1, so t ha t 

[x, y] = rxiyi + x2;y2. 

Then the choice x = (1, p) and y = (p, 1), (p > 1) yields in the limit r è 1, 
while x = (£, 1), y = (1, p) yields r ^ 1. 
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LEMMA \. If se and <t> are as in the hypothesis of Theorem 2 and e and f are 

equivalent, mutually orthogonal projections insé', then <f>(e) = </>(/). 

Proof. Let v be a partial isometry inszf such that v*v = e, vv* = f. Suppose 
4>(e) < + 00. By the strong semifiniteness of </> and spectral theory there 
exists a projection / ', 0 ^ / ' g / , with </>(/') < + oo. Put e' = v*f'v è e. 
Then since <j>(e' + / ') < + oo , our hypothesis together with the Alain Lemma 
applied to the copy of M2(C) generated in (ef + f') s/(ef +f;) by f'v 
yields </>(V) = <£(/')• It follows that for every pair 

e = v*v J_ vv* = f, 

there exist non-zero sub-projections e' ^ e, f ^ f such that 

/ ' = w V and 0(e') = (/>(/')• 

Let (̂ Ô)ÔÇD be a maximal pairwise orthogonal family of non-zero sub-projec
tions of e such that 

<l>(e&) = </>(w*) for each 5 £ D, 

and put 

Ci = Y,es,fi = Y,ve8v* = vexv*. 

Then e\ = e and fi=f by maximality, and since 0 is normal, 

4>(e) = 5>(e,) = 2>(w»»*) = « ( / ) . 

This proves the Lemma. 

COROLLARY 1. Supposes?/, </> as in the hypothesis of Theorem 2. Then there 
exists a unique central projection p of s/ such that <f> vanishes on ps/+ and is 
faithful on (I - p) ,9/+. 

Proof. Let (e&)&çD be a maximal, pairwise orthogonal family of projections 
in s/ such that <t>{et) = 0 for each 8 G D, and put p = Y^e^ Then by normalcy, 
<t>(p) = 0, so (/> vanishes on ps/+, while if 0 ^ a G (/ — p)s/+, there exists 
by spectral theory a projection O ^ e ^ ta < /||«||(7 — £) for some real 
t > 0. Then 0 ^ e S (I — p), and <t>(e) > 0 by maximality of (e5)g€D, and 
so $(to) = /</>(a) > 0: 0 is faithful on (/ — p)s/. Finally to the existence 
proof, if p were not central, there would be a non-zero sub-projection e of p 
equivalent in S$ to some sub-projection e' of (I — p), so that by Lemma 1 
and the above, we would have 

0 = 4>(e) = <t>{e') > 0. 

So p is central. Its uniqueness follows from the fact that any p with the 
properties claimed is easily seen to be the largest projection i n ^ on which </> 
vanishes. 
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Corollary 1 permits us to assume, in proving Theorem 2, tha t <£ is faithful. 

The usefulness of this property is revealed by the next corollary. 

COROLLARY 2. Suppose that se, <j> satisfy the hypothesis of Theorem 2, and 

that (j) is faithful. Then every <\>-finite projection in se is finite. 

Proof. If e is infinite, esée contains a sequence {ef) KN of equivalent, mutu
ally orthogonal non-zero projections. Since </> is faithful, </>(<?,) is positive, 
independent of j by Lemma 1, and 

*(*) ^ 2>(e*) = + 00, 

so e cannot be 0-finite. 

LEMMA 2. / / e and f are equivalent projections in s/, <f>(e) = <t>(f). 

Proof. We may suppose <j> faithful (Corollary 1), and e 0-finite. Then e, f 
and so e V / are finite. Now 

e\ = e V / — e ~ f — e A f ~ e — e Af = e2, 

and since e\ _L e2, Lemma 1 yields </>(̂ i) = (t>(e2), or 

(*) 0(g V / - e) = 4>(e - e A f ) è 4>(e) < + GO . 

Then ^ V / ) = *(e V / ~ e) + <t>{e) < + oo , so </>(/ ) is finite, too. This 
symmetrizes the roles of e, / , while expanding the equation in (*) above and 
solving for <j>(e), we have 

4>(e) = %[4>(e V / ) + 4>(eA f )] . 

By symmetry , <£(/) is given by the same expression and </>(e) = </>(/), as 
claimed. 

Proof of Theorem 2. Lemma 2 tells us tha t the restriction of </> to the convex 
cone ^ of elements of the form 

^y=i« j€ j , OLJ non-negative scalars and ej projections in s/, 

is unitari ly invariant . Spectral theory tells us tha t every a \ns/+ is the supre-
mum of a family of such operators. The normalcy of </> then tells us tha t the 
un i ta ry invariance of 0 on ^ persists to all of s/+: 0 is a trace on s/. 

Proof of Theorem 1. Let <j> be a positive linear functional on the C*-algebra 
s/, satisfying |</>(x)| ^ <£(|x|) for all x G se. Then the second transpose map 
</>dd is *-strongly continuous o n j / d d , and since x —» \x\ is *-strongly continuous 
on bounded subsets of Aaa [8], while the uni t ball in stf is *-strongly dense in 
t ha t of j / d d [8], [5], the inequality persists: 

|</>dd(x)| g </>dd(|x|) for all x in j / d d . 

</>dd is also normal and finite, so Theorem 2 applies: 0dd is a trace on s/ûd, so 
its restriction 0 is a trace on s/. 
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