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ABSTRACT

Two families of frailty models – Makeham/Gompertz-gamma and Gompertz-
inverse Gaussian – have been considered to graduate insurance-based mortality
data. The aims of this exercise are twofold. The first aim is to make use of
generalized linear models and to evaluate these against traditional techniques.
The second aim is to measure the scale of individual heterogeneity in insurance-
based populations. The results indicate that (subject to issues of identifiability)
there is evidence of frailty in these populations.
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1. INTRODUCTION

In mortality analysis, heterogeneity is regarded as any difference in future
survival that is potentially observable at the start of a study – for example, at
birth or the purchase of an annuity or a life insurance contract. In many cases,
heterogeneity may be based on unobserved covariates. Then, the differences in
realized survival experience may be attributable to either randomness or unob-
served heterogeneity and it may not be possible to discriminate between these
two sources. In traditional mortality analysis and insurance applications, het-
erogeneity has been generally overlooked given that the early survival models
tended to provide a good fit for most part of the human lifespan. Departures
from observed experience have tended to appear at the oldest ages and have been
mainly attributed to scanty data, that is to randomness in the experiment.

Perhaps the first recognition of the effect of heterogeneity is due to Gini
(1924) who was commenting on the interpretation of pregnancy rates. The effect
in migration was considered by Blumen et al. (1955) and in mortality by the
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seminal work of Vaupel et al. (1979) which has led to considerable interest and
further developments in the literature. Vaupel et al. introduce the generalized
concept of frailty represented as an unobservable univariate statistical variable Z
and describe its implications for standard life table methods (see section 2).

This paper considers practical aspects of selecting the family of frailty
models applicable to insurance-based mortality data and the possible inter-
pretation of such models. The paper is organized in six main sections. The next
section presents the framework used to formulate the mathematical models for
representing frailty. The third section considers the selected models and different
methods of fit. In section four we present the insurance data and the gradua-
tion results of the formulated models. Then, in section five, there is a short dis-
cussion about the interpretation of these results and comparison of our results
with other authors’ findings. Finally, section six provides some concluding
comments.

2. MODEL OF INDIVIDUAL DIFFERENCES IN FRAILTY

As noted by Keyfitz (1985), “… heterogeneity in the underlying population
places difficulties in the way of interpretation of all statistical data based on
averages”. A necessary simplifying assumption in traditional demographic
(including life table) analysis has been to include only some of the measurable
differences in the composition of a population.

Unlike the effect of sampling variability, which we can deal with by collec-
ting more data, the effect of heterogeneity cannot be reduced by increasing sam-
ple sizes. The general consequence of ignoring heterogeneity is that the analysis
of population data does not describe the characteristics of any individual but
of the cohort as a whole. In mortality applications, the selective effect of hete-
rogeneity is to underestimate the mortality rates at older ages that an average
individual will experience. This bias will be explored further in this section.

Following Vaupel et al. (1979), we define frailty in a heterogeneous popula-
tion at any given age x as a random variable Zx with probability density func-
tion fx(z), such that the individual force of mortality conditional on a realiza-
tion of Zx = z will satisfy the following relation:

µ(x | Zx = z) = µx(z) = z · µx, (1)

where µx is referred to as the ‘standard hazard function’ corresponding to a
‘standard individual’, conventionally those with frailty z = 1. Here, heterogeneity
is modelled in terms of an unobserved scale statistic (a continuous non-negative
random variable) that encompasses all of the factors affecting human mortality
other than age. We note that similar models for the age specific probability of
death, qx, would lead to complexities in terms of the range of values for Zx, given
that qx is bounded above.

Assuming that there is a unique and fixed value of z associated with a given
individual for all his or her life span, Vaupel et al. (1979) note that “… The
definition does not imply, however, that individuals at the same level of frailty
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are identical – even if they are contemporaries from the same population.”
The assumption is merely that their “likelihood of death” would be the same.
Ultimately, members of the cohort with higher values of frailty z will have a
higher probability of dying and thus the more frail individuals are more likely
to die first. Such selection effects distort the shape of the population hazard
rate, so that this no longer reflects the individual risks.

Based on the proposed model (1) it can be shown (see Butt and Haberman
2002) that the observed population hazard rate is given by:

m̂ x( ) ( ) ,x z f z zdm m zx x x0
$ $= =

3

# (2)

where zx is the mean (or expected) frailty among the survivors to age x.
As a consequence of (2), choosing the marginal p.d.f. of Z in the initial

birth cohort such that z0 = 1 (i.e. ‘standard’ frailty level), the population hazard
rate at birth will coincide with the ‘standard’ individual hazard rate m̂(0) = m0.

More importantly, we can see from the previous expression (2) that, should
the expected frailty zx vary significantly with age, the population force of morta-
lity will have a different rate of change with respect to age than the individual
force of mortality. Specifically, we note that differentiating zx with respect to
age x yields (see Lancaster 1990, page 64):

( ) <x zd
d m sz 0x x x

2$= - (3)

where s2
x (z) is the conditional variance of Zx among the population that is

alive at age x. Thus, the mean frailty declines with age as death selectively
removes those individuals with the higher frailty levels z who are likely to die
earlier, and so zx will decrease with age, especially in the case of the older ages.
This means that µx increases more rapidly than µ̂x i.e. “individuals ‘age’ faster
than heterogeneous cohorts” (Vaupel and Yashin 1985), so that expectations
of life for individuals would be overstated by not allowing for the selective effect
of frailty.

The model specified so far contains two critical components:

a) an age specific ‘standard’ hazard rate for the individuals, µx; and
b) a choice for the marginal distribution for Z, f0(z).2

The choices that have attracted the most attention in the literature are, for a),
the Gompertz – Makeham model

µx = � + b · ep · x (4)

and for b) the gamma and inverse Gaussian distributions. Vaupel et al. (1979)
make extensive use of the gamma distribution on the grounds that it is tractable
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analytically, flexible in shape and has positive support (noting that frailty cannot
be negative).

In the current paper we consider two underlying frailty distributions, that
is the gamma and inverse Gaussian, while the individual hazard is assumed to
follow a Gompertz type model. For a further mathematical discussion of these
choices see Butt and Haberman (2002).

3. MODELS AND METHODS OF FIT

3.1. Introduction

We consider two methodologies for graduating parametric frailty models: the
methods of (unweighted and weighted) non-linear least squares (NLM) and of
generalized linear modelling (GLM).

Preliminary results from the NLM approach (weighted and unweighted) have
been obtained and compared with those arising from the GLM approach. How-
ever, we focus on the GLM results. We have also conducted a systematic sen-
sitivity analysis by allowing for changes to the age range being fitted and the
removal of outliers. Finally, trends in the estimated parameters for the popu-
lation hazard function, and indirectly for the chosen frailty distribution, have
been also investigated. The proposed parametric models under investigation are:

a) Gompertz-gamma, known as Perks (P)

µ̂(x) = ;e
a

1 b p x�+ $- (5)

b) Gompertz/Makeham-gamma, known as Modified Perks (MP)

µ̂(x) = ;� e
a

1 b p x�+
+ $- (6)

c) Gompertz-inverse Gaussian (GI)

µ̂(x) = .
e

e
1 b p x

d p x

�

�

+ $

$

- +

- +

(7)

where x� = x – 40 is the age variable adjusted with respect to the minimum age
in the observations, in order to improve the parameterization of the models.
Models (5) and (7) are presented in outline form in the Appendix. A detailed
specification is given in Butt and Haberman (2002).

3.2. Exploratory Data Analysis

It is normal practice to undertake a visual inspection of mortality rates plotted
against age before attempting any graduation exercises. As noted by Horiuchi and
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Coale (1990) and others, it can be difficult to distinguish, from plots of the loga-
rithms of mortality rates, the differences between a straight line and, say, an
upwardly or downwardly concave curve. Horiuchi and Coale propose a different
type of exploratory check, by considering the behaviour of

l(x) = xd
d ln µ̂(x) (8)

for different curves. It is clear that if µ̂(x) = b · e p ·x so that there is no hetero-
geneity present then l(x) would be constant. However, for the Makeham-
gamma frailty model (6) it is possible to demonstrate that, if

� > 0, l(x) is bell shaped with a maximum at age x09
� = 0, l(x) is monotonically decreasing.

(Indeed we can show that x0 – 40 = p
b + p2

1 ln �
�

a+_ i).
Similarly, for the Gompertz-inverse Gaussian model (7), it is straightforward

to show that l(x) is monotonically decreasing.
Using some crude estimates for l(x), based on finite difference methods, for

a sample of the data sets under consideration, we have noted that there is very
little evidence of a bell-shaped profile, indicating the likelihood that � = 0.
The profiles also tend to be decreasing functions of age, indicating the pres-
ence of heterogeneity and supporting the choice of (5) or (7).

An equivalent test would be to consider a plot against age of

l(x) = ln[ µ̂(x + 1)–1 – µ̂(x)–1] (9)

which, for the Gompertz-gamma model, leads to a downward sloping straight
line.

3.3. Generalized Linear Models with Parameterized Link Function

The family of Generalized Linear Models (GLM) has been developed to apply
a wide range of (usually) linear regression functions with an error structure
which is different from the classical assumptions of a constant variance and a
normal distribution. The underlying principle is a natural extension of the
classical linear model, with the independent variables present only through a
linear configuration. The GLM method allows us to select the appropriate dis-
tribution of errors from a comprehensive class of density functions belonging
to the exponential family and to derive maximum likelihood estimators. McCul-
lagh and Nelder (1989) provides a detailed review of the methodology whereas
actuarial applications of GLMs have been developed by Renshaw (1991) and
reviewed by Haberman and Renshaw (1996).

In the current approach, the force of mortality is selected as the target
random variable, and we use the overdispersed Poisson distribution to model
the numbers of deaths Ax. We also make the simplifying assumption that the
central exposures are constant (non-random) quantities for each observational
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FIGURE 1: Deviance D(µ̂; ua) vs. fixed values of parameter a for Female Annuitants.
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where ux is defined to be 
mx⁄ rx . In order to satisfy the overdispersed Poisson

distribution assumptions, it is necessary to set the GLM weights equal to rx.
Observe that the Perks frailty model (5) can be rewritten in terms of the

mean value as:

ux = e
a

1 jx+
, (12)

where jx = b – p · x�. Although it is not possible to form a linear predictor that
would include all three parameters a, b and p, we can still apply the GLM
methodology, if we are able to find a continuous and differentiable link function
g(ux, a) = jx , with fixed parameter a. Then, the graduation could be performed
over a chosen range of values for parameter a assuming that the resulting
‘deviance profile’ D( µ̂ ; ua) is a smooth function with preferably one (global)
minimum value Dmin over the selected interval. Then the final estimate a will
be given by the value that minimizes D(·).
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Thus, we can modify the original expression (12) by isolating exp(jx) to give
the following ‘parameterized link’ function:

, .lng u a u
a u

jx
x

x
x=

-
=^ dh n (13)

This approach has been used by Renshaw (1995). The value of the parameter a
has to be pre-determined before the GLM can be fitted. For the structure
under consideration, it is possible to search for the optimum value of a by
refitting the same predictor structure jx for different values of a, chosen care-
fully so that a deviance profile can be constructed.

Note that there is a lower bound imposed on the values which the parame-
ter a can take, since the argument of the logarithm must be positive, that is
a > max(ux) (see also the interpretation of a in section 5.2). Although we do
not prove here that the resulting deviance function D( µ̂ ; ua) is continuous and
has a single minimum over the domain (amin, ∞], the results from extensive trials
on a range of data sets indicate that this is the case. Figure 1 provides examples
of deviance profiles based on the Female Annuitants’ Ultimate (i.e. policy dura-
tion over 5 years) experience for a range of 8 calendar periods.

4. APPLICATION TO INSURANCE DATA

The proposed models have been applied to a series of large insurance data sets
covering an extended historical period, that was collected by the CMI Bureau.
For reasons of space, we report here results for two of these data sets, which
concern respectively the mortality experience of immediate annuitants and
assured lives. Table 1 provides some summary information on these data sets.
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TABLE 1

EXTENT OF THE ANALYZED DATA SETS (MILLIONS)

Total Total

Data Set Calendar Number of Deaths Exposed to Risk

Years Policy Duration (yrs) Policy Duration (yrs)
1-4 5+ 1-4 5+

Immediate M 1946-1994 0.048 0.040 0.599 0.429
Annuitants F 1946-1994 0.130 0.116 1.938 1.547
Assured Lives M 1924-1994 0.071 1.035 9.215 68.960

The data comprise tabulations of observed number of deaths ax and initial expo-
sures ri

x by age x and policy duration d. The initial exposure counts have been
transformed to central exposures by the approximate formula rx = ri

x – 2
1 ax to

estimate the population hazard rates. Also, grouping by calendar years (and some
ages) have been applied in order to avoid the occurrence of zero mortality rates
in individual cells and thus infinite weights in the WNLM graduation method.
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4.1. Immediate Annuitants Data Set

The data consist of cohorts of males and females with lives born in the period
between 1846-1943 and followed up between 1946-1994 (note that the obser-
vations for years 1968, 1971 and 1975 are not available). The data have been
originally recorded by grouped ages 40-45, 45-50, 100+ and for individual ages
between 50-100, and also by duration periods (1-4 years and 5+, subsequently
rearranged as 1+, i.e. 1-4 and 5+, i.e. 5 and over).

We have grouped the calendar years so that the central year of any group
does not coincide with the end of a decade (to avoid bias):

1946-49 (4) 1950-52 (3) 1953-56 (4) 1957-61 (5)
1962-65 (4) 1966-72 (7 – 2 = 5) 1973-77 (5 – 1 = 4) 1978-80 (3)
1981-85 (5) 1986-90 (5) 1991-94 (4)

where the numbers in parentheses are the number of participating observation
years. Graduation has been carried out principally on individual ages between
50 and 100+ with minor changes from one method to another. We note that,
for immediate annuitants, the female data set is larger than the male data set
and we focus here on results for the female data.

4.2. Annuitants Experience

In the first stage, all the models presented have been fitted to the annuitants’ expe-
rience using all the available data points with both graduating techniques (NLM
and GLM), and consideration has been given not only to the final parameter
estimates, the goodness of fit tests3 and examination of the residual plots, but
also to the sensitivity of the results to changes in the starting conditions.

Comparing initially the results for the WNLM regressions, it is concluded
that it would not be possible to distinguish between the models based on the
goodness of fit tests alone (see Butt and Haberman 2002). However, from the
detailed parameter estimates and their standard errors, we find that the �̂ esti-
mates of the MP model are not significantly different from zero and in some
cases are negative. This result is not surprising since our data set focuses on
ages over 50, thereby excluding younger persons. Similarly, the a parameter
estimates for the P and MP models are, in some cases, not significant. On the
other hand, all of the parameter estimates for the GI model are significant.

Therefore, based only on this criterion, one might select the GI as the best
model for this data set, especially when considering the intuitive property of
a non-constant coefficient of variation for the inverse Gaussian (see Butt and
Haberman 2002). However, it is generally accepted that the population hazard
is best described by a sigmoidal shape curve (i.e. logistic family function), which
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FIGURE 2: Gompertz and Frailty distribution parameters for Female Annuitants Duration 1+
(age range of 40-100+).

Comparison of the Parameter Estimates resulted from the main
models / Females Duration 1+
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ĝ

https://doi.org/10.2143/AST.34.1.504961 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.1.504961


184 ZOLTAN BUTT AND STEVEN HABERMAN

FIGURE 3: Gompertz and Frailty distribution parameters for Female Annuitants Duration 5+
(age range of 40-100+)

Comparison of the Parameter Estimates resulted from the main
models / Females Duration 5+
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for older ages tends to a positive finite value (Thatcher 1999). The GI model
does not have this characteristic and it reduces to an exponential function as
x → ∞ (i.e. Gompertz family).

Detailed examination of the residual plots shows that, in general, the P model
produces a better fit to the data than the GI model. Therefore, we have opted,
on balance, for the P model while keeping in mind that our particular aim
is then to use these results as a starting point for taking advantage of the
improved regression properties of the GLM method.

We can obtain a good general impression of the features of the models by
looking at the estimated parameters of the individual hazard function, b̂ and p.
Similarly we consider the estimates of the shape parameters of the assumed
frailty distributions, d̂ and ĝ for gamma and inverse Gaussian respectively,
based on the original assumption of z0 = 1. The estimators are functions of the
graduated population hazard rate parameters (for further details see Butt and
Haberman 2002). Further, we note that, for all three frailty models parameter p
is common to both the individual and population mortality rate functions.

In Figures 2 and 3, we present the parameter estimates arising from the
WNLM and GLM approaches for the female annuitants data set with two
duration periods (1+ and 5+) and 11 grouped observation periods. We can
see from Figure 2 that the estimates b̂ and p of the GI and P models have
an almost identical pattern over time, confirming the similarity of these two
models for the given age range (as previously suggested based on the goodness
of fit tests), whereas the MP model differs significantly from these. It is inter-
esting to note that the estimates based on the GLM method for the P model
are within the same range as those given by the GI and P models fitted by
the NLM method, but display a much smoother variation by period. Also, in
the case of the frailty distribution parameter (q̂ or ĝ ), all of the models lead
to the same type of pattern but at different levels. In the case of durations 5+,
Figure 3 shows that the GLM-P model results in more stable estimates.

We base our final model assessment on the following criteria:

a) the model allows for inhomogeneity in the variance of the errors; and

b) the parameter estimates are not influenced by the outliers in the data.

The better performance of the GLM regression method could be associated
with the fact that it is less influenced by the outliers of a given data set and
allows for non-constant variance of the errors. While the WNLM method also
caters for the inhomogeneity in the variance of the errors, we note that it is
strongly influenced by the outliers. For example, looking at the WNLM grad-
uation results for 1953-56 males’ experience in Figure 4, we can see that in the
case of W-P and W-MP the fitted curves are pulled down at the oldest ages by
the presence of a single outlier. The NLM method is as equally unaffected by
the outliers as the GLM; however it fails at the first criterion. In conclusion,
the GLM graduation method applied to the P model performs reasonably well
under both criteria.

Taking the above considerations into account, we conclude that the GLM
method has a stronger theoretical justification and yields models with more
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FIGURE 4: NLM Fitting of Perks, Modified Perks and Gompertz-inverse Gaussian models for
Male Annuitants Duration 5+ 1953-56.

favourable properties than the classical non-linear least squares method. However,
some difficulties have been experienced in relation to the non-linear parameters
in the model (e.g. a). Thus, in applications of the GLM-P model, in some iso-
lated cases, we find that:

i) the minimum value of the deviance curve (see for example, case 1 in Figure 5)
lies below the lower bound for parameter a – see section 3.3; or

ii) the deviance curve tends asymptotically to a minimum only when a increases
from the lower bound to infinity (see cases 2-4, Figure 5), instead of having
a single global minimum for finite values of a (as in all the cases of Figure 1);
and we note that

iii) there is no straightforward method of estimating the standard error for the
parameter a.

In relation to cases i) and ii) above, we note that Butt and Haberman (2002)
describe an alternative version of the GLM approach (based on a lineariza-
tion method and Taylor expansion, advocated by Renshaw 1991) which would
provide guidance to the estimate of a.

We next examine the sensitivity of the model to the choice of age range and
to the influence of outliers. We make use of the chosen model and graduation
method, in the form of GLM-P. We restrict the age ranges first to 55-100+
and then to 60-100+ and then investigate the results from fitting the model to
the latter age range, with outliers excluded, i.e. ages 60-100. Since a number of
arbitrary factors are involved, this part of the analysis is more informal in
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FIGURE 5: Difficulty with the non-linear parameter in (GLM) fitting, either min(a) < max(µx) or
Dev → min only if a → ∞.

nature. Evidently, there are some significant effects resulting from the elimina-
tion of outliers, as illustrated in the next paragraph; however, these effects are
less dramatic than those offered by the NLM or WNLM approaches in relation
to the same conditions.

In the case of the annuitants’ experience, restricting the age range means,
in effect, the elimination of most of the ‘noise’ at the extremes (in the case of
the annuitants’ experience, this corresponds to observations which are mainly
available only for grouped ages, like 40-45, 45-50 or 100+). This change has
little or no effect for the female annuitants’ data in terms of the fitted values,
the goodness of fit tests, and the frailty distribution parameter d̂ . This can be
observed when comparing the corresponding curves from Figures 2 and 6.
However, regarding the sensitivity to the outliers, we can note that there are,
not unexpectedly, some changes in the model parameter estimates when the
outliers are removed. Although these have very little effect on the predicted val-
ues – and we observe improvements in the goodness of fit tests – we note that
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FIGURE 6: Results of GLM-P model fitted to age range 60-100 applied to data sets
with (1) and without (2) outliers.

Sensitivity of GLM-P parameter estimates to outliers
Female Annuitants Duration 1+
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the effect is concentrated on the b̂ and d̂ estimates, as can be seen in Figure 6.
We also note an upward trend over time for the frailty shape parameter d̂ for
duration period 1+ (and 5+: not shown here).

Butt and Haberman (2002) provide detailed parameter estimates of the above
graduations.

4.3. Assured Lives (Males) Data Set

This is the largest data set analyzed and it is in a similar format to the annui-
tants’ data set. The experience of male policyholders, however, dominates and
is the focus of our analysis. The recorded age range is considerably longer than
the annuitants’ data set – generally individual ages between 10-100+. The avail-
able duration periods have been used in the form 0, 1, 2-4 and 5+, in line with
other authors. We note that the data in the first three groups, corresponding
to lower durations, are significantly smaller in size and less reliable than the
5+ group. The data are available for groups of 4 years, with the exception of
the last 4 calendar years 1991-94, where the data for individual calendar years
are also given:

1924-28 (5) 1929-33 (5) 1934-38 (5) 1949-52 (4)
1953-58 (6) 1959-62 (4) 1963-66 (4) 1967-70 (4)
1971-74 (4) 1975-78 (4) 1979-82 (4) 1983-86 (4)
1987-90 (4) 1991-94 (4)

As before, the numbers in parentheses are the number of contributing years.

4.4. Assured Lives Experience

In the light of the discussion in section 4.2, we focus here on the application
of the Perks (P) model and GLM method to the assured lives data set. These
data are particularly extensive for ultimate durations 5+ and are of good quality.
Since the graduation results for the lower durations (1, 2-4) turn out to be
inconclusive (for all the methods and models), we present the results here only
for the ultimate durations 5+. We also note that we have limited the graduation
to age ranges 50-100+ in order to allow comparison of results with those
obtained in section 4.2 (although it could also be worthwhile to examine the
parameter �̂ when the MP model is fitted over the full age range).

When applied to the initial age range of 50-100+, the graduations are
generally stable and yield parameters which are significantly different from
zero throughout the whole data set. It is important to note, however, that the
goodness of fit tests do not support all of the fitted models. Thus, the runs
and serial correlation tests (which are not independent) show weak graduations
for some cases, for example for the periods 1953-58, 1987-90 and 1991-94. The
tests indicate strong dependence between individual observations and this is also
highlighted by the diagnostic plots which suggest cyclic patterns in the residuals.
Further we note that, for the last two groups of observations, the estimates
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FIGURE 7: Results of GLM-P model fitted to age range 60-100 applied to data sets
with (1) and without (2) outliers.

Sensitivity of GLM-P parameter estimates to outliers
Male Assured Lives Duration 5+

b̂

p

d̂
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of a are very low, 0.253 and 0.237 respectively, suggesting that the models are
unsuitable in the light of the interpretation of this parameter as the upper
bound for the force of mortality (see section 5.2).

However, when we successively restrict the age ranges (to 55-100+ and 60-
100), automatically removing some of the ‘noise’ from the data at the very old
ages, the a estimates generally improve together with the goodness of fit tests,
except for the 1987-90 data which yield a poor runs test. Then, when we remove
all outliers and we graduate the age range 60-100, we note an overall improve-
ment for most calendar year groups. The exceptions are again the last two
periods mentioned above, where although the estimates of a increase to 0.424
and 0.391 respectively, the graduations still produce poor fits, judged by the
goodness of fit tests.

Figure 7 presents the trends in the parameter estimates arising from the
above sensitivity tests for the male assured lives. It is interesting to note that
the frailty parameter estimates, d̂ , are on average lower than for the female
annuitants data sets (see Figures 2 and 3), and the profile as a function of time
is peaked with a maximum in the mid 1950’s and a subsequent decline.

Butt and Haberman (2002) provide detailed parameter estimates of the above
graduation.

5. INTERPRETATION OF RESULTS

5.1. Identifiability

There are difficulties with interpreting the results of the model fitting exercise
described in previous sections and interpreting the suitability of, say, the Perks
model for describing mortality variation with age.

There is an identifiability problem. As noted by Hougaard (1984): “The
frailty distribution is not identifiable, if the frailty is an individual quantity. …
It is not possible to divide the variation into that within and that between indi-
viduals, if there is only one observation per individual.”

Yashin et al. (1994) demonstrate that mortality data on their own cannot
definitively be used to identify the underlying mechanism of survival. They show
that, without additional covariates or assumptions, the fixed frailty Gompertz/
Makeham-gamma model cannot be distinguished from a range of models incor-
porating changing frailty at the individual level (for example, Le Bras 1976).

This conclusion follows on from Hoem (1990) who proves that many under-
lying mortality rates and many frailty distributions produce the same mortality
pattern. As a specific example, we consider the Gompertz-gamma model:

µ̂(x) =
xHq

d
+

µx (14)

where µx = b · ep ·x and Hx = mx

0 t# dt.
Then, given a non-negative random variable with distribution function G(t)

and finite mean, it is possible to construct a new frailty model with individual
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force of mortality (corresponding to Z = 1) nx and frailty distributed at birth
with f0(z) = G�(z) such that the population hazard rate matches (14) exactly. The
form of nx is:

x

xlnH b
H

n q
d m

d q1x
x$

=
+

+dd nn (15)

where b(·) is a function defined by the following steps:

( ) ( ) ( )

( ) ( ) ( ) ( ).

r x u e G u e G u

R x r y y b x x R x

d d

d and d
d

u x u x

x

0 0

1

0

$=

= =

$ $
3 3

- -

-

# #

#

5.2. Interpretation of the Perks Model Parameters

The parameters for the Perks model (5) have a useful interpretation, as follows:

1. a is clearly the limiting asymptotic value for the population force of mor-
tality:

a = lim
x "3

µ̂(x).

2. In the Gompertz model (µx = b · ep ·x) it is clear that p measures the relative
rate of increase in the force of mortality with age. For the Perks model, we
note that, following Thatcher (1999):

( ) ( ) ( )
( )

.x x x x p a
x

d
dl m m

m1 1= = -d n (16)

Thus, the relative rate of increase is close to p at young ages, where µ̂(x) is
small, but then it reduces with age. For example at ages high enough for µ̂(x)
to be approximately 2

1 a, the relative rate of increase would have fallen to 2
1 p.

3. b can be interpreted via the age x1 = 40 + b ⁄p , that is the age at which µ̂(x) =
1⁄2a, i.e. half its asymptotic value, and the age at which the Perks curve has
its point of inflection.

5.3. Comparison of Results

It will be useful to compare the result with those obtained from other similar
studies.

Estimates, p, are available from a number of recent studies. Thus, the full
Heligman-Pollard model has been fitted by Forfar and Smith (1988) to succes-
sive English Life Tables. At the oldest ages, this model reduces to

q G H
G H

1x x

x

$
$=

+
(17)
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and so ln H is directly comparable to p in our notation, setting aside the difference
between qx and µx. For ELTs No 11 (1950-52), 12 (1960-62) and 13 (1970-72)
the estimates for p would be 0.10003, 0.10346 and 0.10373 respectively. However,
we note that this exercise involved fitting to the already graduated q values rather
than to the crude observations.

Congdon (1994) uses adult mortality data (ages 25-90) for Greater London
for 1980-82 and fits a range of models, including

a) one based on the ELT No 12 graduation formula and
b) the modified Heligman-Pollard model

q G H
G H
k1x x

x

$ $
$=

+
(18)

The estimates corresponding to p are

a) 0.0716 and 0.1086 for males and females respectively
b) 0.10400 and 0.09685 for males and females respectively.

We note that in the case of b) the estimate, k̂, is negative for females: this
would imply that qx → ∞ as x → x, where 1 + k · G · H x = 0.

Wang and Brown (1998) fit the Gompertz-gamma model to the 1994 Group
Annuity Reserving Table of the Society of Actuaries, obtaining the following
estimates, in our notation:

a = 0.15359 b = 5.20153 p = 0.11761 b̂ = 7.762 ≈ 10–6 q̂ = 1.306 

Given the interpretation of a as limx→ ∞ µ̂(x), this particular estimate a looks
very low! 

Manton et al. (1986) fit the Gompertz-gamma model to US Medicare data
for both sexes by cohort during the period 1968-78. Their p estimates for
cohorts born between 1884 and 1902 lie in the range 0.0734-0.1029. The q̂ esti-
mates are published for the 1892 birth cohort (ages 75-85):

q̂ = 4.7393 for males9 q̂ = 3.4722 for females

Congdon (1994) uses the Gompertz-inverse Gaussian model and finds a slight
improvement in fit in relation to the Gompertz-gamma model: this can be com-
pared with the opposite finding of the study of the Manton et al. (1986) and this
report. Further, Congdon experiments with the more general model of Aalen
(1988) and finds that the inverse Gaussian frailty distribution is marginally
preferable in this case.

6. DISCUSSION

Various models have been proposed for measuring heterogeneity in mortality
data, based on continuous and discrete age formulations. We have considered
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Vaupel et al. (1979)’s proportional frailty model because it is more straightfor-
ward to implement and to interpret the results, than the discrete alternatives. In
this context, we have investigated, using two extensive insurance-based data sets,
two frailty distributions, namely the gamma and the inverse Gaussian with respect
to the Gompertz/Makeham family of individual hazard functions. The effects on
the outcomes of using different graduation techniques have also been studied.

Regarding the assumptions for the frailty distribution, the analysis shows
that the model incorporating the inverse Gaussian frailty distribution (GI) is
less responsive to variations in the data and also is less likely to lead to satis-
factory predictions for human mortality at the older ages (being an exponen-
tially increasing function with age) than alternatives. In contrast, the models
assuming a gamma frailty distribution (MP or P) are more favourable because
of a better fit and because they have a logistic form with respect to age. Thus,
when applied together with the Gompertz/Makeham individual hazard func-
tions, the gamma frailty distribution seems to be more viable than the inverse
Gaussian. This also predicts a non-homogeneous population for older ages, as
discussed by Manton and Stallard (1984).

The generalized linear modelling method has a stronger theoretical justifi-
cation than the classical non-linear least squares method and we find that it
results in more stable parameter estimates. However, there are potential draw-
backs when applying the GLM fitting technique to models with non-linear
parameters. Firstly, one needs to know in advance the most likely domain for
the non-linear parameters and secondly, the fitting process can fail to produce
a global minimum of the deviance profile for the respective domain. We note
that, in the particular case of the P model, the first disadvantage is usually not
too restrictive, as we can often estimate permissible intervals for the a para-
meter. Further, this disadvantage is even less serious, when compared with the
traditional method of non-linear regression, where we need good starting
values for all of the parameters involved. Although the second drawback seems
to be more serious in terms of fitting some of the data sets investigated, it
should be noted that, for all such cases, we encountered difficulties with the
NLM method too. Also, we note that the P models fitted by the weighted
NLM technique proved to be strongly influenced by outliers in the data sets,
often yielding, for example, estimates of a that are too low compared to the
observed forces of mortality (where we recall that a = limx→ ∞ µx). We can also
confirm the experience of other authors, that, when applied to the older ages
only, the MP model is inferior to the P model, as the �̂ estimates do not appear
to be significantly different from zero.

Regarding the level of heterogeneity in the investigated data sets, the results
are less conclusive. The coefficient of variation of the gamma distribution
(1/ d) for the final models is on average less than 0.45, implying ‘fairly’ homo-
geneous populations (corresponding to a d̂ value of approximately 5). Making
use of the d̂ = a⁄p estimator of the P model (see Butt and Haberman 2002) we
can attempt to draw up the potential range of the gamma shape parameter, based
on this model. Parameter values corresponding to â have been found in the
literature in the range of 0.15 to 9.5. However, considering the interpretation of
a, we probably can restrict this range to the interval from 0.35 to 1.3. For the
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relative rate of increase of the force of mortality p, the estimates are fairly sta-
ble, lying between 0.09 to 0.12. Hence, we have the following potential range:

d̂ = p
a = .

.
0 12
0 35 → .

.
0 09
1 3 - 2.916 → 14.444 .

It is possible that the moderately high values of d̂, observed above, are attribut-
able to the investigated populations being shaped by selection (temporary initial
selection for assured lives and adverse selection by annuitants: see Benjamin
and Pollard 1993). For such populations, the basic frailty models, with constant
frailty at the individual level during a life span, might not be sufficiently sen-
sitive to pick up differences between the individual members. Then, a natural
extension would be to study more advanced models where frailty varies with
other factors, including age and physiological and socio-economic variables.

An implication of the presence of heterogeneity is that the life insurance
company should seek more information about its policyholders when they pur-
chase life insurance contracts, annuities or pensions, so that the relevant covari-
ates can be identified and measured. This would then replicate the practice in
non-life insurance (e.g. motor insurance) where a wide range of covariates are
measured and used in the risk assessment. For life insurance contracts, insurers
currently seek information on health status including smoking. For annuities
and pensions, there has traditionally been little risk assessment in terms of
identifying those who have a propensity to longevity (i.e. high risk for the
insurers) but in some countries (eg the UK) there have been developments
regarding impaired life annuities (see Ainslie 2000). The possibility of further
and more detailed risk classification touches on political and ethical, as well
as insurance, issues.

Overall, we conclude that the fitting of the Gompertz-gamma model (P) has
been broadly successful for the two data sets discussed i.e. female annuitants
and male assured lives. For these two data sets, the detailed results indicate that
it would be worth investigating modelling the time trends in these parameter
values with a view to developing methods for forecasting using time series
methods (as in McNown and Rogers 1989) or incorporating the time parame-
ter directly in the frailty model as advocated by Manton et al. (1981) and Vau-
pel (1999). This will be the subject of future research.

Finally, we remind readers of the identifiability discussion of section 5.1 and
the need for caution in interpreting the meaning of the parameters in any
frailty-based model. Thus, as noted earlier, the success in fitting the frailty-
based model does not necessarily mean that the concepts underpinning the
model are valid. Hence, it is possible that other concepts leading to the same
model are correct. To proceed further with the diagnosis, further specific infor-
mation is needed on the individuals whose experience is being analyzed.
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APPENDIX

We consider the Gompertz model for µx i.e.

µx = b · ep ·x

(Similar considerations would apply to the Gompertz-Makeham model
µx = � + b · ep ·x).

If we choose a gamma distribution for f0(z), so that

( ) ( )f z z e
d

q
G

zq

0

$ $=
-d d 1-

then it is straightforward to show, using (2), that

( )x p e
p e

m q b b
d b

p x

p x

$ $

$ $ $
=

- + $

$

^ h

where we choose d = q so that z0 = 1. An appropriate reparameterization leads
to (5).

For the inverse Gaussian distribution, represented as

( ) exp expf z z z zp
c

cg g c40 3
1

2
1

2
1

= - - -
^ _h i< F

then it is similarly straightforward to show that

m̂( )x e p e
p

g b b
c b2 2

1

$ $

$ $
=

- +
p x

p x
$

$
^
e

h
o

where we choose c = g so that z0 = 1. An appropriate reparameterization leads
to (7). Here, as the anonymous referee has pointed out, we need to assume g · p
! b, otherwise the model reduces to the basic Gompertz model. This condi-
tion is satisfied for real finite estimates of b and p obtained for model (7).
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