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Abstract

Suppose that an unknown number of objects arrive sequentially according to a Poisson
process with random intensity λ on some fixed time interval [0, T ]. We assume a gamma
prior density Gλ(r, 1/a) for λ. Furthermore, we suppose that all arriving objects can be
ranked uniquely among all preceding arrivals. Exactly one object can be selected. Our
aim is to find a stopping time (selection time) which maximizes the time during which the
selected object will stay relatively best. Our main result is the following. It is optimal to
select the ith object that is relatively best and arrives at some time s

(r)
i onwards. The value

of s
(r)
i can be obtained for each r and i as the unique root of a deterministic equation.
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1. Introduction

Our problem is as follows. We must select one object from an unknown number of rankable
objects by some fixed finite time T . The objects are observed sequentially and appear according
to a Poisson process with unknown intensity λ. Let Xi be the relative rank of the ith object,
and set Xi = 1, 2, . . . when the ith object is the relatively best, second best, third best, etc.,
respectively. Each ordering of the objects is supposed to be equally likely. Then the distribution
of Xi is P(Xi = j) = 1/i for i = 1, 2, . . . and j = 1, 2, . . . , i. We assume that the intensity λ

of the Poisson arrival process {N(t)}t≥0 has a gamma prior density Gλ(r, 1/a), where r ∈ N

and a > 0. We want to find a stopping time that maximizes the time during which the selected
object will stay relatively best.

Our secretary problem is a combination of the duration problem with the Poisson arrival
setting. For further information about the secretary problem, see [6]. The duration of owning
a relatively best object is studied by Ferguson et al. [8]. They found optimal stopping times for
many interesting versions of the duration problem in the ‘no-information’and ‘full-information’
cases, for the problems treated in [10] and [11] with a random number of objects , and for the
Poisson arrival models studied in [2] and [5]. Here we say no information if we can observe
only the relative rank of the objects and if each ordering of the objects occurs equally likely. We
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speak of full information if we can observe the value of each object, assumed to be independent
and identically distributed from a known distribution. The optimal stopping time for Ferguson
et al.’s problem with exponential prior intensity Gλ(1, 1/a), a > 0, is given by

τ ∗
1 = min{t ∈ [s(1), T ] : XN(t) = 1},

where s(1) = [(T + a)/e2 − a]+ and [x]+ = max{x, 0}. It is then optimal to select the
relatively best object which appears from time s(1) onwards. The authors have also shown
that, for a close to 0 (large arrival rate), the optimal expected duration time is close to 2e−2T .

Cowan and Zabczyk [5] assumed that the intensity of the process was known. The aim was to
maximize the probability of selecting the best object overall. Bruss [2] succeeded in extending
the problem to unknown intensities having exponential prior density Gλ(1, 1/a), a > 0, and
in finding the optimal stopping time. It is interesting to see that it has the same form as
the optimal stopping time of Ferguson et al.’s duration problem (1) with the different value
of s(1) = [(T + a)/e − a]+. Ano [1] extended this problem to the problem of the unknown
intensity having a gamma prior intensity Gλ(r, 1/a), r ∈ N, and found the optimal stopping
time for r = 2. Kurushima and Ano [9] found the optimal stopping time for the cases in which
r = 3, 4, . . .. Furthermore, the game version of Bruss’ problem has been studied in [13].

As we have seen above, our problem can be considered as an extension of both [2] and [8].
The main result of this paper is the proof that the optimal stopping time τ ∗

r is a threshold
stopping time:

τ ∗
r = min{t ∈ [s(r)

i , T ] : Xi = 1 for each i = 1, 2, 3, . . .},
where s

(r)
i is the unique root of a deterministic equation for each r and i. It is optimal to select

the ith object to arrive provided it is relatively best and appears from time s
(r)
i onwards. For each

r , the threshold sequence {s(r)
i }i≥1 is nonincreasing. Furthermore, we see that the asymptotic

value s
(r)
i converges to [(T + a)/e2 − a]+ as i → ∞, which means that N(T ) → ∞ almost

surely. Roughly speaking, when a large number of objects arrive in [0, T ], it is almost optimal
to select the first relatively best object arriving after [(T + a)/e2 − a]+.

The paper is organized as follows. In Section 2 we formulate the reward process. Our
formulation is similar to that of [1]. We study the cases in which r = 1, 2, and 3. In Section 3
we prove the main result.

2. Formulation

2.1. Stopping reward

Let S1, S2, . . . denote the arrival times of the Poisson process {N(t)}t≥0. We assume that it
has an unknown intensity λ with gamma prior density

g(λ) = are−aλλr−1

�(r)
1(λ ≥ 0), (1)

where r ∈ N and a > 0. By Bayes’ theorem, the posterior density of λ given S1 = s1, . . . , Si =
s can be computed and also turns out to be gamma, Gλ(r +1, 1/(a + s)). Bruss [2] showed that
after observing S1 = s1, . . . , Si = s, 0 < s < T , the posterior distribution of N(T ) depends
only on the values of i and Si , and is a Pascal distribution with parameters (r+1, (s+a)/(T +a)).
Indeed, it was later shown that this is a special case of a Pascal process (see [3]).

Let (i, s) denote the state of the process when the ith object arrives at time s and is relatively
best. Note that we can confine our interest to such states of the decision process. Recall that
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Xi is the relative rank of the ith object. Let p
(k,u)
(i,s) denote the transition probability from state

(i, s) to (i + k, s + u), which, as Ano [1] (or Kurushima and Ano [9]) showed, is given by

p
(k,u)
(i,s) =

∫ ∞

0
P(Si+k = s + u | Si = s, λ) P(Xi+k = 1 | Xi = 1, Si = s, Si+k = s + u, λ)

× g(λ | Si = s) dλ

= �(i + k + r)

�(k)�(i + r)(i + k)(i + k − 1)

i

(i + k − 1)(i + k)

s + a

(s + a + u)2

×
(

s + a

s + a + u

)i+r−1(
u

s + a + u

)k−1

. (2)

The stopping reward is the expected duration time possessing the relatively best object when
we stop at state (i, s). Denote the expected duration time when we stop at state (i, s) by y

(r)
i (s).

Using Bruss’ result and (2), we have

y
(r)
i (s) = E(u | (i, s)) + (T − s) P(no relatively best appears in (s, T ] | (i, s))

=
∫ ∞

0
u

∑
k≥1

p
(k,u)
(i,s) du + (T − s)

∑
n≥i

(
i

n

)
P(N(T ) = n | Si = s)

=
∫ T −s

0

∑
k≥1

(i + r + k − 1)!
(k − 1)! (i + r − 1)!

i

(i + k)(i + k − 1)
xi+r (1 − x)k du

+ (T − s)
∑
n≤i

(
i

n

)
(n + r − 1)!

(r + i − 1)! (n − i − 1)!θ
r+i (1 − θ)n−i ,

where x = (s + a)/(s + a + u) and θ = (s + a)/(T + a).
Using (2) and the identities

(n + r − 1)!
n

= (r − 1)!
r−1∑
i=0

(n + i − 1)!
i! , r = 1, 2, . . . , (3)

1 =
∑
k≥1

(n + k − 1)!
(k − 1)! n! xn+1(1 − x)k−1, 0 ≤ x ≤ 1, (4)

we can calculate the expected duration time y
(r)
i (s) as follows:

y
(r)
i (s) =

(
i + r − 1

r − 1

)−1 ∫ T −s

0

∑
k≥1

r−1∑
j=0

(i + k + j − 1)! xi+r (1 − x)k

(i − 1)! (k − 1)! j ! (i + k − 1)
du

+ i(r − 1)! (T − s)

(i + r − 1)!
r−1∑
j=0

∑
k≥1

(n + j − 1)!
(n − i)! θr+i (1 − θ)n−i

=
(

i + r − 1

r − 1

)−1 ∫ T −s

0

r−1∑
j=0

j∑
l=0

(
i + l − 1

l

) ∑
k≥1

(
i + k + l − 2

k − 1

)
xr+i (1 − x)n−i du

+ (T − s)

(
i + r − 1

r − 1

)−1 r−1∑
j=0

(
i + j − 1

j

)
θr−j . (5)
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A straightforward calculation using identity (4) and setting x = (s + a)/(s + a +u) shows that
the first terms on the right-hand side of (5) become

(s + a)

(
i + r − 1

r − 1

)−1 ∫ 1

(s+a)/(T +a)

r−1∑
j=0

j∑
l=0

(
i + l − 1

l

)
xr−l (1 − x) dx

= (s + a)

(
i + r − 1

r − 1

)−1 ∫ 1

θ

{(
i + r − 2

r − 1

)
x−1 +

r−1∑
l=0

(
i + l − 1

l

)
xr−l−2

}
dx

+ (s + a)

(
i + r − 1

r − 1

)−1 ∫ 1

θ

{r−2∑
j=0

j∑
l=0

(
i + l − 1

l

)
xr−l−2

−
r−1∑
j=0

j∑
l=0

(
i + l − 1

l

)
xr−l−1

}
dx

= (s + a)

(
i + r − 1

r − 1

)−1{(
i + r − 2

r − 1

)
(−ln θ) +

r−2∑
l=0

(
i + l − 1

l

)
1 − θr−l−1

r − l − 1

}

+ (s + a)

(
i + r − 1

r − 1

)−1{r−2∑
l=0

(
i + l − 1

l

)
(1 − θr−l−1)

+
r−1∑
l=0

(
i + l − 1

l

)
(1 − θr−l )

}
. (6)

Substituting (6) into (5), completes the proof of the following lemma.

Lemma 1. Let y
(r)
i (s) be the stopping reward in state (i, s), that is, the expected duration time

when we stop at state (i, s). Then,

y
(r)
i (s) = (s + a)

(
i + r − 1

r − 1

)−1{(
i + r − 2

r − 1

)
(−ln θ) +

r−2∑
j=0

(
i + j − 1

j

)
1 − θr−j−1

r − j − 1

}
,

where θ = (s + a)/(T + a).

2.2. Monotone property of the stopping problem

First we shortly summarize the monotone stopping problem based on Chow et al. [4, pp. 54–
55]. Let {Yi}i≥1 be the stopping reward process. If the process is supermartingale then the
stopping problem is said to be monotone. Let the one-stage look-ahead (OLA) stopping time
be denoted by τ = min{i ≥ 1 : Yi ≥ E(Yi+1 | F i )}. Let the OLA stopping region be denoted by
B = {i : Yi ≥ E(Yi+1 | Fi )}. If B is ‘closed’, that is, P(j ∈ B | i ∈ B) = 1 for
j = i +1, i +2, . . . , then the problem is monotone and τ is optimal. Throughout the paper, we
use the term ‘closed’ in this sense. This monotone property also holds for the reward process
related to a stationary Markov chain (see Chapter 5 of [4], [7], or Chapter 6 of [12]).

We shall obtain the OLA stopping region for our problem and prove that it is closed. For
each r = 1, 2, . . ., let

H
(r)
i (s) =

(
i + r − 1

r − 1

)
(s + a)−1

{
y

(r)
i (s) −

∫ ∞

0

∑
k≥1

p
(k,u)
(i,s) y

(r)
i+k(s + u) du

}
. (7)
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Then we have the OLA stopping time τr and the OLA stopping region Br ,

τr = min{i ≥ 1 : H
(r)
i (s) ≥ 0} and Br = {(i, s) : H

(r)
i (s) ≥ 0}.

Now we calculate H
(r)
i (s). From Lemma 1 we have∫ ∞

0

∑
k≥1

p
(k,u)
(i,s) y

(r)
i+k(s + u) du

=
∫ ∞

0

∑
k≥1

(i + r + k − 2)!
(k − 1)! (i + r − 1)!

ixi+r (1 − x)k−1(−ln θ̃ )

i + k − 1
du

+
∫ ∞

0

∑
k≥1

i(r − 1)! xi+r (1 − x)k−1

(k − 1)! (i + r − 1)!
r−2∑
j=0

(i + k + j − 1)! (1 − θ̃ r−j−1)

j ! (i + k − 1)(r − j − 1)
du,

where θ̃ = (s + a + u)/(T + a). Using identities (3) and (4) again and calculating in a similar
way to y

(r)
i (s), we have∫ ∞

0

∑
k≥1

p
(k,u)
(i,s) y

(r)
i+k(s + u) du

= −
(

i + r − 2

r − 1

)
1

2
(ln θ)2 −

r−2∑
j=0

(
i + j − 1

j

)
1 − θr−j−1

r − j − 1
ln θ

+
r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
(j − l) + (r − j − 1)θr−l−1 − (r − l − 1)θr−j−1

(j − l)(r − j − 1)(r − l − 1)
.

Substituting the above equation into (7), we obtain

H
(r)
i (s) ≡ h

(r)
i (θ)

= −
(

i + r − 2

r − 1

)
ln θ

(
1 + 1

2
ln θ

)
+

r−2∑
j−0

(
i + j − 1

j

)
1 − θr−j−1

r − j − 1
(1 + ln θ)

−
r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
(j − l) + (r − j − 1)θr−l−1 − (r − l − 1)θr−j−1

(j − l)(r − j − 1)(r − l − 1)
, (8)

where θ = (s + a)/(T + a) ∈ [0, 1]. Thus, for each r , τr and Br can be rewritten as

τr = min{i ≥ 1 : h
(r)
i (θ) ≥ 0} and Br = {(i, θ) : h

(r)
i (θ) ≥ 0}.

2.3. The cases in which r = 1, 2, and 3

From (8), the functions h
(r)
i for r = 1, 2, and 3 are respectively given by

h
(1)
i (θ) = −ln θ

(
1 + ln θ

2

)
,

h
(2)
i (θ) = −i ln θ

(
1 + ln θ

2

)
+ (1 − θ)(1 + ln θ),

h
(3)
i (θ) = − i(i + 1)

2
ln θ

(
1 + ln θ

2

)
+ 1 − θ2

2
(1 + ln θ) + i(1 − θ)(1 + ln θ) − (1 − θ)2

2
.
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Case 1: r = 1. (See [8].) This is the same problem as that given in Section 4.1 of [8].
The function h

(1)
i (θ) does not depend on i and so we may write it as h(1)(θ). We can see

that h(1)(θ) is a unimodal function in θ ∈ (0, 1] with h(1)(0+) = −∞ and h(1)(1) = 0, since
h(1)′(θ) is increasing in θ ∈ (0, e−1], h(1)′(θ) is decreasing in θ ∈ [e−1, 1], and h(1)′′(θ) ≤ 0
for θ ∈ (0, 1]. Therefore, B1 can be written as

B1 = {θ : h(1)(θ) ≥ 0} = {θ : θ ≥ e−2} =
{
s : s ≥

[
T + a

e2 − a

]+}
.

It is closed because once h(1)(θ) becomes nonnegative then it stays nonnegative in (e−2, 1].
Thus, the optimal stopping time is given by (1).

Case 2: r = 2. We first study the function h
(2)
i (θ) for each i = 1, 2, . . ..

Lemma 2. For r = 2, the following statements hold.

(i) There exists a unique root θ
(2)
i ∈ (e−2, e−1) of the equation h

(2)
i (θ) = 0 for each i =

1, 2, . . .. Also, h
(2)
i (θ) ≥ 0 implies that h

(2)
i (θ + η) ≥ 0 for 0 ≤ η ≤ 1 − θ .

(ii) For each i = 1, 2, . . ., h
(2)
i (θ) ≥ 0 implies that h

(2)
i+1(θ) ≥ 0.

Proof. (i) For θ ∈ (0, 1], we have h
(2)′′
i (θ) ≤ 0, implying that h

(2)
i (θ) is a unimodal

function with h
(2)
i (0+) = ∞ and h

(2)
i (1) = 0. We also have h

(2)
i (e−2) < 0 and h

(2)
i (e−1) > 0.

Therefore, (i) holds.

(ii) From (i), h
(2)
i (θ) changes sign once from negative to nonnegative in [e−2, 1]. On the other

hand, for θ ∈ [e−2, 1],

h
(2)
i+1(θ) − h

(2)
i (θ) = −ln θ

(
1 + ln θ

2

)
≥ 0.

Thus, if h
(2)
i (θ) ≥ 0 then h

(2)
i+1(θ) ≥ h

(2)
i (θ) ≥ 0.

Theorem 1. If r = 2, the optimal stopping time τ ∗
2 is given by τ ∗

2 = min{t ∈ [s(2)
i , T ] : Xi = 1,

i = 1, 2, . . .}, where s
(2)
i ∈ (0, T ] is the unique root of the equation H

(2)
i (s) = 0 for each

i = 1, 2, . . ..

Proof. Lemma 2 implies the following.

(i) There exists a unique root s
(2)
i ∈ (0, T ] of the equation H

(2)
i (θ) = 0, and H

(2)
i (s) ≥ 0

implies that H
(2)
i (s + u) ≥ 0 for 0 ≤ u ≤ 1 − s.

(ii) For each i = 1, 2, . . ., H(2)
i (s) ≥ 0 implies that H(2)

i+1(s) ≥ 0, or, equivalently, H(2)
i (s) ≥

0 implies that H
(2)
i+k(s) ≥ 0 for k = 1, 2, . . ..

Therefore, B2 is given by B2 = {(i, θ) : h
(2)
i (θ) ≥ 0} = {(i, s) : H

(2)
i (s) ≥ 0} and it is closed.

So the first hitting time τ ∗
2 for B2 is the optimal stopping time given by τ ∗

2 = min{s ≥
s
(2)
i : (i, s) ∈ B2} = min{t ∈ [s(2)

i , T ] : Xi = 1, i = 1, 2, . . .}.
Case 3: r = 3.

Lemma 3. For r = 3, the following statements hold.

(i) There exists a unique root θ
(3)
i ∈ (e−2, e−1) of the equation h

(3)
i (θ) = 0. Moreover,

h
(3)
i (θ) ≥ 0 implies that h

(3)
i (θ + η) ≥ 0 for 0 ≤ η ≤ 1 − θ .

(ii) For each i = 1, 2, . . ., h
(3)
i (θ) ≥ 0 implies that h

(3)
i+1(θ) ≥ 0.
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Proof. (i) We have, for θ ∈ (0, e−1],

θh
(3)′
i (θ) = −

(
i(i + 1)

2
+ iθ + θ2

)
(1 + ln θ) + (1 − θ2)

2
+ (i + θ)(1 − θ) ≥ 0,

so that h
(3)
i (θ) is nondecreasing in θ ∈ (0, e−1]. For θ ∈ [e−1, 1], we have

θ2h
(3)′′
i (θ) = −

(
θ2 − i(i + 1)

2

)
ln θ − 5

2
θ2 − i(1 + θ) − 3

2
< 0,

so that h
(3)
i (θ) is concave in θ ∈ (e−1, 1]. Since h

(3)
i (0+) = −∞, h

(3)
i (1) = 0, h

(3)
i (e−2) < 0,

and h
(3)
i (e−1) > 0, (i) holds.

(ii) By virtue of (i), ifh(3)
i+1(θ

(3)
i ) > 0 then (ii) holds. There exists a unique root θ(3)

i in (e−2, e−1),
and so 1 + ln θ

(3)
i < 0. From h

(3)
i (θ

(3)
i ) = 0, the difference h

(3)
i+1(θ

(3)
i ) − h

(3)
i (θ

(3)
i ) is equal to

h
(3)
i+1(θ

(3)
i ), which is given by

h
(3)
i+1(θ

(3)
i ) = −(i + 1) ln θ

(3)
i

(
1 + ln θ

(3)
i

2

)
+ (1 − θ

(3)
i )(1 + ln θ

(3)
i ).

On the other hand, h
(3)
i (θ

(3)
i ) = 0 is equivalent to

−(i + 1) ln θ
(3)
i

(
1 + ln θ

(3)
i

2

)
= −1 − θ

(3)
i

2

i
(1 + ln θ

(3)
i ) − 2(1 − θ

(3)
i )(1 + ln θ

(3)
i )

+ (1 − θ
(3)
i )2

i
.

Substituting the above equation into h
(3)
i+1(θ

(3)
i ), we have

h
(3)
i+1(θ

(3)
i ) = −1 − θ

(3)
i

2

i
(1 + ln θ

(3)
i ) − (1 − θ

(3)
i )(1 + ln θ

(3)
i ) + (1 − θ

(3)
i )2

i
≥ 0,

where the last inequality follows from 1 + ln θ
(3)
i < 0. This completes the proof.

Theorem 2. For r = 3, the optimal stopping time τ ∗
3 is given by τ ∗

3 = min{t ∈ [s(3)
i , T ] : Xi =

1, i = 1, 2, . . .}, where s
(3)
i ∈ (0, T ] is the unique root of the equation H

(3)
i (s) = 0.

Proof. The proof is similar to that of Theorem 2 and is therefore omitted.

3. Main results

First we study the function h
(r)
i (θ) for each i = 1, 2, . . ..

Proposition 1. For each r = 1, 2, . . . and i = 1, 2, . . .,

(i) h
(r)
i (θ) is nondecreasing in θ ∈ (0, e−1],

(ii) h
(r)
i (0+) = −∞, h

(r)
i (1) = 0, and h

(r)
i (e−1) > 0,

(iii) there exists a θ̂ such that h
(r)
i (θ) is nondecreasing in θ ∈ [e−1, θ̂ ] and nonincreasing in

θ ∈ [θ̂ , 1].
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Proof. It is hard to show these statements directly. We look at the behavior of θh
(r)
i (θ)

instead of h
(r)
i (θ).

(i) We have

θh
(r)′
i (θ) = −

(
i + r − 2

r − 1

)
(1 + ln θ) −

r−2∑
j=0

(
i + j − 1

j

)
θr−j−1(1 + ln θ)

+
r−2∑
j=0

(
i + j − 1

j

)
1 − θr−j−1

r − j − 1
−

r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
θr−l−1 − θr−j−1

j − l
. (9)

As is easily shown, (1 + ln θ) ≤ 0 for θ ∈ (0, e−1] and θr−l−1 ≤ θr−j−1 for θ ∈ [0, 1], from
which it follows that h

(r)′
i ≥ 0 for θ ∈ (0, e−1].

(ii) It is easy to show that the first two statements hold. From (9) we have

h
(r)
i (e−1) = 1

2

(
i + r − 1

r − 2

)
− f

(r)
1 (e−1),

where

f
(r)
1 (θ) =

r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
(j − l) + (r − j − 1)θr−l−1 − (r − l − 1)θr−j−1

(j − l)(r − j − 1)(r − l − 1)
.

The function f
(r)
1 (θ) is a decreasing, nonnegative function on [0, 1], since f

(r)
1 (0) > 0,

f
(r)
1 (1) = 0, and f

(r)′
1 (θ) < 0. Therefore, if we could show that

1

2

(
i + r − 1

r − 2

)
− f

(r)
1 (0) > 0

then h
(r)
i (e−1) > 0. We shall show this now.

Using identity (4) repeatedly, we have

1

2

(
i + r − 1

r − 2

)
= 1

2

r−2∑
j=0

(
i + j

j

)
= 1

2

r−2∑
j=0

j∑
l=0

(
i + l − 1

l

)
.

Then, for each r = 3, 4, . . . ,

1

2

(
i + r − 1

r − 2

)
− f

(r)
1 (0)

=
(

i − 1

0

)[
1

2
− 1

(r − 2)(r − 1)

]

+
(

i − 1

0

)[
1

2
− 1

(r − 3)(r − 1)

]
+

(
i − 2

1

)[
1

2
− 1

(r − 3)(r − 2)

]
+ · · ·

+
(

i − 1

0

)[
1

2
− 1

1(r − 1)

]
+ · · · +

(
i + r − 4

r − 3

)[
1

2
− 1

2

]

+ 1

2

{(
i − 1

0

)
+

(
i − 2

1

)
+ · · · +

(
i + r − 3

r − 2

)}

> 0.
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The last inequality follows since the differences in all the square brackets are nonnegative for
each r = 3, 4, . . .. For r = 1, 2, it is easy to show that h(1)(e−1) > 0 and h

(2)
i (e−1) > 0, and,

thus, the proof of (ii) is complete.
(iii) We want to prove that the function h

(r)′
i (θ) changes sign once from negative to nonneg-

ative in (0, 1). To show this, let θh
(r)′
i (θ) = −f

(r)
2 (θ) + f

(r)
3 (θ), where f

(r)
2 (θ) and f

(r)
3 (θ)

are given by

f
(r)
2 (θ) =

(
i + r − 2

r − 1

)
(1 + ln θ) −

r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
θr−j−1

j − l
,

f
(r)
3 (θ) = −

r−2∑
j=0

(
i + j − 1

j

){
θr−j−1(1 + ln θ) − 1 − θr−j−1

r − j − 1

}

−
r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
θr−l−1

j − l
.

If

(a) f
(r)
3 (e−1) > f

(r)
2 (e−1),

(b) f
(r)
2 (1) > f

(r)
3 (1),

(c) f
(r)
2 (θ) is a concave function for θ ∈ [e−1, 1], and

(d) f
(r)
3 (θ) is a decreasing and concave function for θ ∈ [e−1, 1]

hold, then there exists a unique root θ̂ in [e−1, 1] of the equation f
(r)
2 (θ) = f

(r)
3 (θ), or,

equivalently, h(r)′
i (θ) = 0. This shows that the functionh

(r)′
i (θ) changes sign once from negative

to nonnegative in (0, 1). For an example of r = 3, see Figure 1. We now prove conditions
(a)–(d). Since e−(r−l−1) < e−(r−j−1), we have

f
(r)
3 (e−1) − f

(r)
2 (e−1) =

r−2∑
j=0

1 − e−(r−j−1)

r − j − 1
−

r−2∑
j=1

j−1∑
l=0

e−(r−l−1) − e−(r−j−1)

j − l
> 0.

0.4 0.5 0.6 0.7 0.8 0.9

4

2

–2

–4

Figure 1: Graphs of f
(3)
2 (θ) (dashed line) and f

(3)
3 (θ) (solid line) in [e−1, 1].
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0.2

–10

–20

–30

–40

0.4 0.6 0.8

Figure 2: Graphs of h
(3)
2 (θ) (dashed line) and h

(3)
3 (θ) (solid line) in (0, 1].

Thus, (a) holds. Since

−f
(r)
2 (1) + f

(r)
3 (1) = h

(r)′
i (1) = −

(
i + r − 2

r − 1

)
−

r−2∑
j=0

(
i + j − 1

j

)
< 0,

(b) holds. For θ ∈ [e−1, 1], a straightforward calculation yields f
(r)′′
2 (θ) < 0, f

(r)′
3 (θ) < 0,

and f
(r)′′
3 (θ) < 0. Thus, (c) and (d) hold, and the proof is complete.

Now we have the following lemma.

Lemma 4. For each r = 1, 2, . . . and i = 1, 2, . . . ,

(i) there exists a unique root θ
(r)
i on (0, e−1) of the equation h

(r)
i (θ) = 0,

(ii) h
(r)
i (θ) ≥ 0 implies that h

(r)
i (θ + η) ≥ 0, 0 ≤ η ≤ 1 − θ ,

(iii) h
(r)
i (θ) ≥ 0 implies that h

(r)
i+1(θ) ≥ 0.

Proof. Parts (i) and (ii) follow immediately from Proposition 1. Part (ii) states that once
the function h

(r)
i (θ) becomes nonnegative, it remains nonnegative (for an example of r = 3,

see Figure 2). From (i) and (ii), for the proof of (iii), it suffices to show that h
(r)
i+1(θ

(r)
i ) is

nonnegative.

First, we have h
(r)
i (θ

(r)
i ) = 0 implies that

(
i + r − 2

r − 1

)
ln θ

(r)
i

(
1 + ln2 θ

(r)
i

2

)

=
r−2∑
j=0

(
i + j − 1

j

)
(1 − θ

(r)
i

r−j−1
)(1 + ln θ

(r)
i )

r − j − 1

−
r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
f

(r)
4 (θ

(r)
i )

(j − l)(r − j − 1)(r − l − 1)
, (10)
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where we set f
(r)
4 (θ) = (j − l) + (r − j − 1)θr−l−1 − (r − l − 1)θr−j−1. Now note that

i(h
(r)
i+1(θ) − h

(r)
i (θ)) = −(r − 1)

(
i + r − 2

r − 1

)
ln θ

(
1 + ln θ

2

)

+
r−2∑
j=0

j

(
i + j − 1

j

)
1 − θr−j−1

r − j − 1
(1 + ln θ)

−
r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
lf

(r)
4 (θ)

(j − l)(r − j − 1)(r − l − 1)
.

Since h
(r)
i (θ

(r)
i ) = 0, we have

ih
(r)
i+1(θ

(r)
i ) = −(r − 1)

(
i + r − 2

r − 1

)
ln θ

(r)
i

(
1 + ln θ

(r)
i

2

)

+
r−2∑
j=0

j

(
i + j − 1

j

)
1 − θ

(r)
i

r−j−1

r − j − 1
(1 + ln θ

(r)
i )

−
r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
lf

(r)
4 (θ

(r)
i )

(j − l)(r − j − 1)(r − l − 1)
. (11)

Substituting (10) into (11) we obtain

ih
(r)
i+1(θ

(r)
i ) = −

r−2∑
j=0

(
i + j − 1

j

)
(1 − θ

(r)
i

r−j−1
)(1 + ln θ

(r)
i )

+
r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
(r − l − 1)f

(r)
4 (θ

(r)
i )

(j − l)(r − j − 1)(r − l − 1)
. (12)

From Proposition 1 we already know that θ
(r)
i ≤ e−1 and, hence, 1 + ln θ

(r)
i < 0. Recall that

f
(r)
4 (θ) ≥ 0 for all θ ∈ [0, 1]. Then the right-hand side of (12) is positive, which shows that

h
(r)
i+1(θ

(r)
i ) > 0. This completes the proof.

We now state and prove the main result.

Theorem 3. For a Poisson process with gamma prior intensity Gλ(r, 1/a), a > 0 and r =
1, 2, . . ., the optimal stopping time τ ∗

r maximizing the expected duration time owning a relatively
best object is given by τ ∗

r = min{t ∈ [s(r)
i , T ] : Xi = 1, i = 1, 2, . . .}, where s

(r)
i is the unique

root of the equation H
(r)
i (s) = 0 in [0, T ] for each r and i, and H

(r)
i (s) is given by (8).

Proof. We have Br = {(i, s) : H
(r)
i (s) ≥ 0} = {(i, θ) : h

(r)
i (θ) ≥ 0}. Lemma 4 directly

shows that Br is closed and the problem becomes monotone. Therefore, Br is the optimal
stopping region and the OLA stopping time τ ∗

r is optimal.

Now we shall see the characteristic of the threshold values precisely.

Proposition 2. For each r = 1, 2, . . . and i = 1, 2, . . ., there exists a unique root θ
(r)
i ∈

(e−2, e−1) of the equation h
(r)
i (θ) = 0.
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Proof. We have

h
(r)
i (e−2) = −

r−2∑
j=0

(
i + j − 1

j

)
1 − e−2(r−j−1)

(r − j − 1)

−
r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
f

(r)
4 (e−2)

(j − l)(r − j − 1)(r − l − 1)
,

where we set f
(r)
4 (θ) =(j − l) + (r − j − 1)θr−l−1 − (r − l − 1)θr−j−1. Since f

(r)
4 (0) > 0,

f
(r)
4 (1) = 0, and f

(r)′
4 (θ) ≤ 0, we have f

(r)
4 (θ) > 0 for θ ∈ [0, 1). Therefore, f

(r)
4 (e−2) > 0,

which yields h
(r)
i (e−2) < 0.

Theorem 4. The threshold sequence has the following properties.

(i) For each r = 1, 2, . . ., the threshold sequence {s(r)
i }i≥1 is nonincreasing.

(ii) The limiting value of the threshold s
(r)
i for all r = 1, 2, . . . is given by limi→∞ s

(r)
i =

[(T + a)/e2 − a]+.

Proof. (i) The proof follows immediately from Lemma 4.

(ii) Since s
(r)
i = θ

(r)
i (T +a)−a, it suffices to prove that limi→∞ θ

(r)
i = e−2. When h

(r)
i (θ) = 0,

we have

−ln θ

(
1 + ln θ

2

)
=

(
i + r − 2

r − 1

)−1 r−2∑
j=0

(
i + j − 1

j

)
(1 − θr−j−1)(1 + ln θ)

r − j − 1

+
(

i + r − 2

r − 1

)−1 r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
f

(r)
4 (θ)

(j − l)(r − j − 1)(r − l − 1)
.

(13)

It is easy to check that, as i tends to ∞,

(
i + r − 2

r − 1

)−1 r−2∑
j=1

(
i + j − 1

j

)
= (r − 1)!

(i + r − 2) · · · i + · · · + r − 1

i + r − 2
→ 0

and

(
i + r − 2

r − 1

)−1 r−2∑
j=1

j−1∑
l=0

(
i + l − 1

l

)
=

{
(r − 1)!

(i + r − 2) · · · i + · · · + (r − 1)!
(i + r − 2) · · · i

}

+ · · · +
{

(r − 1)!
(i + r − 2) · · · i + · · · + (r − 1)(r − 2)

(i + 1)!
}

→ 0.

Therefore, the right-hand side of (13) goes to 0 and −ln θ(1 + (ln θ/2)) → 0 as i → ∞.
Hence, limi→∞ θ

(r)
i = e−2, which completes the proof.
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