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TWISTED ALEXANDER POLYNOMIAL FOR THE BRAID GROUP

TAKAYUKI MORIFUJI

In this paper, we study the twisted Alexander polynomial, due to Wada [11], for the
Jones representations [6] of Artin's braid group.

1. INTRODUCTION

The twisted Alexander polynomial for finitely presentable groups was introduced by
Wada in [11]. Let F be such a group with a surjective homomorphism to Z = (i). (We
shall treat only the case of an infinite cyclic group, although the case of any free Abelian
group is considered in [11].) To each linear representation

p : T -» GL(n, R)

of the group F over a unique factorisation domain R, we shall assign a rational expression
Ar,p(£) in the indeterminate t with coefficients in R, which is called the twisted Alexander
polynomial of F associated to p. This polynomial is well-defined up to a factor of ete,
where e € Rx is a unit of R and e € Z.

The twisted Alexander polynomial is a generalisation of the original Alexander poly-
nomial (see [3]) in the following sense. Namely the Alexander polynomial of F with the
Abelianisation a : F —» (t) is written as

Ar(t) = (1 - t)Ar,i(t),

where 1 is the trivial 1-dimensional representation of F.

As a remarkable application, Wada shows in [11] that Kinoshita-Terasaka and Con-
way's 11-crossing knots are distinguished by the twisted Alexander polynomial. The
notion of Alexander polynomials twisted by a representation and its applications have
appeared in several papers (see [5, 7, 8, 10]).

In this paper, we consider the twisted Alexander polynomial in the case where F is
not all the group of a knot. To be more precise, we shall deal with Artin's braid group
Bn (n ^ 3) and its Jones representation [6] as our object. Here it is known that the Jones
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2 T. Morifuji [2]

representations of Bn arise from the Hecke algebra of type An-i and are in one-to-one
correspondence with Young diagrams with n-boxes. Therefore it is natural to raise the
following problem: Describe the twisted Alexander polynomial ABntP(t) for all the Jones
representations p of the braid group. In other words, can we see ABntP(t) from Young
diagrams?

The purpose of this paper is to investigate behaviour of ABntP(t) for several important
series of Jones representations. Among them the most interesting object is perhaps
the Burau representation of the braid group (see [2]), which corresponds to the Young
diagram of type (2 ,1 , . . . ,1 ) . In this case, the twisted Alexander polynomial has the
following notable property.

THEOREM 1 . 1 . Let P : Bn -> GL(n - l.Zfs*1]) be the Burau representation
of the braid group Bn and a : Bn —¥ Z = (t) be the Abelianisation. Then the twisted
Alexander polynomial ABnip(t) is given by

- st2 (n = 3)

(n ^ 4).

As is well known, the Burau representation is faithful for n = 3, not for n ^ 5 (see [1])
and unsolved for n = 4 at the time of writing. Thus it would be interesting to study a
relation between the faithfulness of the Burau representation and the twisted Alexander
polynomial.

On the other hand, the twisted Alexander polynomials of the braid group for Jones
representations have a symmetry in the following sense. Let Y and Y' be Young diagrams
corresponding to a conjugate partition (that is; reflecting the diagram in the 45° line).
Further let" : A,^*1] -* A,^*1] denote the involution induced by the transformation
t >—> — q~lt~l, where A, = Zfg*1/2] is the Laurent polynomial ring. Then it can be shown
that

THEOREM 1 . 2 . ABniy« (t) = ABniY(t) holds up to a factor ofete (s € A,x, e e z ) .

Therefore to give a complete answer to the previous problem, it is sufficient to
compute the twisted Alexander polynomials for about 'half the Young diagrams.

Now we describe the contents of this paper. In the next section, we review the defi-
nition of the twisted Alexander polynomial for finitely presentable groups. In Section 3,
we briefly recall the Burau representation of the braid group and prove Theorem 1.1.
The final section is devoted to a systematic study for the Jones representation. In par-
ticular, we explicitly compute the twisted Alexander polynomials for Young diagrams up
to 5-boxes.

2. TWISTED ALEXANDER POLYNOMIAL

Suppose that the group F has the presentation

P ( F ) = (xu...,xu \ru...,rv).
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Let p : F —> GL(n, R) be a linear representation and let a : F —> Z = {t) be a surjective

homomorphism. We denote the group ring R[Z] = i ty*1] by A(. Then p <g> a defines a

ring homomorphism

Z[F]->M(n,At),

where M(n, At) denotes the matrix algebra of degree n over At. Let Fu denote the free
group on generators xi,...,xu and denote by $ : Z[FU] —> M(n,At) the composite of
the surjection Z[FU] —> Z[F] induced by the presentation and the map Z[F] -»• Af (n, A()
given by p <g> a.

Let us consider the u x u matrix M whose (i, j) component is the n x n matrix

where — denotes the free differential calculus (see [4]). This matrix M is called the
OX

Alexander matrix of the presentation P(T) associated to the representation p.

For 1 ^ j ^ u, let us denote by Mj the v x (u — 1) matrix obtained from M by

removing the jth column. Now we regard Mj as a vn x (u — \)n matrix with coefficients

in A(. For a (u — l )n-tuple of indices

we denote by Mj the (u — l)n x (u — l)n square matrix consisting of the i^th rows of
the matrix Mj, where k = 1 , . . . , (u — \)n.

The following two lemmas are the foundation of the definition of the twisted Alexan-
der polynomial (see [11] for the proof).

LEMMA 2 . 1 . det $(1 - Xj) / 0 for some j .

LEMMA 2 . 2 . det Mj det $(1 -xk)=± det M'k det $(1 - x,) for 1 ^ j < k ^ u
and for any choice of the indices I.

We denote by Qj(t) 6 A( the greatest common divisor of det Mj for all the choices
of the indices / . It should be noted that the Laurent polynomial ring At over a unique
factorisation domain R is again a unique factorisation domain. The Laurent polynomial
Qj(t) is well-defined up to a factor of ete where e € R* is a unit of R and e € Z. If
v < u - 1 then we define Qj(t) to be the zero polynomial.

From the above two lemmas, we can define the twisted Alexander polynomial of T
associated to the representation p to be the rational expression

provided det<5(l — Xj)
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R E M A R K 2 .1 . Up to a factor of ete (e € Rx, e € Z), this is in fact an invariant of the
group F, the associated homomorphism a and the representation p (see [11, Theorem 1]).
Further the twisted Alexander polynomial does not depend on the choice of the basis for
the representation space.

3 . BURAU REPRESENTATION OF THE BRAID GROUP

Let Bn denote the braid group of n strings. The group Bn is generated by the n — 1
elements o\,..., <rn_i which satisfy the following two kinds of relations;

The Burau representation of Bn is one of the so-called Magnus representations which
are defined for a subgroup of the automorphism group of the free group Fn. By its
definition this representation maps each element of Bn to an n x n matrix, but we easily
notice that it reduces to an (n — 1) x (n — 1) representation. The (reduced) Burau
representation

is explicitly defined by

« - 1),

where /„ denotes the n x n identity matrix (see [2] for more details).

Now let us prove Theorem 1.1. The result for the case n = 3 is described in [11,
Section 4], so that hereafter we shall consider only n ^ 4.

Let [i,j] denote a relation between the generators o\ and Oj. Further we adopt the
numbering of relations of Bn as in the following table (for instance, this table is sufficient
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to compute the matrix M5 in the case of the group

n = [1,2]
r2 = [1,3]
r3 = [2,3]
r4 = [1,4]
rB = [2,4]
re - [3 ,4 ]
r7 = [1,5]
r8 = [2,5]
r9 = [3,5]
rio = [4,5]

1
dru

- 0 2

1 -

1 -

1 -

ldax

+ 0102
-OS

" 0 4

- 0 5

dri/da-2
- 1 + 0 1 — 0201

1 — CT3 + 0203

1 - 0 4

1 - 0 5

dr{/da3

0! - 1

— 1 + 02 — 0302

1 - 04 + 0304

1 - 0 5

dri/doi

0 1 - I

02 - 1
- 1 + 0 3 - 0 4 0 3

1 - 05 + 0405

In the above table, the vacant entries are all zero. As pointed out by Wada in [11],
it is convenient to use relations instead of relators for the computation of the Alexander
matrix.

First let us calculate a denominator in the definition of the twisted Alexander poly-
nomial.

LEMMA 3 . 1 . de t$ ( l - on-{) = (1 -t)n~2(l + st).

PROOF: We can easily compute

l - t

l - t 0
-st 1 + st

so that the proof is complete. D

LEMMA 3 . 2 . det M'n_x is divided by (1 - t)n~2(l + st) for all the choices of the

indices I.

PROOF: We denote the matrix Mn_i by the column vectors m, (1 ̂  j ^ n — 2):

where

and I is the number of relations of Bn (namely, I = (n - l)(n - 2)/2). We then notice the
fact that the j th column vector in each rn, contains a common divisor 1 — t. In fact, we
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see from the previous table that non-trivial blocks in m , are the following n - 2 matrices.

$ ( o i — 1) - 1 + 1 is the unique non-trivial component

in the j t h column

$(1 - aj+l + OjOj+i) • • • (**)

1 - t is the unique non-trivial component
— <rn_i) in the j th column

Clearly the unique non-trivial component in the j th column of the first j - 2 matrices is
— l + t. Similaly 1 — t is the unique non-trivial component in the j th column of the last
n — j — 2 matrices. Further direct calculation shows that the j th column in the matrix
(*)is

j-2 n-j-1

and the j th column in the matrix (**) is

n-j-2

so that we can take a term 1 — t from the j t h column in each m^ (1 ^ j ^ n — 2) as a
divisor. Hence we have (1 — t)n~ as a common divisor of the matrix Mn-\.

Next if we add the (n — 1), 2(n — 1) , . . . , (n - 3)(n — l)th columns and — t times the
{(n - 2)(n - 1) - l}th column to the (n - 2)(n - l)th column in the matrix Mn-U then
the (n — 2)(n — l)th column vector becomes

' ( 0 , . . . , 0, 'O , . . . ,O , l + s t , . . ' . , O , . . . , O , l + st, 0 , . . . , 0, -t - st2,1 + st),
m n-2 n-2 n-3

where m = ((n — l)(n - 2)(n - 3)J /2 . Therefore we can take a term 1 + st as a com-
mon divisor from this column. For later use we denote the resulting matrix by Mn_i.
Accordingly we can conclude that (1 — t)""2(l + st) | det M^ holds for any index / . D

In order to show that the matrix Afn_i does not have any other common divisor
with respect to the column vectors (that is, (1 - t)n~2(\ + st) is the greatest common
polynomial), we need the following lemma.

LEMMA 3 . 3 . There exist the indices I, I', I" such that

(i) det M'n_, = (1 + st)n-3( l - st2)n-\\ - t + t2f-2){n-3) (n 2 4),

(ii) det M^'_! = (1 4- st)n-3(l - t)("-2>(n-3> ( n ̂  5) and
jrt

(iii) det Mn_x does not contain 1 + st as a divisor for n ^ 4.
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P R O O F :

(i) Let us consider the index / corresponding to the n - 2 row-blocks [1,2], [2,3],
[3,4], . . . , [n — 2, n - 1] in the matrix Mn_!. Since

det*(l - aj+i + OjOj+i) = (1 - t)(l + st)(l - st2)(l - t + t2)"'3,

we have

n-2

det Mn'_! = I ] det $(1 - aj+l + a^+0

= {(l _ 4)(i + rf)(i _ St2)}n"2(l - t + t2fn-2){n-3).

H e n c e w e o b t a i n

d e t M ^ i = ( 1 + * t ) n - 3 ( l " ^ 2 ) " " 2 ( l - t + ( ) ( )

for n ^ 4.

(ii) For n ^ 5, if we choose an index / ' such that the diagonal blocks of a square
matrix Mll'_l consist of n — 3 matrices $(1 - crn-i) and one $(cri - 1), we have

^ = {(1 - t)n-2(l + st)}n-\-

where we have used Lemma 3.1.

(iii) In the matrix M n _ x for n > 4, if we suitably replace the last row in each

[1, n — 1], [2, n — 1 ] , . . . , [n — 2, n — 1] row-blocks by another row, we can easily choose an
rtt

index I" so that det Mn_x ^ 0 and does not contain the term 1 + st as a divisor.
This completes the proof of the lemma. D

PROPOSITION 3 .4 . Qn-i{t) = (1 -t)n~2{l +st).

PROOF: In the case n = 4, from (i) of the above lemma and the existence of an
index J such that

det M3 = (1 - t) (l + st- st2) (l + st - st2 + st3 - s2t3),

we can deduce the result. For n ^ 5, it is clear from Lemmas 3.2 and 3.3. D

By virtue of Lemma 3.1 and Proposition 3.4, Theorem 1.1 immediately follows. This

completes the proof.

REMARK 3.1. As is well known, the braid group Bn is generated by two elements

(for example, o\ and £ = <j\.. .an_i is a generating system). However we can not say

indiscriminately that this presentation is more useful than Artin's one for computing the

twisted Alexander polynomial.
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4. JONES REPRESENTATION OF THE BRAID GROUP

Let H(q,n) denote the Hecke algebra of type Ai-i- Namely, it is an algebra over
C(q) generated by 5 1 , . . . ,gn-i with the following three kinds of relations;

0»2 = (« - ! ) #+9 .

9i9i+l9i = 9i+l

9i9j=9j9i (

where q is a parameter. Thus the correspondence a\ t-t <?< defines a group homomorphism
from the braid group Bn to H(q,n). Jones observed in [6] that for q close to 1, the
simple H(q, n) modules (or quadratic irreducible representations of Bn) are in one-to-one
correspondence with Young diagrams with n-boxes. Moreover their decomposition rules
are the same as for the symmetric group 6 n . We call them the Jones representation of
the braid group.

Now let us record the picture of Young diagrams up to 5-boxes. Then there is an
ambiguity in assigning diagrams to representations by the row-column symmetry. To fix
this problem, we use (2) = CD to represent the trivial representation of ©2-

FIGURE 4.1

The lines connecting different rows represent the restrictions of representations. That is,
they describe the irreducible decomposition of a given irreducible representation of Bn

when it is restricted to 5n_i .

EXAMPLE 4.1. The trivial representation p — (n) of Bn is given by p(<7;) = q for
1 ^ i ^ n — 1 (see [6, Note 4.7]). Then we have

1-qt + qH*
l-qt

1-qt

(n = 3,4)

(n £ 5).
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For the parity representation p = ( 1 , . . . , 1) defined by p(ai) — —1, the same calculation

shows that
1 + t + t (n-3.4)

AiwW = {1 + t

Now as the first interesting property for Jones representations, we show the sym-

metry of the twisted Alexander polynomials. Let irY be a representation of the Hecke

algebra H(q, n) corresponding to a Young diagram Y and py denote one for the braid

group Bn. Namely they satisfy

for each generator of Bn and H(q, n). Further let Y' be the Young diagram reflecting Y

in the 45° line. Then

because the symmetry of Y and Y' corresponds to the automorphism & >-¥ —qg^1 of

H(q,n) (see [6, Note 4.6]). We therefore obtain

- l

The above equality implies that the twisted Alexander polynomial As n i P y , (t) coincides

with one defined via the ring homomorphism ai i-> —q~lt~lnY(gi) up to a factor of et',

where e is a unit of A, = Z^* 1 / 2 ] and e € Z. Moreover the ring homomorphism is

nothing but the transformation t t-> — q~xt~l for $(CTJ) = tirY(gi). Accordingly we can

conclude that

ABn,pv,(t) = A B n , P y W

holds for any symmetric Young diagrams Y and Y'. Here ": A,^*1] -> A,^*1] denotes the

involution induced by the above transformation. This completes the proof of Theorem 1.2.

As noted in the introduction (see also [6, Note 5.7]), the Burau representation cor-

responds to the Young diagram Yp below.

Y0 =

FIGURE 4.2

Therefore as a corollary of Theorems 1.1 and 1.2, we have
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COROLLARY 4 . 1 . ABntYe'{t) = l for n ^ 4.

As the second fundamental property for Jones representations, we can describe the
decomposition rule for the twisted Alexander polynomials.

LEMMA 4 . 2 . Let Y be a Young diagram with (n + l)-boxes and Yit...,Yi be
Young diagrams with n-boxes obtained from Y by removing one box. Then

k=l

PROOF: Since the restriction of py to Bn is a direct sum of py,, . . . ,pyn the sub-
Alexander matrix M\Bn has a direct sum decomposition as matrices. Hence the claim is
clear from the definition of the twisted Alexander polynomial. 0

Using Lemma 4.2, we can formulate a general form of the twisted Alexander polyno-
mial for Jones representations. Without loss of generality, we can assume det<3>(l — o\) ^
0 for a representation p^ of Bn+l. We then have

Let p(t) be the greatest common divisor of det N1 for all the choices of the indices
/ , where N denotes the sub-Alexander matrix of M defined by

Here we have decomposed the Alexander matrix M for pp as follows:

M AT

* N

Further it should be remarked that we adopt the same numbering of relations of Bn+\
as before (see Section 3). Clearly p{t) is a divisor of Qi(t), so that we can write Q\(t) =
p(t)q(t) for some Laurent polynomial q(t). On the other hand, the twisted Alexander
polynomimal AB ^(t) is calculated by

where <5i (t) is the greatest common divisor of det M[ with respect to the sub-Alexander
matrix M of M corresponding to Bn. We then easily notice that q(t) is a divisor of Qi (t).
Hence we can write Qi(t) — q(t)r(t). Namely the Laurent polynomial r(t) is essential
divisor of Q\{t) which is not contained in Qi(t). Accordingly we obtain
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PROPOSITION 4 . 3 . Under the same assumption of the above lemma, the
twisted Alexander polynomial AB p(t) is described in the form

*=1

where A(i) = p{t)/r(t), p(t) and r(t) are the Laurent polynomials defined above.

Finally we compute the twisted Alexander polynomials for Young diagrams up to
5-boxes. For 3 and 4 braids, Figure 4.1 shows that almost all the Hecke algebra rep-
resentations are essentially Burau representations. We therefore have already finished
the computations by virtue of Theorem 1.1, Example 4.1 and Corollary 4.1. Indeed, the
2-dimensional irreducible representation of B4 corresponding to the Young diagram El
factors through EP, so that their twisted Alexander polynomials clearly coincide.

EXAMPLE 4.2. We calculate for Y — EP- Here we use the algorithm proposed by
Lascoux and Schutzenberger in [9], which systematically constructs an irreducible repre-
sentation of the Hecke algebra from a given Young diagram. In this case, the images of
generators of B5 are given by

O\

0

0

0

0

/-I
0
0
0

V 0

Vq o o
q 0 0
0
0
0

q

0

0

0

- 1
0
0

0

q
o
o

q
o
o
o
o
q

o
o
o
9 /
o
o
o
o

- 1 /

(T4

f q
Vq
0
0

< o
(q

0

Vq
0

I o

0
- l
0
0
0

0

9
0

Vq
0

0
0

9

Vq
0

0
0

- 1
0
0

0
0
0

- 1
0

0
0
0

- 1
0

0 \
0
0

Vq
q 1

o >
0
0

V*
9 )

From direct computations, we obtain Q\{t) = (l + t)2(\ - qt)3(l - qt2) and Qi(t)
(1 + t)(l — qt)2. Thereby the twisted Alexander polynomial is

1

Further we easily see from Theorem 1.2 that for the conjugate Young diagram Y',
Afi^yift) coincides with the above rational expression.

EXAMPLE 4.3. We next examine the representation Y = W3. In this case, matrix
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representations

/ - I

0

0

0

0

< 0

( 1

0

0

0

, 0

are as

0
- 1

0

0

0

0

0

- 1

0

0

0

0

follows:

0

sfq
9
0

0

0

0

0

- 1

0

0

0

0

0

0

- 1

0

0

0

sfq
0

9
0

0

0

0

0

Vq
9
0

0

0

y/q

0

9
,/a

T. Morifuji

0 \

0

0

0

0

9 /

0 \
0

0

0

0

-

[12]

- 1

0

0

0

0

0

(q
0

0

0

0

,0

\fq
9

V?
0

0

0

0

9
0

v/9
0

0

0

0

- 1

0

0

0

0

0

9
0

•v/9

0

0

0

0

9

\/9
0

0

0

0

- 1

0

0

0

0

0

0

- 1

0

0

0

0

0

- 1

0

0 \
0

0

0

y/q

9 )

0 >
0

0

0

0

- 1 1

A similar observation to that in the example above shows Qi(t) = (1 + t)3(l - qt)3 and
= 1. We then conclude

This is of course invariant under the transformation t <-¥ —g"1*"1, because the Young
diagram EP-1 is self-conjugate.
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