$\label{eq:proceedings} \begin{array}{l} Proceedings \ of \ the \ Edinburgh \ Mathematical \ Society \ (2003) \ {\bf 46}, \ 257-267 \ \textcircled{\ c} \\ {\rm DOI:10.1017/S0013091502000305} \qquad {\rm Printed \ in \ the \ United \ Kingdom \end{array}$

ON FACTORIZATION IN BLOCK MONOIDS FORMED BY $\{\bar{1}, \bar{a}\}$ IN \mathbb{Z}_n

SCOTT T. CHAPMAN¹ AND WILLIAM W. SMITH²

 ¹Trinity University, Department of Mathematics, 715 Stadium Drive, San Antonio, TX 78212-7200, USA (schapman@trinity.edu)
 ²The University of North Carolina at Chapel Hill, Department of Mathematics, Chapel Hill, NC 27599-3250, USA (wwsmith@email.unc.edu)

(Received 18 March 2002)

Abstract We consider the factorization properties of block monoids on \mathbb{Z}_n determined by subsets of the form $S_a = \{\bar{1}, \bar{a}\}$. We denote such a block monoid by $\mathcal{B}_a(n)$. In § 2, we provide a method based on the division algorithm for determining the irreducible elements of $\mathcal{B}_a(n)$. Section 3 offers a method to determine the elasticity of $\mathcal{B}_a(n)$ based solely on the cross number. Section 4 applies the results of § 3 to investigate the complete set of elasticities of Krull monoids with divisor class group \mathbb{Z}_n .

Keywords: block monoid; elasticity of factorization; Krull monoid

2000 Mathematics subject classification: Primary 20M14; 20D60; 13F05

1. Introduction

This paper deals with factorization properties of certain block monoids, and we start with some notation and terminology. Let G be an abelian group written additively, $G_0 = G - \{0\}$, and let

$$\mathcal{F}(G) = \left\{ \prod_{g \in G_0} g^{v_g} \, \middle| \, v_g \in \mathbb{Z}^+ \cup \{0\} \right\}$$

be the multiplicative free abelian monoid with basis G_0 . Given $F \in \mathcal{F}(G)$, we write $F = \prod_{g \in G_0} g^{v_g(F)}$. The block monoid over G is defined by

$$\mathcal{B}(G) = \bigg\{ B \in \mathcal{F}(G) \, \Big| \, \sum_{g \in G_0} v_g(B)g = 0 \bigg\}.$$

Note that the empty block acts as the identity in $\mathcal{B}(G)$. In general, given $S \subseteq G_0$, we set

$$\mathcal{B}(G,S) = \{ B \in \mathcal{B}(G) \mid v_g(B) = 0 \text{ for } g \in G_0 \setminus S \}.$$

S. T. Chapman and W. W. Smith

A summary of some basic facts about block monoids can be found in [6]. The particular block monoids in which we have an interest can be described as follows. Let n and a be integers with n > 2, 1 < a < n and set $\bar{a} = a + n\mathbb{Z}$ in $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$. If $S_a = \{\bar{1}, \bar{a}\}$, then

 $\mathcal{B}(\mathbb{Z}_n, S_a) = \{ \bar{1}^u \bar{a}^v \mid \text{where } u, v \ge 0 \text{ and } u + av = tn \text{ with } t > 0 \}.$

For ease of notation, let $\mathcal{B}_a(n) = \mathcal{B}(\mathbb{Z}_n, S_a)$.

In a recent paper, the first author and Anderson [2] explored the possible elasticities of a Krull domain D with divisor class group \mathbb{Z}_n . If S is the subset of $\mathbb{Z}_n \setminus \{0\}$ which contains the height-one prime ideals of D, then it is well known that the factorization properties of D relating to lengths of factorizations are identical to those of $\mathcal{B}(\mathbb{Z}_n, S)$ (see [3] for an explanation). Our interest in the monoids $\mathcal{B}_a(n)$ stems from their use in [2]. In particular, the monoids $\mathcal{B}_a(n)$ are intrinsic in arguing the following: while there is a Krull domain with divisor class group \mathbb{Z}_{13} with elasticity $\frac{13}{5}$ and another with elasticity $\frac{13}{5}$ and $\frac{13}{7}$.

Mention of the monoids $\mathcal{B}_a(n)$ in the literature is not isolated to [2]. In [5], Geroldinger gives an elegant characterization of the irreducible blocks in $\mathcal{B}_a(n)$ using continued fractions. In § 2 we start by offering an alternate characterization of these irreducible blocks based on the division algorithm. We then apply this characterization in §§ 3 and 4 to study concepts related to the lengths of factorizations of elements in $\mathcal{B}_a(n)$ into irreducible elements. In § 3 we show that the elasticity of $\mathcal{B}_a(n)$ is $m_a(n)^{-1}$, where $m_a(n)$ is the minimum value obtained by the Zaks–Skula function (see [4]) on $\mathcal{B}_a(n)$. In § 4 we compute this elasticity for various values of a and consider the complete set of elasticities of the $\mathcal{B}_a(n)$ for a fixed value of n with $2 \leq a \leq n-1$. We then specialize these results to the case where p is a prime integer. We finish, in § 4, with an argument which generalizes the observation mentioned earlier in [2] for Krull domains with divisor class group \mathbb{Z}_{13} . In particular, for an odd prime $p \geq 13$, we show that there is no $\mathcal{B}_a(p)$ with elasticity strictly between

$$\frac{p}{\frac{1}{2}(p+1)} \quad \text{and} \quad \frac{p}{\lfloor \frac{1}{4}(p+3) \rfloor}.$$

2. Irreducibles in $\mathcal{B}_a(n)$

Geroldinger [5] provides a description of the irreducibles in $\mathcal{B}_a(n)$. Here we give an alternate description of the irreducibles. Following the notation of [5] for $n \ge 2$, $1 < a \le n-1$, and $u \ge 0$, let

$$B_u = \{ \overline{1}^u \overline{a}^x \mid \text{where } x \ge 0 \text{ and } u + ax = tn \text{ with } t > 0 \}.$$

and then set $B(u) = \overline{1}^u \overline{a}^v$, where $v = \min\{x \mid \overline{1}^u \overline{a}^x \in B_u\}$.

It is easily seen (as in [5]) that if B is irreducible in $\mathcal{B}_a(n)$, then B = B(u) for some u (the converse is not true). Proposition 8 of [5] determines for each u the value of v in B(u). Proposition 10 of [5] then provides a remarkable necessary and sufficient condition for B(u) to be irreducible. The values of u for which B(u) is irreducible are determined by an algorithm involving the convergents of the continued fraction of the multiplicative inverse of -a modulo n.

We provide an alternate description of the irreducibles by classifying the irreducibles as one of the following two types.

Type 1: $\overline{1}^u \overline{a}^v$ with $0 \leq u < a$.

Type 2: $\overline{1}^u \overline{a}^v$ with $a \leq u \leq n$.

Setting d = gcd(a, n), we introduce the following notation. For $1 \leq k \leq a/d$ write (by the Division Algorithm) $kn = aq_k + r_k$ with $0 \leq r_k < a$. This process yields a sequence of remainders r_1, r_2, \ldots, r_w and a sequence of blocks

$$\bar{1}^{r_1}\bar{a}^{q_1},\ldots,\bar{1}^{r_w}\bar{a}^{q_w},\tag{\dagger}$$

where w = a/d.

Theorem 2.1. With the notation given above, the irreducible blocks of $\mathcal{B}_a(n)$ can be described as follows.

- (a) Type 1 blocks: $\overline{1}^{r_k} \overline{a}^{q_k}$, where $r_k < r_i$ for each i < k.
- (b) Type 2 blocks: $\overline{1}^u \overline{a}^v$, where u + av = n and v is an integer with $0 \le v \le \lfloor n/a \rfloor 1$.

Proof. First we prove (a). Note that for B(u) any block of the form $\overline{1}^u \overline{a}^v$ with $0 \leq u < a$, we have u + av = kn. If B(u) is irreducible it must be the case that $k \leq a/d$. Since $0 \leq u < a$ we have $u = r_k$ and $v = q_k$. Hence, all irreducible blocks of type 1 lie in the sequence (†).

For a block $\bar{1}^{r_k}\bar{a}^{q_k}$ taken from (†), we show that if there is an i < k with $r_i \leq r_k$, then it is reducible. We have

$$in = aq_i + r_i,$$

$$kn = aq_k + r_k.$$

Since

$$q_i = \left\lfloor \frac{in}{a} \right\rfloor$$
 and $q_k = \left\lfloor \frac{kn}{a} \right\rfloor$,

we know that $q_k \ge q_i$. Assuming $r_k \ge r_i$ yields

$$(k-i)n = a(q_k - q_i) + (r_k - r_i)$$

and, in fact, $\overline{1}^{r_k}\overline{a}^{q_k} = \overline{1}^{r_i}\overline{a}^{q_i} \cdot \overline{1}^{r_{k-i}}\overline{a}^{q_{k-i}}$.

Now suppose for $\bar{1}^{r_k}\bar{a}^{q_k}$ that $r_k < r_i$ for each i < k. If $\bar{1}^{r_k}\bar{a}^{q_k}$ is reducible, then we write $\bar{1}^{r_k}\bar{a}^{q_k} = \bar{1}^u\bar{a}^v \cdot B$, where $\bar{1}^u\bar{a}^v$ is irreducible. So,

$$kn = r_k + aq_k,$$

$$wn = u + av$$

and (by assumption) wn < kn. Hence w < k. Since $u \leq r_k < a$, by the uniqueness implied by the Division Algorithm, we have that $u = r_w$ and $v = q_w$ with w < k and

 $r_w \leq r_k$, contradicting the assumption. Hence, the block is irreducible, which concludes the proof of (a).

We now prove (b). If $\overline{1}^u \overline{a}^v$ is of the given form, then it is clearly irreducible. Now suppose u + av = tn with $t \ge 2$ and $a \le u \le n-1$. Write n = aq + r with $0 \le r < a$ $(\overline{1}^r \overline{a}^q)$ is a type 1 irreducible by definition). Then tn = u + av > n = r + aq. Thus (t-1)n = (u-r) + a(v-q). But $t-1 \ge 1$ and $r < a \le u < n-1$. It follows that u-r > 0 and $v-q \ge 0$ and that $\overline{1}^r \overline{a}^q \cdot \overline{1}^{u-r} \overline{a}^{v-q} = \overline{1}^u \overline{a}^v$. Thus $t \ge 2$ yields that $\overline{1}^u \overline{a}^v$ is reducible and the implication is established, completing the proof. \Box

We note the division $n = aq_1 + r_1$, $0 \leq r_1 < a$, always produces the first type 1 irreducible. Also, $\overline{1}^0 \overline{a}^{n/d}$ is type 1 and $\overline{1}^n \overline{a}^0$ is type 2.

We illustrate this description of irreducibles with the following simple example.

Example 2.2. The type 1 irreducibles in $\mathcal{B}_8(19)$ are given by the divisions

$$(1)19 = 8(2) + 3,$$

$$(3)19 = 8(7) + 1,$$

$$(8)19 = 8(19) + 0.$$

That is, $\overline{1}^3\overline{8}^2$, $\overline{1}^1\overline{8}^7$, $\overline{1}^0\overline{8}^{19}$ are the type 1 irreducible blocks. The type 2 irreducible blocks are simply $\overline{1}^{19}\overline{8}^0$ and $\overline{1}^{11}\overline{8}^1$.

We use this simple description of the irreducibles in the following sections, where it will be seen that the type 1 irreducibles play a critical role in the study of the elasticity of the block monoid $\mathcal{B}_a(n)$.

3. On the elasticity of $\mathcal{B}_a(n)$

For $\mathcal{B}_a(n)$, the elasticity is defined as

$$\rho(\mathcal{B}_a(n)) = \sup\{m/n \mid B_1 \cdots B_n = C_1 \cdots C_m$$
with each B_i and C_j irreducible in $\mathcal{B}_a(n)\}.$

General background for this concept can be found in [1]. In [4], the Zaks–Skula function is introduced as a tool for studying the elasticity. We interpret the notation and results of that work in the setting of $\mathcal{B}_a(n)$ as follows. For the block $B = \bar{1}^u \bar{a}^v$, the Zaks–Skula constant (or cross number) for B is given by $\Bbbk(B) = (u + dv)/n$. We let

$$M_a(n) = \max\{\mathbb{k}(B) \mid B \text{ is an irreducible block in } \mathcal{B}_a(n)\}$$

and

$$m_a(n) = \min\{\mathbb{k}(B) \mid B \text{ is an irreducible block in } \mathcal{B}_a(n)\}$$

With this notation, we state the following as a lemma (see [4, Corollary 1.11]).

Lemma 3.1. For $n \ge 2$ and $1 < a \le n - 1$,

$$\max\{M_a(n), m_a(n)^{-1}\} \leqslant \rho(\mathcal{B}_a(n)) \leqslant \frac{M_a(n)}{m_a(n)}.$$

Obviously, the case $a \mid n$ represents the trivial case where $m_a(n) = M_a(n) = \rho(\mathcal{B}_a(n)) = 1$. In this section, we establish an efficient algorithm using the characterization of irreducibles from § 2 to calculate the elasticity. In later sections, we will analyse for a given n the set of elasticities $\{\rho(\mathcal{B}_a(n)) \mid 2 \leq a \leq n-1\}$. In particular, in this section we will show that $M_a(n) = 1$ and that $m_a(n)$ is determined by the type 1 irreducibles.

We first note for the irreducibles $\gamma_1 = \{\overline{1}^n\}$ and $\gamma_2 = \{\overline{a}^{n/d}\}$ that $\mathbb{k}(\gamma_1) = \mathbb{k}(\gamma_2) = 1$. Hence, $m_a(n) \leq 1 \leq M_a(n)$. It is also easy to see that if $B = \overline{1}^u \overline{a}^v$ is a type 2 irreducible (i.e. $u \geq a$ and n = u + av), then

$$\Bbbk(B) = \frac{u+dv}{n} \leqslant \frac{u+av}{n} = 1,$$

since $d \leq a$. To show $\Bbbk(B) \leq 1$ for B is a type 1 irreducible is slightly more involved.

Theorem 3.2. For each irreducible block *B* of $\mathcal{B}_a(n)$, we have that $\Bbbk(B) \leq 1$. Thus $M_a(n) = 1$ and $\rho(\mathcal{B}_a(n)) = m_a(n)^{-1}$.

Proof. By the above remark we merely need to prove the result for the type 1 irreducibles in $\mathcal{B}_a(n)$. We use the notation of § 2 and write the irreducible $B = \overline{1}^{r_k} \overline{a}^{q_k}$, where $kn = aq_k + r_k$ and $0 \leq r_k < a$. If $r_k = 0$, then $B = \overline{1}^0 \overline{a}^{n/d}$ and $\Bbbk(B) = 1$. Hence, we assume that $r_k \neq 0$. B irreducible implies for the divisions

$$n = aq_1 + r_1,$$

$$2n = aq_2 + r_2,$$

$$\vdots$$

$$(k-1)n = aq_{k-1} + r_{k-1}$$

that $r_k < r_i$ for i = 1, 2, ..., k - 1 and $d | r_j$ for $1 \leq j \leq k$. Notice that the remainders $r_1, ..., r_{k-1}$ are distinct. To see this, suppose that $r_i = r_j$ with $j \leq i < a/d$. Then $in = aq_i + r_i$ and $jn = aq_j + r_j$ implies that $(i - j)n = a(q_i - q_j)$. It follows that a/d divides (i - j) and hence i = j. Since a - dk is the largest positive integer less than a that is itself less than k - 1 distinct integers divisible by d (also less than a), it follows that $r_k \leq a - dk$. Since

$$q_k = \left\lfloor \frac{kn}{a} \right\rfloor < \frac{kn}{a}$$

if we assume that $n \leq r_k + dq_k < a - dk + (dkn/a)$, then a(n-a) < dk(n-a), a contradiction. Hence $\mathbb{k}(B) = (r_k + dq_k)/n < 1$.

Having established $M_a(n) = 1$, we now turn our attention to $m_a(n)$. We show that it is determined by the type 1 irreducibles with the following lemma.

S. T. Chapman and W. W. Smith

Lemma 3.3. Let $B = \overline{1}^{r_1} \overline{a}^{q_1}$ be the type 1 irreducible determined by the division $n = aq_1 + r_1$ with $0 \leq r_1 < a$. Then $\Bbbk(B) \leq \Bbbk(B_i)$ for any type 2 irreducible B_i .

Proof. Theorem 2.1 (b) implies that type 2 irreducibles exist if and only if $a \leq n/2$. In this case, they are the irreducibles of the form $B_t = \overline{1}^{n-ta}\overline{a}^t$ where $1 \leq t < \lfloor n/a \rfloor$. Thus $\Bbbk(B_t) = (n - ta + dt)/n$ and $\Bbbk(B) = (r_1 + dq_1)/n$. The result is established if $r_1 + dq_1 \leq n - ta + dt$ for $1 \leq t < \lfloor n/a \rfloor$. Since $n = aq_1 + r_1$, this inequality reduces to $dq_1 \leq aq_1 - ta + dt$ and hence $t(a - d) \leq q_1(a - d)$. Again, since we exclude the case $a \mid n$, a - d > 0 and $q_1 = \lfloor n/a \rfloor$ yields the desired inequality.

We summarize the results of this section in the following theorem. Let $\mathcal{B}_a^*(n)$ denote the set of all irreducible blocks of type 1 in $\mathcal{B}_a(n)$.

Theorem 3.4. Let $1 \leq a < n$ and d = gcd(a, n).

- (1) If $a \mid n$, then $m_a(n) = 1$.
- (2) If $a \nmid n$, then

$$m_a(n) = \min\left\{\frac{u+dv}{n} \mid \bar{1}^u \bar{a}^v \in \mathcal{B}_a^*(n)\right\} < 1.$$

(3) $\rho(\mathcal{B}_a(n)) = m_a(n)^{-1}$.

We note that $m_a(n)$ is not necessarily obtained by $\bar{1}^{r_1}\bar{a}^{q_1}$. As an example, easy calculations reveal that $m_{11}(19)$ is obtained by $\bar{1}^{r_3}\bar{a}^{q_3}$.

4. The set of elasticities

For a given integer n, we set

$$P(n) = \{ \rho(\mathcal{B}_a(n)) \mid 2 \leq a \leq n-1 \}.$$

In this section, we make some general observations about the set P(n). Due to the results of §3, we use a simpler notation and describe

$$\operatorname{Min}(n) = \{ nm_a(n) \mid 2 \leq a < n \}.$$

Hence, $P(n) = \{(n/m) \mid m \in \operatorname{Min}(n)\}.$

Example 4.1. In Example 2.2, it was shown that $m_{11}(19) = \frac{7}{19}$. Additional calculations yield Min(19) = $\{2, 3, 4, 5, 7, 10\}$.

Lemma 4.2. The following statements are equivalent.

- (1) $1 \in P(n)$.
- (2) $n \in Min(n)$.
- (3) n is not prime.

Proof. This has often been observed earlier, since *n* not prime means there is a divisor *a* of *n* with $2 \leq a \leq n-1$.

Theorem 4.3. Let n > 2 be a positive integer.

- (a) For all n we have that $2 \in Min(n)$. In fact, $\frac{1}{2}n = \rho(\mathcal{B}_a(n))$, where a = n 1.
- (b) If n > 3 is an odd integer, then $3 \in Min(n)$. In fact, $\frac{1}{3}n = \rho(\mathcal{B}_a(n))$ for $a = \frac{1}{2}(n-1)$.
- (c) If n is odd and $a = \frac{1}{2}(n+1)$, then $\rho(\mathcal{B}_a(n)) = n/(\frac{1}{2}(n+1))$. That is, $\frac{1}{2}(n+1) \in Min(n)$.
- (d) $\rho(\mathcal{B}_2(n)) = 1$ if *n* is even and $\rho(\mathcal{B}_2(n)) = n/(\frac{1}{2}(n+1))$ if *n* is odd.

Proof.

- (a) In this case, n = a(1) + 1 produces the only type 1 irreducible B besides \bar{a}^n and $\Bbbk(B) = 2/n$.
- (b) As in the previous case, the fact that n = a(2) + 1 implies that there is only one irreducible type 1 block to consider with the desired value.
- (c) For $1 \leq k \leq a-1$ we have kn = a(2k-1) + (a-k). Hence, the remainders $a-1, a-2, \ldots, 1$ decrease and each division gives an irreducible $B_k = \overline{1}^{a-k}\overline{a}^{2k-1}$. We note that gcd(a, n) = 1 and hence

$$\Bbbk(B_k) = \frac{(a-k) + (2k-1)}{n} = \frac{a+k-1}{n},$$

which is minimal when k = 1, where

$$k(B_1) = \frac{a}{n} = \frac{\frac{1}{2}(n+1)}{n}.$$

(d) The statement for n even is trivial since 2 | n. For odd n, we have the isomorphism of \mathbb{Z}_n given by multiplication by 2 carries the set S_a onto S_2 , where $a = \frac{1}{2}(n+1)$. Hence part (c) gives the result.

We turn our attention to describing the set P(p) for a prime integer p. We discuss this in terms of the set of integers Min(p), keeping in mind that $x \in Min(p)$ if and only if $(p/x) \in P(p)$.

To motivate these results, we include the results of calculations of Min(p) for primes p in the range $41 \le p \le 59$:

S. T. Chapman and W. W. Smith

p	$\operatorname{Min}(p)$
	$\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 21\}$
43	$ \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 22\} \\ \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 24\} $
47	$\{2,3,4,5,6,7,8,9,10,11,12,14,16,17,24\}$
53	$\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 19, 27\}$
59	$\{2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,20,21,30\}$

We note several properties of each Min(p) already established under the condition that p is prime in Lemma 4.2 and Theorem 4.3. The smallest number in each set is 2, obtained at a = p - 1. For $p \ge 5$, 3 in Min(p) is obtained at $a = \frac{1}{2}(p-1)$ and $\frac{1}{2}(p+1)$ is obtained at a = 2 and $a = \frac{1}{2}(p+1)$.

A review of the values given in the above table indicates that Min(p) begins with a string of consecutive integers and appears to always have $\frac{1}{2}(p+1)$ as the maximum value with a gap below it. We establish this pattern for the general case. We require several results from elementary number theory whose proofs are left to the reader.

Lemma 4.4. Suppose $n \ge 2$ and a is an integer with 1 < a < n.

(a) $\frac{n-1}{a-1} \leq 2 \left\lfloor \frac{n}{a} \right\rfloor$.

(b) If $n \ge 13$ and $3 \le a \le \frac{1}{2}(n-1)$, then

$$\frac{n-2}{a-1} \leqslant \frac{3}{2} \left\lfloor \frac{n}{a} \right\rfloor.$$

(c) If n = aq + r and $0 \leq r < a$, then $q + r \leq \frac{1}{2}(n+1)$.

Using our earlier notation, an immediate corollary of Lemma 4.4 is that $\frac{1}{2}(p+1)$ is indeed the maximum element of $\operatorname{Min}(p)$. Moreover, $\operatorname{Min}(p) \subseteq \{2, 3, \ldots, \frac{1}{2}(p+1)\}$ for all prime $p \ge 3$. The next result establishes that for any integer $s \ge 2$, the values $2, 3, \ldots, s$ are in $\operatorname{Min}(p)$ for p sufficiently large.

Theorem 4.5. $\{2, \ldots, s\} \subseteq Min(p)$ for all primes $p > s^2 - s$.

Proof. Let t = s - 1. We will show that $m_a(p) = s$ for a = p - t. We use the divisions from §2 to consider the type 1 irreducibles. For k < (p - t)/t, we have kt < a and kp = a(k) + kt. That is, in the notation of §2, $q_k = k$ and $r_k = kt$. Clearly, $r_1 < r_2 < \cdots$ and the only type 1 irreducible formed for k < (p - t)/t is from the division p = a(1) + tand $q_1 + r_1 = t + 1$. The other type 1 irreducibles will be determined by divisions $kp = aq_k + r_k$ for $0 \leq r_k < a - 1$ with $k \geq (p - t)/t$.

However, kp = ak + kt and $k \ge (p-t)/t$ implies $kt \ge p-t = a$. Write kt = au + v with $0 \le v < a$, which gives kp = a(k+u) + v. Hence $q_k = k + u$ and $r_k = v$. Noting that $u \ge 1$, we have

$$q_k + r_k = k + u + v \ge k + 1 \ge \frac{p - t}{t} + 1 \ge \frac{p}{t}.$$

However, $p > t + t^2$ yields (p/t) > t + 1. Hence $q_k + r_k > t + 1$. This establishes that $\rho(\mathcal{B}_a(n))$ is determined by $B = \overline{1}^{r_1} \overline{a}^{q_1}$ (the block with minimal $\Bbbk(B)$ value) and hence $m_a(p) = t + 1$.

It would seem that the previous result may not be the best possible. For example, it states that $\{2, \ldots, 10\} \subseteq \operatorname{Min}(p)$ for all primes p > 90. Calculations indicate that this is actually the case for all primes $p \ge 41$. In fact, further calculations show that $\{2, \ldots, 17\} \subseteq \operatorname{Min}(97)$.

We now turn our attention to the large values in Min(p). Before doing so, we record the following result in the spirit of our earlier calculations.

Lemma 4.6. Let n > 3.

- (a) If $3 \mid n$, then $m_3(n) = 1$, $n \in Min(n)$ and $\rho(\mathcal{B}_3(n)) = 1$.
- (b) If $3 \nmid n$, then $m_3(n) = \lfloor \frac{1}{3}(n+4) \rfloor$, $\lfloor \frac{1}{3}(n+4) \rfloor \in Min(n)$ and

$$\rho(\mathcal{B}_3(n)) = \frac{n}{\lfloor \frac{1}{3}(n+4) \rfloor}.$$

Proof. The case $3 \mid n$ has already been established in Theorem 3.4 (1). The argument for $3 \nmid n$ considers the two cases $n \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$. We have used the notation $\lfloor \frac{1}{3}(n+4) \rfloor$ to unify the result, but note that $\lfloor \frac{1}{3}(n+4) \rfloor = \lfloor \frac{1}{3}n \rfloor + 1$ when $n \equiv 1 \pmod{3}$ and $\lfloor \frac{1}{3}(n+4) \rfloor = \lfloor \frac{1}{3}n \rfloor + 2$ when $n \equiv 2 \pmod{3}$.

Case 1. $n \equiv 1 \pmod{3}$. In this case n = 3q + 1 provides the only type 1 irreducible and $q + 1 = \lfloor \frac{1}{3}n \rfloor + 1$.

Case 2. $n \equiv 2 \pmod{3}$. Here there are two type 1 irreducibles given by n = 3q + 2and 2n = 3(2q + 1) + 1. The second yields a quotient plus remainder value of 2q + 2, which is greater than q + 2 (as n > 3). Thus the minimum value that gives $\rho(\mathcal{B}_3)$ is $q + 2 = \lfloor \frac{1}{3}n \rfloor + 2$.

The previous lemma yields that the value $\lfloor \frac{1}{3}(p+4) \rfloor$ will be in Min(p) for all primes $p \ge 5$. We will now show that for all primes $p \ge 13$, this value is the second largest value of Min(p). Hence, for $p \ge 13$ there will always be a gap (increasing in length as p increases) between the two largest values of Min(p), namely $\lfloor \frac{1}{3}(p+4) \rfloor$ and $\frac{1}{2}(p+1)$. This 'gap' was observed for small values of p in [2].

Theorem 4.7. Let p be an odd prime and let a be an integer with $3 \le a \le p-1$ and $a \ne \frac{1}{2}(p+1)$. Then $m_a(p) \le \frac{1}{3}(p+4)$ and hence

$$\rho(\mathcal{B}_a(p)) \geqslant \frac{p}{\frac{1}{3}(p+4)}.$$

Proof. We split the proof into two cases.

Case 1. Suppose that $3 \le a \le \frac{1}{2}(p-1)$. If p = aq + r with $0 \le r < a$, we will then argue that $q + r \le \frac{1}{3}(p+4)$, which implies that

$$\rho(\mathcal{B}_a(p)) \geqslant \frac{p}{\frac{1}{3}(p+4)}$$

Now, $q = \lfloor p/a \rfloor$ and $r = p - a \lfloor p/a \rfloor$. Hence $q + r = p + \lfloor p/a \rfloor (1 - a)$. By Lemma 4.4 (b), since 1 - a < 0,

$$\left\lfloor \frac{p}{a} \right\rfloor (1-a) \leqslant \frac{2}{3} \left(\frac{p-2}{a-1} \right) (1-a) = \frac{2}{3} (2-p).$$

Therefore, $q + r \leq p + \frac{2}{3}(2 - p) = \frac{1}{3}(p + 4)$.

Case 2. Suppose that $p-1 \ge a > \frac{1}{2}(p+1)$. For $1 \le c < \frac{1}{2}(p-1)$ set $a = \frac{1}{2}(p+1)+c = \frac{1}{2}(p+2c+1)$. We fix $c \ge 1$ and consider all primes p. It is sufficient to get the result if we know there exists $t \ge 1$ so that $tp = aq_t + r_t$ with $0 \le r_t < a$ and $q_t + r_t \le \frac{1}{3}(p+4)$ (i.e. we need not be concerned with 'irreducibility' as an irreducible factor will have even smaller 'q + r'). Let b = 2c + 1 (an odd integer greater than or equal to 3) and b < p. First note that $p = a(1) + (p-a) = a(1) + \frac{1}{2}(p-b)$ and $q_1 + r_1 = \frac{1}{2}(p-b+2) \le \frac{1}{3}(p+4)$ whenever $p \le 3b + 2$. For other primes p > 3b + 2 > 3b, choose $k \ge 1$ so that

$$b(2k+1) = b + 2bk
(*)$$

We have the following identity

$$(k+1)p = (\frac{1}{2}(p+b))(2k+1) + (\frac{1}{2}(p-b(2k+1))).$$

The condition (*) gives $0 \leq \frac{1}{2}(p-b(2k+1)) < a = \frac{1}{2}(p+b)$ and that $k+1 \leq a-1$. Hence, this is the result of the division algorithm when (k+1)p is divided by a. Now $q_{k+1}+r_{k+1} = \frac{1}{2}(2(2k+1)+p-b(2k+1))$. We claim that $\frac{1}{2}(2(2k+1)+p-b(2k+1)) \leq \frac{1}{3}(p+4)$ (i.e. $6(2k+1)+3p-3b(2k+1) \leq 2p+8$ and hence $p \leq 3b(2k+1)-6(2k+1)+8$ is needed). By (*), $p \leq b+2b(k+1)$, so we need only show $p \leq b+2b(k+1) \leq 3b(2k+1)-6(2k+1)+8$ or $b+2bk+2b \leq 6bk+3b-12k+2$ or $0 \leq 4bk-12k+2$ or $6k \leq 2bk+1$. But this is true if $b \geq 3$, which it is (recall for b=1 and c=0 that $a = \frac{1}{2}(p+1)$, which has elasticity $p/(\frac{1}{2}(p+1))$).

We summarize what we have for \mathbb{Z}_p regarding elasticity in terms of the set $\operatorname{Min}(p)$ (where p is prime). The lower end of the set has consecutive numbers 2, 3, ... (Theorem 4.5). At the other extreme, the largest value is $\frac{1}{2}(p+1)$. The next possible value less than $\frac{1}{2}(p+1)$ is $\lfloor \frac{1}{3}(p+4) \rfloor$. These are equal for p=3 and 5 and differ by one for p=7 and 11. However, for $p \ge 13$ there is a gap between these two values and since $\frac{1}{2}(p+1) - \frac{1}{3}(p+4) = \frac{1}{6}(p-5)$, this gap between values gets large as p increases in size. We end this section with an application of the above in a slightly more general setting.

In [2], the following set of elasticities is considered (where p is an odd prime):

$$\Upsilon(p) = \{ \rho(\mathcal{B}(\mathbb{Z}_p, S)) \mid \emptyset \neq S \subseteq \mathbb{Z}_p \setminus \{0\} \}.$$

In that work, they observed that

$$\Upsilon(p) \subseteq \{\frac{1}{2}p, \frac{1}{3}p, \dots, p/(\frac{1}{2}(p+1)), 1\}.$$

They also noted there were 'gaps' in the sets $\Upsilon(p)$ for p = 13, 17, 19 and 23. With the simple observation that

$$\rho(\mathcal{B}(\mathbb{Z}_p, S \cup T)) \geqslant \max\{\rho(\mathcal{B}(\mathbb{Z}_p, S)), \rho(\mathcal{B}(\mathbb{Z}_p, T))\}$$

and the fact that

$$\rho(\mathcal{B}_a(n)) = \frac{p}{\frac{1}{2}(p+1)}$$

for a = 2 or $a = \frac{1}{2}(p+1)$, we easily use the analysis of this section to conclude that the only possible set S that could have $\rho(\mathcal{B}(\mathbb{Z}_p, S))$ between $p/(\frac{1}{2}(p+1))$ and $p/\lfloor \frac{1}{4}(p+3) \rfloor$ would be $S = \{\overline{1}, \overline{2}, \overline{\frac{1}{2}(p+1)}\}$. However, in [2, Lemma 12 (c)] it is shown that $\rho(\mathbb{Z}_p, \{\overline{1}, \overline{2}, \overline{\frac{1}{2}(p+1)}\})$ is not between these values. Hence, we have the following theorem.

Theorem 4.8. Let $p \ge 13$ be a prime. There is no subset $S \subseteq \mathbb{Z}_p \setminus \{0\}$ with

$$\frac{p}{\frac{1}{2}(p+1)} < \rho(\mathcal{B}(\mathbb{Z}_p, S)) < \frac{p}{\lfloor \frac{1}{4}(p+3) \rfloor}.$$
(**)

Hence, for such a prime p, there is no Krull domain D with divisor class group \mathbb{Z}_p whose elasticity $\rho(D)$ satisfies the inequality (**).

Acknowledgements. The authors thank the referee for many helpful comments and suggestions.

References

- 1. D. F. ANDERSON, *Elasticity of factorizations in integral domains: a survey*, Lecture Notes in Pure and Applied Mathematics, vol. 189, pp. 1–29 (Marcel Dekker, New York, 1997).
- D. F. ANDERSON AND S. T. CHAPMAN, On the elasticities of Krull domains with finite cyclic divisor class group, *Commun. Alg.* 28 (2000), 2543–2553.
- 3. S. T. CHAPMAN AND A. GEROLDINGER, Krull monoids, their sets of lengths and associated combinatorial problems, *Factorization in integral domains*, Lecture Notes in Pure and Applied Mathematics, vol. 189, pp. 73–112 (Marcel Dekker, New York, 1997).
- 4. S. T. CHAPMAN AND W. W. SMITH, An analysis using the Zaks–Skula constant of element factorizations in Dedekind domains, *J. Alg.* **159** (1993), 176–190.
- A. GEROLDINGER, On non-unique factorizations into irreducible elements, II, Colloq. Math. Soc. Janos Bolyai 51 (1987), 723–757.
- A. GEROLDINGER AND F. HALTER-KOCH, Non-unique factorizations in block semigroups and arithmetical applications, *Math. Slovaca* 42 (1992), 641–661.