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Abstract We consider the factorization properties of block monoids on Zn determined by subsets of
the form Sa = {1̄, ā}. We denote such a block monoid by Ba(n). In § 2, we provide a method based on
the division algorithm for determining the irreducible elements of Ba(n). Section 3 offers a method to
determine the elasticity of Ba(n) based solely on the cross number. Section 4 applies the results of § 3
to investigate the complete set of elasticities of Krull monoids with divisor class group Zn.
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1. Introduction

This paper deals with factorization properties of certain block monoids, and we start
with some notation and terminology. Let G be an abelian group written additively,
G0 = G − {0}, and let

F(G) =
{ ∏

g∈G0

gvg

∣∣∣∣ vg ∈ Z+ ∪ {0}
}

be the multiplicative free abelian monoid with basis G0. Given F ∈ F(G), we write
F =

∏
g∈G0

gvg(F ). The block monoid over G is defined by

B(G) =
{

B ∈ F(G)
∣∣∣∣

∑
g∈G0

vg(B)g = 0
}

.

Note that the empty block acts as the identity in B(G). In general, given S ⊆ G0, we set

B(G, S) = {B ∈ B(G) | vg(B) = 0 for g ∈ G0 \ S}.
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A summary of some basic facts about block monoids can be found in [6]. The particular
block monoids in which we have an interest can be described as follows. Let n and a be
integers with n > 2, 1 < a < n and set ā = a + nZ in Z/nZ ∼= Zn. If Sa = {1̄, ā}, then

B(Zn, Sa) = {1̄uāv | where u, v � 0 and u + av = tn with t > 0}.

For ease of notation, let Ba(n) = B(Zn, Sa).
In a recent paper, the first author and Anderson [2] explored the possible elasticities of

a Krull domain D with divisor class group Zn. If S is the subset of Zn\{0} which contains
the height-one prime ideals of D, then it is well known that the factorization properties
of D relating to lengths of factorizations are identical to those of B(Zn, S) (see [3] for an
explanation). Our interest in the monoids Ba(n) stems from their use in [2]. In particular,
the monoids Ba(n) are intrinsic in arguing the following: while there is a Krull domain
with divisor class group Z13 with elasticity 13

5 and another with elasticity 13
7 , there is no

Krull domain with divisor class group Z13 with elasticity strictly between 13
5 and 13

7 .
Mention of the monoids Ba(n) in the literature is not isolated to [2]. In [5], Geroldinger

gives an elegant characterization of the irreducible blocks in Ba(n) using continued frac-
tions. In § 2 we start by offering an alternate characterization of these irreducible blocks
based on the division algorithm. We then apply this characterization in §§ 3 and 4 to
study concepts related to the lengths of factorizations of elements in Ba(n) into irre-
ducible elements. In § 3 we show that the elasticity of Ba(n) is ma(n)−1, where ma(n)
is the minimum value obtained by the Zaks–Skula function (see [4]) on Ba(n). In § 4 we
compute this elasticity for various values of a and consider the complete set of elasticities
of the Ba(n) for a fixed value of n with 2 � a � n− 1. We then specialize these results to
the case where p is a prime integer. We finish, in § 4, with an argument which generalizes
the observation mentioned earlier in [2] for Krull domains with divisor class group Z13.
In particular, for an odd prime p � 13, we show that there is no Ba(p) with elasticity
strictly between

p
1
2 (p + 1)

and
p

� 1
4 (p + 3)�

.

2. Irreducibles in Ba(n)

Geroldinger [5] provides a description of the irreducibles in Ba(n). Here we give an
alternate description of the irreducibles. Following the notation of [5] for n � 2, 1 < a �
n − 1, and u � 0, let

Bu = {1̄uāx | where x � 0 and u + ax = tn with t > 0}.

and then set B(u) = 1̄uāv, where v = min{x | 1̄uāx ∈ Bu}.
It is easily seen (as in [5]) that if B is irreducible in Ba(n), then B = B(u) for some

u (the converse is not true). Proposition 8 of [5] determines for each u the value of v in
B(u). Proposition 10 of [5] then provides a remarkable necessary and sufficient condition
for B(u) to be irreducible. The values of u for which B(u) is irreducible are determined
by an algorithm involving the convergents of the continued fraction of the multiplicative
inverse of −a modulo n.
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We provide an alternate description of the irreducibles by classifying the irreducibles
as one of the following two types.

Type 1: 1̄uāv with 0 � u < a.

Type 2: 1̄uāv with a � u � n.

Setting d = gcd (a, n), we introduce the following notation. For 1 � k � a/d write (by
the Division Algorithm) kn = aqk + rk with 0 � rk < a. This process yields a sequence
of remainders r1, r2, . . . , rw and a sequence of blocks

1̄r1 āq1 , . . . , 1̄rw āqw , (†)

where w = a/d.

Theorem 2.1. With the notation given above, the irreducible blocks of Ba(n) can be
described as follows.

(a) Type 1 blocks: 1̄rk āqk , where rk < ri for each i < k.

(b) Type 2 blocks: 1̄uāv, where u + av = n and v is an integer with 0 � v � �n/a� − 1.

Proof. First we prove (a). Note that for B(u) any block of the form 1̄uāv with 0 �
u < a, we have u + av = kn. If B(u) is irreducible it must be the case that k � a/d.
Since 0 � u < a we have u = rk and v = qk. Hence, all irreducible blocks of type 1 lie in
the sequence (†).

For a block 1̄rk āqk taken from (†), we show that if there is an i < k with ri � rk, then
it is reducible. We have

in = aqi + ri,

kn = aqk + rk.

Since

qi =
⌊

in

a

⌋
and qk =

⌊
kn

a

⌋
,

we know that qk � qi. Assuming rk � ri yields

(k − i)n = a(qk − qi) + (rk − ri)

and, in fact, 1̄rk āqk = 1̄ri āqi · 1̄rk−i āqk−i .
Now suppose for 1̄rk āqk that rk < ri for each i < k. If 1̄rk āqk is reducible, then we

write 1̄rk āqk = 1̄uāv · B, where 1̄uāv is irreducible. So,

kn = rk + aqk,

wn = u + av

and (by assumption) wn < kn. Hence w < k. Since u � rk < a, by the uniqueness
implied by the Division Algorithm, we have that u = rw and v = qw with w < k and
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rw � rk, contradicting the assumption. Hence, the block is irreducible, which concludes
the proof of (a).

We now prove (b). If 1̄uāv is of the given form, then it is clearly irreducible. Now
suppose u + av = tn with t � 2 and a � u � n − 1. Write n = aq + r with 0 � r < a

(1̄rāq is a type 1 irreducible by definition). Then tn = u + av > n = r + aq. Thus
(t − 1)n = (u − r) + a(v − q). But t − 1 � 1 and r < a � u < n − 1. It follows that
u − r > 0 and v − q � 0 and that 1̄rāq · 1̄u−rāv−q = 1̄uāv. Thus t � 2 yields that 1̄uāv is
reducible and the implication is established, completing the proof. �

We note the division n = aq1 + r1, 0 � r1 < a, always produces the first type 1
irreducible. Also, 1̄0ān/d is type 1 and 1̄nā0 is type 2.

We illustrate this description of irreducibles with the following simple example.

Example 2.2. The type 1 irreducibles in B8(19) are given by the divisions

(1)19 = 8(2) + 3,

(3)19 = 8(7) + 1,

(8)19 = 8(19) + 0.

That is, 1̄38̄2, 1̄18̄7, 1̄08̄19 are the type 1 irreducible blocks. The type 2 irreducible blocks
are simply 1̄198̄0 and 1̄118̄1.

We use this simple description of the irreducibles in the following sections, where it
will be seen that the type 1 irreducibles play a critical role in the study of the elasticity
of the block monoid Ba(n).

3. On the elasticity of Ba(n)

For Ba(n), the elasticity is defined as

ρ(Ba(n)) = sup{m/n | B1 · · ·Bn = C1 · · ·Cm

with each Bi and Cj irreducible in Ba(n)}.

General background for this concept can be found in [1]. In [4], the Zaks–Skula function
is introduced as a tool for studying the elasticity. We interpret the notation and results
of that work in the setting of Ba(n) as follows. For the block B = 1̄uāv, the Zaks–Skula
constant (or cross number) for B is given by k(B) = (u + dv)/n. We let

Ma(n) = max{k(B) | B is an irreducible block in Ba(n)}

and

ma(n) = min{k(B) | B is an irreducible block in Ba(n)}.

With this notation, we state the following as a lemma (see [4, Corollary 1.11]).
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Lemma 3.1. For n � 2 and 1 < a � n − 1,

max{Ma(n), ma(n)−1} � ρ(Ba(n)) � Ma(n)
ma(n)

.

Obviously, the case a | n represents the trivial case where ma(n) = Ma(n) =
ρ(Ba(n)) = 1. In this section, we establish an efficient algorithm using the characteriza-
tion of irreducibles from § 2 to calculate the elasticity. In later sections, we will analyse
for a given n the set of elasticities {ρ(Ba(n)) | 2 � a � n−1}. In particular, in this section
we will show that Ma(n) = 1 and that ma(n) is determined by the type 1 irreducibles.

We first note for the irreducibles γ1 = {1̄n} and γ2 = {ān/d} that k(γ1) = k(γ2) = 1.
Hence, ma(n) � 1 � Ma(n). It is also easy to see that if B = 1̄uāv is a type 2 irreducible
(i.e. u � a and n = u + av), then

k(B) =
u + dv

n
� u + av

n
= 1,

since d � a. To show k(B) � 1 for B is a type 1 irreducible is slightly more involved.

Theorem 3.2. For each irreducible block B of Ba(n), we have that k(B) � 1. Thus
Ma(n) = 1 and ρ(Ba(n)) = ma(n)−1.

Proof. By the above remark we merely need to prove the result for the type 1 irre-
ducibles in Ba(n). We use the notation of § 2 and write the irreducible B = 1̄rk āqk , where
kn = aqk + rk and 0 � rk < a. If rk = 0, then B = 1̄0ān/d and k(B) = 1. Hence, we
assume that rk �= 0. B irreducible implies for the divisions

n = aq1 + r1,

2n = aq2 + r2,

...

(k − 1)n = aqk−1 + rk−1

that rk < ri for i = 1, 2, . . . , k − 1 and d | rj for 1 � j � k. Notice that the remainders
r1, . . . , rk−1 are distinct. To see this, suppose that ri = rj with j � i < a/d. Then
in = aqi + ri and jn = aqj + rj implies that (i − j)n = a(qi − qj). It follows that a/d

divides (i − j) and hence i = j. Since a − dk is the largest positive integer less than a

that is itself less than k − 1 distinct integers divisible by d (also less than a), it follows
that rk � a − dk. Since

qk =
⌊

kn

a

⌋
<

kn

a
,

if we assume that n � rk + dqk < a − dk + (dkn/a), then a(n − a) < dk(n − a), a
contradiction. Hence k(B) = (rk + dqk)/n < 1. �

Having established Ma(n) = 1, we now turn our attention to ma(n). We show that it
is determined by the type 1 irreducibles with the following lemma.
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Lemma 3.3. Let B = 1̄r1 āq1 be the type 1 irreducible determined by the division
n = aq1 + r1 with 0 � r1 < a. Then k(B) � k(Bi) for any type 2 irreducible Bi.

Proof. Theorem 2.1 (b) implies that type 2 irreducibles exist if and only if a � n/2.
In this case, they are the irreducibles of the form Bt = 1̄n−taāt where 1 � t < �n/a�.
Thus k(Bt) = (n − ta + dt)/n and k(B) = (r1 + dq1)/n. The result is established if
r1 + dq1 � n − ta + dt for 1 � t < �n/a�. Since n = aq1 + r1, this inequality reduces to
dq1 � aq1 − ta+dt and hence t(a−d) � q1(a−d). Again, since we exclude the case a | n,
a − d > 0 and q1 = �n/a� yields the desired inequality. �

We summarize the results of this section in the following theorem. Let B∗
a(n) denote

the set of all irreducible blocks of type 1 in Ba(n).

Theorem 3.4. Let 1 � a < n and d = gcd (a, n).

(1) If a | n, then ma(n) = 1.

(2) If a � n, then

ma(n) = min
{

u + dv

n

∣∣∣∣ 1̄uāv ∈ B∗
a(n)

}
< 1.

(3) ρ(Ba(n)) = ma(n)−1.

We note that ma(n) is not necessarily obtained by 1̄r1 āq1 . As an example, easy calcu-
lations reveal that m11(19) is obtained by 1̄r3 āq3 .

4. The set of elasticities

For a given integer n, we set

P (n) = {ρ(Ba(n)) | 2 � a � n − 1}.

In this section, we make some general observations about the set P (n). Due to the results
of § 3, we use a simpler notation and describe

Min(n) = {nma(n) | 2 � a < n}.

Hence, P (n) = {(n/m) | m ∈ Min(n)}.

Example 4.1. In Example 2.2, it was shown that m11(19) = 7
19 . Additional calcula-

tions yield Min(19) = {2, 3, 4, 5, 7, 10}.

Lemma 4.2. The following statements are equivalent.

(1) 1 ∈ P (n).

(2) n ∈ Min(n).

(3) n is not prime.

https://doi.org/10.1017/S0013091502000305 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000305


Factorization in block monoids on Zn 263

Proof. This has often been observed earlier, since n not prime means there is a divisor
a of n with 2 � a � n − 1. �

Theorem 4.3. Let n > 2 be a positive integer.

(a) For all n we have that 2 ∈ Min(n). In fact, 1
2n = ρ(Ba(n)), where a = n − 1.

(b) If n > 3 is an odd integer, then 3 ∈ Min(n). In fact, 1
3n = ρ(Ba(n)) for a = 1

2 (n−1).

(c) If n is odd and a = 1
2 (n + 1), then ρ(Ba(n)) = n/( 1

2 (n + 1)). That is, 1
2 (n + 1) ∈

Min(n).

(d) ρ(B2(n)) = 1 if n is even and ρ(B2(n)) = n/( 1
2 (n + 1)) if n is odd.

Proof.

(a) In this case, n = a(1) + 1 produces the only type 1 irreducible B besides ān and
k(B) = 2/n.

(b) As in the previous case, the fact that n = a(2) + 1 implies that there is only one
irreducible type 1 block to consider with the desired value.

(c) For 1 � k � a − 1 we have kn = a(2k − 1) + (a − k). Hence, the remainders
a − 1, a − 2, . . . , 1 decrease and each division gives an irreducible Bk = 1̄a−kā2k−1.
We note that gcd (a, n) = 1 and hence

k(Bk) =
(a − k) + (2k − 1)

n
=

a + k − 1
n

,

which is minimal when k = 1, where

k(B1) =
a

n
=

1
2 (n + 1)

n
.

(d) The statement for n even is trivial since 2 | n. For odd n, we have the isomorphism
of Zn given by multiplication by 2 carries the set Sa onto S2, where a = 1

2 (n + 1).
Hence part (c) gives the result.

�

We turn our attention to describing the set P (p) for a prime integer p. We discuss this
in terms of the set of integers Min(p), keeping in mind that x ∈ Min(p) if and only if
(p/x) ∈ P (p).

To motivate these results, we include the results of calculations of Min(p) for primes
p in the range 41 � p � 59:
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p Min(p)

41 {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 21}
43 {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 22}
47 {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 24}
53 {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 19, 27}
59 {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 30}

We note several properties of each Min(p) already established under the condition that
p is prime in Lemma 4.2 and Theorem 4.3. The smallest number in each set is 2, obtained
at a = p − 1. For p � 5, 3 in Min(p) is obtained at a = 1

2 (p − 1) and 1
2 (p + 1) is obtained

at a = 2 and a = 1
2 (p + 1).

A review of the values given in the above table indicates that Min(p) begins with a
string of consecutive integers and appears to always have 1

2 (p + 1) as the maximum value
with a gap below it. We establish this pattern for the general case. We require several
results from elementary number theory whose proofs are left to the reader.

Lemma 4.4. Suppose n � 2 and a is an integer with 1 < a < n.

(a)
n − 1
a − 1

� 2
⌊

n

a

⌋
.

(b) If n � 13 and 3 � a � 1
2 (n − 1), then

n − 2
a − 1

� 3
2

⌊
n

a

⌋
.

(c) If n = aq + r and 0 � r < a, then q + r � 1
2 (n + 1).

Using our earlier notation, an immediate corollary of Lemma 4.4 is that 1
2 (p + 1) is

indeed the maximum element of Min(p). Moreover, Min(p) ⊆ {2, 3, . . . , 1
2 (p + 1)} for all

prime p � 3. The next result establishes that for any integer s � 2, the values 2, 3, . . . , s

are in Min(p) for p sufficiently large.

Theorem 4.5. {2, . . . , s} ⊆ Min(p) for all primes p > s2 − s.

Proof. Let t = s− 1. We will show that ma(p) = s for a = p− t. We use the divisions
from § 2 to consider the type 1 irreducibles. For k < (p − t)/t, we have kt < a and
kp = a(k)+ kt. That is, in the notation of § 2, qk = k and rk = kt. Clearly, r1 < r2 < · · ·
and the only type 1 irreducible formed for k < (p − t)/t is from the division p = a(1) + t

and q1 + r1 = t + 1. The other type 1 irreducibles will be determined by divisions
kp = aqk + rk for 0 � rk < a − 1 with k � (p − t)/t.

However, kp = ak + kt and k � (p − t)/t implies kt � p − t = a. Write kt = au + v

with 0 � v < a, which gives kp = a(k + u) + v. Hence qk = k + u and rk = v. Noting
that u � 1, we have

qk + rk = k + u + v � k + 1 � p − t

t
+ 1 � p

t
.
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However, p > t + t2 yields (p/t) > t + 1. Hence qk + rk > t + 1. This establishes that
ρ(Ba(n)) is determined by B = 1̄r1 āq1 (the block with minimal k(B) value) and hence
ma(p) = t + 1. �

It would seem that the previous result may not be the best possible. For example,
it states that {2, . . . , 10} ⊆ Min(p) for all primes p > 90. Calculations indicate that
this is actually the case for all primes p � 41. In fact, further calculations show that
{2, . . . , 17} ⊆ Min(97).

We now turn our attention to the large values in Min(p). Before doing so, we record
the following result in the spirit of our earlier calculations.

Lemma 4.6. Let n > 3.

(a) If 3 | n, then m3(n) = 1, n ∈ Min(n) and ρ(B3(n)) = 1.

(b) If 3 � n, then m3(n) = � 1
3 (n + 4)�, � 1

3 (n + 4)� ∈ Min(n) and

ρ(B3(n)) =
n

� 1
3 (n + 4)�

.

Proof. The case 3 | n has already been established in Theorem 3.4 (1). The argument
for 3 � n considers the two cases n ≡ 1 (mod 3) and n ≡ 2 (mod 3). We have used the
notation � 1

3 (n + 4)� to unify the result, but note that � 1
3 (n + 4)� = � 1

3n� + 1 when n ≡ 1
(mod 3) and � 1

3 (n + 4)� = � 1
3n� + 2 when n ≡ 2 (mod 3).

Case 1. n ≡ 1 (mod 3). In this case n = 3q + 1 provides the only type 1 irreducible
and q + 1 = � 1

3n� + 1.

Case 2. n ≡ 2 (mod 3). Here there are two type 1 irreducibles given by n = 3q + 2
and 2n = 3(2q + 1) + 1. The second yields a quotient plus remainder value of 2q + 2,
which is greater than q + 2 (as n > 3). Thus the minimum value that gives ρ(B3) is
q + 2 = � 1

3n� + 2. �

The previous lemma yields that the value � 1
3 (p + 4)� will be in Min(p) for all primes

p � 5. We will now show that for all primes p � 13, this value is the second largest
value of Min(p). Hence, for p � 13 there will always be a gap (increasing in length as
p increases) between the two largest values of Min(p), namely � 1

3 (p + 4)� and 1
2 (p + 1).

This ‘gap’ was observed for small values of p in [2].

Theorem 4.7. Let p be an odd prime and let a be an integer with 3 � a � p − 1 and
a �= 1

2 (p + 1). Then ma(p) � 1
3 (p + 4) and hence

ρ(Ba(p)) � p
1
3 (p + 4)

.

Proof. We split the proof into two cases.

https://doi.org/10.1017/S0013091502000305 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000305


266 S. T. Chapman and W. W. Smith

Case 1. Suppose that 3 � a � 1
2 (p − 1). If p = aq + r with 0 � r < a, we will then

argue that q + r � 1
3 (p + 4), which implies that

ρ(Ba(p)) � p
1
3 (p + 4)

.

Now, q = �p/a� and r = p − a�p/a�. Hence q + r = p + �p/a�(1 − a). By Lemma 4.4 (b),
since 1 − a < 0, ⌊

p

a

⌋
(1 − a) � 2

3

(
p − 2
a − 1

)
(1 − a) = 2

3 (2 − p).

Therefore, q + r � p + 2
3 (2 − p) = 1

3 (p + 4).

Case 2. Suppose that p−1 � a > 1
2 (p+1). For 1 � c < 1

2 (p−1) set a = 1
2 (p+1)+c =

1
2 (p + 2c + 1). We fix c � 1 and consider all primes p. It is sufficient to get the result if
we know there exists t � 1 so that tp = aqt + rt with 0 � rt < a and qt + rt � 1

3 (p + 4)
(i.e. we need not be concerned with ‘irreducibility’ as an irreducible factor will have even
smaller ‘q + r’). Let b = 2c + 1 (an odd integer greater than or equal to 3) and b < p.
First note that p = a(1)+ (p− a) = a(1)+ 1

2 (p− b) and q1 + r1 = 1
2 (p− b+2) � 1

3 (p+4)
whenever p � 3b + 2. For other primes p > 3b + 2 > 3b, choose k � 1 so that

b(2k + 1) = b + 2bk < p � b + 2b(k + 1). (∗)

We have the following identity

(k + 1)p = (1
2 (p + b))(2k + 1) + (1

2 (p − b(2k + 1))).

The condition (∗) gives 0 � 1
2 (p−b(2k+1)) < a = 1

2 (p+b) and that k+1 � a−1. Hence,
this is the result of the division algorithm when (k+1)p is divided by a. Now qk+1+rk+1 =
1
2 (2(2k + 1) + p − b(2k + 1)). We claim that 1

2 (2(2k + 1) + p − b(2k + 1)) � 1
3 (p + 4)

(i.e. 6(2k+1)+3p−3b(2k+1) � 2p+8 and hence p � 3b(2k+1)−6(2k+1)+8 is needed).
By (∗), p � b+2b(k+1), so we need only show p � b+2b(k+1) � 3b(2k+1)−6(2k+1)+8
or b+2bk +2b � 6bk +3b− 12k +2 or 0 � 4bk − 12k +2 or 6k � 2bk +1. But this is true
if b � 3, which it is (recall for b = 1 and c = 0 that a = 1

2 (p + 1), which has elasticity
p/( 1

2 (p + 1))). �
We summarize what we have for Zp regarding elasticity in terms of the set Min(p)

(where p is prime). The lower end of the set has consecutive numbers 2, 3, . . . (Theo-
rem 4.5). At the other extreme, the largest value is 1

2 (p + 1). The next possible value
less than 1

2 (p + 1) is � 1
3 (p + 4)�. These are equal for p = 3 and 5 and differ by one for

p = 7 and 11. However, for p � 13 there is a gap between these two values and since
1
2 (p + 1) − 1

3 (p + 4) = 1
6 (p − 5), this gap between values gets large as p increases in size.

We end this section with an application of the above in a slightly more general setting.
In [2], the following set of elasticities is considered (where p is an odd prime):

Υ (p) = {ρ(B(Zp, S)) | ∅ �= S ⊆ Zp\{0}}.
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In that work, they observed that

Υ (p) ⊆ { 1
2p, 1

3p, . . . , p/( 1
2 (p + 1)), 1}.

They also noted there were ‘gaps’ in the sets Υ (p) for p = 13, 17, 19 and 23. With the
simple observation that

ρ(B(Zp, S ∪ T )) � max{ρ(B(Zp, S)), ρ(B(Zp, T ))}

and the fact that
ρ(Ba(n)) =

p
1
2 (p + 1)

for a = 2 or a = 1
2 (p + 1), we easily use the analysis of this section to conclude

that the only possible set S that could have ρ(B(Zp, S)) between p/( 1
2 (p + 1)) and

p/� 1
4 (p + 3)� would be S = {1̄, 2̄, 1

2 (p + 1)}. However, in [2, Lemma 12 (c)] it is shown
that ρ(Zp, {1̄, 2̄, 1

2 (p + 1)}) is not between these values. Hence, we have the following
theorem.

Theorem 4.8. Let p � 13 be a prime. There is no subset S ⊆ Zp\{0} with

p
1
2 (p + 1)

< ρ(B(Zp, S)) <
p

� 1
4 (p + 3)�

. (∗∗)

Hence, for such a prime p, there is no Krull domain D with divisor class group Zp whose
elasticity ρ(D) satisfies the inequality (∗∗).
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