ON FACTORIZATION IN BLOCK MONOIDS FORMED BY $\{\overline{1}, \bar{a}\}$ IN \mathbb{Z}_{n}

SCOTT T. CHAPMAN ${ }^{1}$ AND WILLIAM W. SMITH ${ }^{2}$
${ }^{1}$ Trinity University, Department of Mathematics, 715 Stadium Drive, San Antonio, TX 78212-7200, USA (schapman@trinity.edu)
${ }^{2}$ The University of North Carolina at Chapel Hill, Department of Mathematics, Chapel Hill, NC 27599-3250, USA (wwsmith@email.unc.edu)

(Received 18 March 2002)

Abstract We consider the factorization properties of block monoids on \mathbb{Z}_{n} determined by subsets of the form $S_{a}=\{\overline{1}, \bar{a}\}$. We denote such a block monoid by $\mathcal{B}_{a}(n)$. In $\S 2$, we provide a method based on the division algorithm for determining the irreducible elements of $\mathcal{B}_{a}(n)$. Section 3 offers a method to determine the elasticity of $\mathcal{B}_{a}(n)$ based solely on the cross number. Section 4 applies the results of $\S 3$ to investigate the complete set of elasticities of Krull monoids with divisor class group \mathbb{Z}_{n}.

Keywords: block monoid; elasticity of factorization; Krull monoid
2000 Mathematics subject classification: Primary 20M14; 20D60; 13F05

1. Introduction

This paper deals with factorization properties of certain block monoids, and we start with some notation and terminology. Let G be an abelian group written additively, $G_{0}=G-\{0\}$, and let

$$
\mathcal{F}(G)=\left\{\prod_{g \in G_{0}} g^{v_{g}} \mid v_{g} \in \mathbb{Z}^{+} \cup\{0\}\right\}
$$

be the multiplicative free abelian monoid with basis G_{0}. Given $F \in \mathcal{F}(G)$, we write $F=\prod_{g \in G_{0}} g^{v_{g}(F)}$. The block monoid over G is defined by

$$
\mathcal{B}(G)=\left\{B \in \mathcal{F}(G) \mid \sum_{g \in G_{0}} v_{g}(B) g=0\right\}
$$

Note that the empty block acts as the identity in $\mathcal{B}(G)$. In general, given $S \subseteq G_{0}$, we set

$$
\mathcal{B}(G, S)=\left\{B \in \mathcal{B}(G) \mid v_{g}(B)=0 \text { for } g \in G_{0} \backslash S\right\}
$$

A summary of some basic facts about block monoids can be found in [6]. The particular block monoids in which we have an interest can be described as follows. Let n and a be integers with $n>2,1<a<n$ and set $\bar{a}=a+n \mathbb{Z}$ in $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$. If $S_{a}=\{\overline{1}, \bar{a}\}$, then

$$
\mathcal{B}\left(\mathbb{Z}_{n}, S_{a}\right)=\left\{\overline{1}^{u} \bar{a}^{v} \mid \text { where } u, v \geqslant 0 \text { and } u+a v=t n \text { with } t>0\right\}
$$

For ease of notation, let $\mathcal{B}_{a}(n)=\mathcal{B}\left(\mathbb{Z}_{n}, S_{a}\right)$.
In a recent paper, the first author and Anderson [2] explored the possible elasticities of a Krull domain D with divisor class group \mathbb{Z}_{n}. If S is the subset of $\mathbb{Z}_{n} \backslash\{0\}$ which contains the height-one prime ideals of D, then it is well known that the factorization properties of D relating to lengths of factorizations are identical to those of $\mathcal{B}\left(\mathbb{Z}_{n}, S\right)$ (see [3] for an explanation). Our interest in the monoids $\mathcal{B}_{a}(n)$ stems from their use in [2]. In particular, the monoids $\mathcal{B}_{a}(n)$ are intrinsic in arguing the following: while there is a Krull domain with divisor class group \mathbb{Z}_{13} with elasticity $\frac{13}{5}$ and another with elasticity $\frac{13}{7}$, there is no Krull domain with divisor class group \mathbb{Z}_{13} with elasticity strictly between $\frac{13}{5}$ and $\frac{13}{7}$.

Mention of the monoids $\mathcal{B}_{a}(n)$ in the literature is not isolated to [2]. In [5], Geroldinger gives an elegant characterization of the irreducible blocks in $\mathcal{B}_{a}(n)$ using continued fractions. In $\S 2$ we start by offering an alternate characterization of these irreducible blocks based on the division algorithm. We then apply this characterization in $\S \S 3$ and 4 to study concepts related to the lengths of factorizations of elements in $\mathcal{B}_{a}(n)$ into irreducible elements. In $\S 3$ we show that the elasticity of $\mathcal{B}_{a}(n)$ is $m_{a}(n)^{-1}$, where $m_{a}(n)$ is the minimum value obtained by the Zaks-Skula function (see [4]) on $\mathcal{B}_{a}(n)$. In $\S 4$ we compute this elasticity for various values of a and consider the complete set of elasticities of the $\mathcal{B}_{a}(n)$ for a fixed value of n with $2 \leqslant a \leqslant n-1$. We then specialize these results to the case where p is a prime integer. We finish, in $\S 4$, with an argument which generalizes the observation mentioned earlier in [2] for Krull domains with divisor class group \mathbb{Z}_{13}. In particular, for an odd prime $p \geqslant 13$, we show that there is no $\mathcal{B}_{a}(p)$ with elasticity strictly between

$$
\frac{p}{\frac{1}{2}(p+1)} \quad \text { and } \quad \frac{p}{\left\lfloor\frac{1}{4}(p+3)\right\rfloor}
$$

2. Irreducibles in $\mathcal{B}_{a}(n)$

Geroldinger [5] provides a description of the irreducibles in $\mathcal{B}_{a}(n)$. Here we give an alternate description of the irreducibles. Following the notation of [5] for $n \geqslant 2,1<a \leqslant$ $n-1$, and $u \geqslant 0$, let

$$
B_{u}=\left\{\overline{1}^{u} \bar{a}^{x} \mid \text { where } x \geqslant 0 \text { and } u+a x=t n \text { with } t>0\right\} .
$$

and then set $B(u)=\overline{1}^{u} \bar{a}^{v}$, where $v=\min \left\{x \mid \overline{1}^{u} \bar{a}^{x} \in B_{u}\right\}$.
It is easily seen (as in [5]) that if B is irreducible in $\mathcal{B}_{a}(n)$, then $B=B(u)$ for some u (the converse is not true). Proposition 8 of [5] determines for each u the value of v in $B(u)$. Proposition 10 of [5] then provides a remarkable necessary and sufficient condition for $B(u)$ to be irreducible. The values of u for which $B(u)$ is irreducible are determined by an algorithm involving the convergents of the continued fraction of the multiplicative inverse of $-a$ modulo n.

We provide an alternate description of the irreducibles by classifying the irreducibles as one of the following two types.

Type 1: $\overline{1}^{u} \bar{a}^{v}$ with $0 \leqslant u<a$.
Type 2: $\overline{1}^{u} \bar{a}^{v}$ with $a \leqslant u \leqslant n$.
Setting $d=\operatorname{gcd}(a, n)$, we introduce the following notation. For $1 \leqslant k \leqslant a / d$ write (by the Division Algorithm) $k n=a q_{k}+r_{k}$ with $0 \leqslant r_{k}<a$. This process yields a sequence of remainders $r_{1}, r_{2}, \ldots, r_{w}$ and a sequence of blocks

$$
\overline{1}^{r_{1}} \bar{a}^{q_{1}}, \ldots, \overline{1}^{r_{w}} \bar{a}^{q_{w}}
$$

where $w=a / d$.
Theorem 2.1. With the notation given above, the irreducible blocks of $\mathcal{B}_{a}(n)$ can be described as follows.
(a) Type 1 blocks: $\overline{1}^{r_{k}} \bar{a}^{q_{k}}$, where $r_{k}<r_{i}$ for each $i<k$.
(b) Type 2 blocks: $\overline{1}^{u} \bar{a}^{v}$, where $u+a v=n$ and v is an integer with $0 \leqslant v \leqslant\lfloor n / a\rfloor-1$.

Proof. First we prove (a). Note that for $B(u)$ any block of the form $\overline{1}^{u} \bar{a}^{v}$ with $0 \leqslant$ $u<a$, we have $u+a v=k n$. If $B(u)$ is irreducible it must be the case that $k \leqslant a / d$. Since $0 \leqslant u<a$ we have $u=r_{k}$ and $v=q_{k}$. Hence, all irreducible blocks of type 1 lie in the sequence (\dagger).

For a block $\overline{1}^{r_{k}} \bar{a}^{q_{k}}$ taken from (\dagger), we show that if there is an $i<k$ with $r_{i} \leqslant r_{k}$, then it is reducible. We have

$$
\begin{aligned}
i n & =a q_{i}+r_{i} \\
k n & =a q_{k}+r_{k}
\end{aligned}
$$

Since

$$
q_{i}=\left\lfloor\frac{i n}{a}\right\rfloor \quad \text { and } \quad q_{k}=\left\lfloor\frac{k n}{a}\right\rfloor
$$

we know that $q_{k} \geqslant q_{i}$. Assuming $r_{k} \geqslant r_{i}$ yields

$$
(k-i) n=a\left(q_{k}-q_{i}\right)+\left(r_{k}-r_{i}\right)
$$

and, in fact, $\overline{1}^{r_{k}} \bar{a}^{q_{k}}=\overline{1}^{r_{i}} \bar{a}^{q_{i}} \cdot \overline{1}^{r_{k-i}} \bar{a}^{q_{k-i}}$.
Now suppose for $\overline{1}^{r_{k}} \bar{a}^{q_{k}}$ that $r_{k}<r_{i}$ for each $i<k$. If $\overline{1}^{r_{k}} \bar{a}^{q_{k}}$ is reducible, then we write $\overline{1}^{r_{k}} \bar{a}^{q_{k}}=\overline{1}^{u} \bar{a}^{v} \cdot B$, where $\overline{1}^{u} \bar{a}^{v}$ is irreducible. So,

$$
\begin{aligned}
k n & =r_{k}+a q_{k} \\
w n & =u+a v
\end{aligned}
$$

and (by assumption) $w n<k n$. Hence $w<k$. Since $u \leqslant r_{k}<a$, by the uniqueness implied by the Division Algorithm, we have that $u=r_{w}$ and $v=q_{w}$ with $w<k$ and
$r_{w} \leqslant r_{k}$, contradicting the assumption. Hence, the block is irreducible, which concludes the proof of (a).

We now prove (b). If $\overline{1}^{u} \bar{a}^{v}$ is of the given form, then it is clearly irreducible. Now suppose $u+a v=t n$ with $t \geqslant 2$ and $a \leqslant u \leqslant n-1$. Write $n=a q+r$ with $0 \leqslant r<a$ ($\overline{1}^{r} \bar{a}^{q}$ is a type 1 irreducible by definition). Then $t n=u+a v>n=r+a q$. Thus $(t-1) n=(u-r)+a(v-q)$. But $t-1 \geqslant 1$ and $r<a \leqslant u<n-1$. It follows that $u-r>0$ and $v-q \geqslant 0$ and that $\overline{1}^{r} \bar{a}^{q} \cdot \overline{1}^{u-r} \bar{a}^{v-q}=\overline{1}^{u} \bar{a}^{v}$. Thus $t \geqslant 2$ yields that $\overline{1}^{u} \bar{a}^{v}$ is reducible and the implication is established, completing the proof.

We note the division $n=a q_{1}+r_{1}, 0 \leqslant r_{1}<a$, always produces the first type 1 irreducible. Also, $\overline{1}^{0} \bar{a}^{n / d}$ is type 1 and $\overline{1}^{n} \bar{a}^{0}$ is type 2 .

We illustrate this description of irreducibles with the following simple example.
Example 2.2. The type 1 irreducibles in $\mathcal{B}_{8}(19)$ are given by the divisions

$$
\begin{aligned}
& (1) 19=8(2)+3 \\
& (3) 19=8(7)+1 \\
& (8) 19=8(19)+0 .
\end{aligned}
$$

That is, $\overline{1}^{3} \overline{8}^{2}, \overline{1}^{1} \overline{8}^{7}, \overline{1}^{0} \overline{8}^{19}$ are the type 1 irreducible blocks. The type 2 irreducible blocks are simply $\overline{1}^{19} \overline{8}^{0}$ and $\overline{1}^{11} \overline{8}^{1}$.

We use this simple description of the irreducibles in the following sections, where it will be seen that the type 1 irreducibles play a critical role in the study of the elasticity of the block monoid $\mathcal{B}_{a}(n)$.

3. On the elasticity of $\mathcal{B}_{a}(n)$

For $\mathcal{B}_{a}(n)$, the elasticity is defined as

$$
\begin{aligned}
\rho\left(\mathcal{B}_{a}(n)\right)=\sup \left\{m / n \mid B_{1} \cdots B_{n}=\right. & C_{1} \cdots C_{m} \\
& \text { with each } \left.B_{i} \text { and } C_{j} \text { irreducible in } \mathcal{B}_{a}(n)\right\} .
\end{aligned}
$$

General background for this concept can be found in [1]. In [4], the Zaks-Skula function is introduced as a tool for studying the elasticity. We interpret the notation and results of that work in the setting of $\mathcal{B}_{a}(n)$ as follows. For the block $B=\overline{1}^{u} \bar{a}^{v}$, the Zaks-Skula constant (or cross number) for B is given by $\mathbb{k}(B)=(u+d v) / n$. We let

$$
M_{a}(n)=\max \left\{\mathbb{k}(B) \mid B \text { is an irreducible block in } \mathcal{B}_{a}(n)\right\}
$$

and

$$
m_{a}(n)=\min \left\{\mathbb{k}(B) \mid B \text { is an irreducible block in } \mathcal{B}_{a}(n)\right\}
$$

With this notation, we state the following as a lemma (see [4, Corollary 1.11]).

Lemma 3.1. For $n \geqslant 2$ and $1<a \leqslant n-1$,

$$
\max \left\{M_{a}(n), m_{a}(n)^{-1}\right\} \leqslant \rho\left(\mathcal{B}_{a}(n)\right) \leqslant \frac{M_{a}(n)}{m_{a}(n)}
$$

Obviously, the case $a \mid n$ represents the trivial case where $m_{a}(n)=M_{a}(n)=$ $\rho\left(\mathcal{B}_{a}(n)\right)=1$. In this section, we establish an efficient algorithm using the characterization of irreducibles from $\S 2$ to calculate the elasticity. In later sections, we will analyse for a given n the set of elasticities $\left\{\rho\left(\mathcal{B}_{a}(n)\right) \mid 2 \leqslant a \leqslant n-1\right\}$. In particular, in this section we will show that $M_{a}(n)=1$ and that $m_{a}(n)$ is determined by the type 1 irreducibles.

We first note for the irreducibles $\gamma_{1}=\left\{\overline{1}^{n}\right\}$ and $\gamma_{2}=\left\{\bar{a}^{n / d}\right\}$ that $\mathbb{k}\left(\gamma_{1}\right)=\mathbb{k}\left(\gamma_{2}\right)=1$. Hence, $m_{a}(n) \leqslant 1 \leqslant M_{a}(n)$. It is also easy to see that if $B=\overline{1}^{u} \bar{a}^{v}$ is a type 2 irreducible (i.e. $u \geqslant a$ and $n=u+a v$), then

$$
\mathbb{k}(B)=\frac{u+d v}{n} \leqslant \frac{u+a v}{n}=1
$$

since $d \leqslant a$. To show $\mathbb{k}(B) \leqslant 1$ for B is a type 1 irreducible is slightly more involved.
Theorem 3.2. For each irreducible block B of $\mathcal{B}_{a}(n)$, we have that $\mathbb{k}(B) \leqslant 1$. Thus $M_{a}(n)=1$ and $\rho\left(\mathcal{B}_{a}(n)\right)=m_{a}(n)^{-1}$.

Proof. By the above remark we merely need to prove the result for the type 1 irreducibles in $\mathcal{B}_{a}(n)$. We use the notation of $\S 2$ and write the irreducible $B=\overline{1}^{r_{k}} \bar{a}^{q_{k}}$, where $k n=a q_{k}+r_{k}$ and $0 \leqslant r_{k}<a$. If $r_{k}=0$, then $B=\overline{1}^{0} \bar{a}^{n / d}$ and $\mathbb{k}(B)=1$. Hence, we assume that $r_{k} \neq 0 . B$ irreducible implies for the divisions

$$
\begin{aligned}
n & =a q_{1}+r_{1} \\
2 n & =a q_{2}+r_{2} \\
& \vdots \\
(k-1) n & =a q_{k-1}+r_{k-1}
\end{aligned}
$$

that $r_{k}<r_{i}$ for $i=1,2, \ldots, k-1$ and $d \mid r_{j}$ for $1 \leqslant j \leqslant k$. Notice that the remainders r_{1}, \ldots, r_{k-1} are distinct. To see this, suppose that $r_{i}=r_{j}$ with $j \leqslant i<a / d$. Then in $=a q_{i}+r_{i}$ and $j n=a q_{j}+r_{j}$ implies that $(i-j) n=a\left(q_{i}-q_{j}\right)$. It follows that a / d divides $(i-j)$ and hence $i=j$. Since $a-d k$ is the largest positive integer less than a that is itself less than $k-1$ distinct integers divisible by d (also less than a), it follows that $r_{k} \leqslant a-d k$. Since

$$
q_{k}=\left\lfloor\frac{k n}{a}\right\rfloor<\frac{k n}{a}
$$

if we assume that $n \leqslant r_{k}+d q_{k}<a-d k+(d k n / a)$, then $a(n-a)<d k(n-a)$, a contradiction. Hence $\mathbb{k}(B)=\left(r_{k}+d q_{k}\right) / n<1$.

Having established $M_{a}(n)=1$, we now turn our attention to $m_{a}(n)$. We show that it is determined by the type 1 irreducibles with the following lemma.

Lemma 3.3. Let $B=\overline{1}^{r_{1}} \bar{a}^{q_{1}}$ be the type 1 irreducible determined by the division $n=a q_{1}+r_{1}$ with $0 \leqslant r_{1}<a$. Then $\mathbb{k}(B) \leqslant \mathbb{k}\left(B_{i}\right)$ for any type 2 irreducible B_{i}.

Proof. Theorem 2.1 (b) implies that type 2 irreducibles exist if and only if $a \leqslant n / 2$. In this case, they are the irreducibles of the form $B_{t}=\overline{1}^{n-t a} \bar{a}^{t}$ where $1 \leqslant t<\lfloor n / a\rfloor$. Thus $\mathbb{k}\left(B_{t}\right)=(n-t a+d t) / n$ and $\mathbb{k}(B)=\left(r_{1}+d q_{1}\right) / n$. The result is established if $r_{1}+d q_{1} \leqslant n-t a+d t$ for $1 \leqslant t<\lfloor n / a\rfloor$. Since $n=a q_{1}+r_{1}$, this inequality reduces to $d q_{1} \leqslant a q_{1}-t a+d t$ and hence $t(a-d) \leqslant q_{1}(a-d)$. Again, since we exclude the case $a \mid n$, $a-d>0$ and $q_{1}=\lfloor n / a\rfloor$ yields the desired inequality.

We summarize the results of this section in the following theorem. Let $\mathcal{B}_{a}^{*}(n)$ denote the set of all irreducible blocks of type 1 in $\mathcal{B}_{a}(n)$.

Theorem 3.4. Let $1 \leqslant a<n$ and $d=\operatorname{gcd}(a, n)$.
(1) If $a \mid n$, then $m_{a}(n)=1$.
(2) If $a \nmid n$, then

$$
m_{a}(n)=\min \left\{\left.\frac{u+d v}{n} \right\rvert\, \overline{1}^{u} \bar{a}^{v} \in \mathcal{B}_{a}^{*}(n)\right\}<1
$$

(3) $\rho\left(\mathcal{B}_{a}(n)\right)=m_{a}(n)^{-1}$.

We note that $m_{a}(n)$ is not necessarily obtained by $\overline{1}^{r_{1}} \bar{a}^{q_{1}}$. As an example, easy calculations reveal that $m_{11}(19)$ is obtained by $\overline{1}^{r_{3}} \bar{a}^{q_{3}}$.

4. The set of elasticities

For a given integer n, we set

$$
P(n)=\left\{\rho\left(\mathcal{B}_{a}(n)\right) \mid 2 \leqslant a \leqslant n-1\right\} .
$$

In this section, we make some general observations about the set $P(n)$. Due to the results of $\S 3$, we use a simpler notation and describe

$$
\operatorname{Min}(n)=\left\{n m_{a}(n) \mid 2 \leqslant a<n\right\} .
$$

Hence, $P(n)=\{(n / m) \mid m \in \operatorname{Min}(n)\}$.
Example 4.1. In Example 2.2, it was shown that $m_{11}(19)=\frac{7}{19}$. Additional calculations yield $\operatorname{Min}(19)=\{2,3,4,5,7,10\}$.

Lemma 4.2. The following statements are equivalent.
(1) $1 \in P(n)$.
(2) $n \in \operatorname{Min}(n)$.
(3) n is not prime.

Proof. This has often been observed earlier, since n not prime means there is a divisor a of n with $2 \leqslant a \leqslant n-1$.

Theorem 4.3. Let $n>2$ be a positive integer.
(a) For all n we have that $2 \in \operatorname{Min}(n)$. In fact, $\frac{1}{2} n=\rho\left(\mathcal{B}_{a}(n)\right)$, where $a=n-1$.
(b) If $n>3$ is an odd integer, then $3 \in \operatorname{Min}(n)$. In fact, $\frac{1}{3} n=\rho\left(\mathcal{B}_{a}(n)\right)$ for $a=\frac{1}{2}(n-1)$.
(c) If n is odd and $a=\frac{1}{2}(n+1)$, then $\rho\left(\mathcal{B}_{a}(n)\right)=n /\left(\frac{1}{2}(n+1)\right)$. That is, $\frac{1}{2}(n+1) \in$ $\operatorname{Min}(n)$.
(d) $\rho\left(\mathcal{B}_{2}(n)\right)=1$ if n is even and $\rho\left(\mathcal{B}_{2}(n)\right)=n /\left(\frac{1}{2}(n+1)\right)$ if n is odd.

Proof.

(a) In this case, $n=a(1)+1$ produces the only type 1 irreducible B besides \bar{a}^{n} and $\mathbb{k}(B)=2 / n$.
(b) As in the previous case, the fact that $n=a(2)+1$ implies that there is only one irreducible type 1 block to consider with the desired value.
(c) For $1 \leqslant k \leqslant a-1$ we have $k n=a(2 k-1)+(a-k)$. Hence, the remainders $a-1, a-2, \ldots, 1$ decrease and each division gives an irreducible $B_{k}=\overline{1}^{a-k} \bar{a}^{2 k-1}$. We note that $\operatorname{gcd}(a, n)=1$ and hence

$$
\mathbb{k}\left(B_{k}\right)=\frac{(a-k)+(2 k-1)}{n}=\frac{a+k-1}{n}
$$

which is minimal when $k=1$, where

$$
\mathbb{k}\left(B_{1}\right)=\frac{a}{n}=\frac{\frac{1}{2}(n+1)}{n}
$$

(d) The statement for n even is trivial since $2 \mid n$. For odd n, we have the isomorphism of \mathbb{Z}_{n} given by multiplication by 2 carries the set S_{a} onto S_{2}, where $a=\frac{1}{2}(n+1)$. Hence part (c) gives the result.

We turn our attention to describing the set $P(p)$ for a prime integer p. We discuss this in terms of the set of integers $\operatorname{Min}(p)$, keeping in mind that $x \in \operatorname{Min}(p)$ if and only if $(p / x) \in P(p)$.

To motivate these results, we include the results of calculations of $\operatorname{Min}(p)$ for primes p in the range $41 \leqslant p \leqslant 59$:

p	$\operatorname{Min}(p)$
41	$\{2,3,4,5,6,7,8,9,10,11,14,15,21\}$
43	$\{2,3,4,5,6,7,8,9,10,11,13,15,22\}$
47	$\{2,3,4,5,6,7,8,9,10,11,12,14,16,17,24\}$
53	$\{2,3,4,5,6,7,8,9,10,11,13,14,18,19,27\}$
59	$\{2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,20,21,30\}$

We note several properties of each $\operatorname{Min}(p)$ already established under the condition that p is prime in Lemma 4.2 and Theorem 4.3. The smallest number in each set is 2 , obtained at $a=p-1$. For $p \geqslant 5,3$ in $\operatorname{Min}(p)$ is obtained at $a=\frac{1}{2}(p-1)$ and $\frac{1}{2}(p+1)$ is obtained at $a=2$ and $a=\frac{1}{2}(p+1)$.

A review of the values given in the above table indicates that $\operatorname{Min}(p)$ begins with a string of consecutive integers and appears to always have $\frac{1}{2}(p+1)$ as the maximum value with a gap below it. We establish this pattern for the general case. We require several results from elementary number theory whose proofs are left to the reader.

Lemma 4.4. Suppose $n \geqslant 2$ and a is an integer with $1<a<n$.
(a) $\frac{n-1}{a-1} \leqslant 2\left\lfloor\frac{n}{a}\right\rfloor$.
(b) If $n \geqslant 13$ and $3 \leqslant a \leqslant \frac{1}{2}(n-1)$, then

$$
\frac{n-2}{a-1} \leqslant \frac{3}{2}\left\lfloor\frac{n}{a}\right\rfloor
$$

(c) If $n=a q+r$ and $0 \leqslant r<a$, then $q+r \leqslant \frac{1}{2}(n+1)$.

Using our earlier notation, an immediate corollary of Lemma 4.4 is that $\frac{1}{2}(p+1)$ is indeed the maximum element of $\operatorname{Min}(p)$. Moreover, $\operatorname{Min}(p) \subseteq\left\{2,3, \ldots, \frac{1}{2}(p+1)\right\}$ for all prime $p \geqslant 3$. The next result establishes that for any integer $s \geqslant 2$, the values $2,3, \ldots, s$ are in $\operatorname{Min}(p)$ for p sufficiently large.

Theorem 4.5. $\{2, \ldots, s\} \subseteq \operatorname{Min}(p)$ for all primes $p>s^{2}-s$.
Proof. Let $t=s-1$. We will show that $m_{a}(p)=s$ for $a=p-t$. We use the divisions from $\S 2$ to consider the type 1 irreducibles. For $k<(p-t) / t$, we have $k t<a$ and $k p=a(k)+k t$. That is, in the notation of $\S 2, q_{k}=k$ and $r_{k}=k t$. Clearly, $r_{1}<r_{2}<\cdots$ and the only type 1 irreducible formed for $k<(p-t) / t$ is from the division $p=a(1)+t$ and $q_{1}+r_{1}=t+1$. The other type 1 irreducibles will be determined by divisions $k p=a q_{k}+r_{k}$ for $0 \leqslant r_{k}<a-1$ with $k \geqslant(p-t) / t$.

However, $k p=a k+k t$ and $k \geqslant(p-t) / t$ implies $k t \geqslant p-t=a$. Write $k t=a u+v$ with $0 \leqslant v<a$, which gives $k p=a(k+u)+v$. Hence $q_{k}=k+u$ and $r_{k}=v$. Noting that $u \geqslant 1$, we have

$$
q_{k}+r_{k}=k+u+v \geqslant k+1 \geqslant \frac{p-t}{t}+1 \geqslant \frac{p}{t}
$$

However, $p>t+t^{2}$ yields $(p / t)>t+1$. Hence $q_{k}+r_{k}>t+1$. This establishes that $\rho\left(\mathcal{B}_{a}(n)\right)$ is determined by $B=\overline{1}^{r_{1}} \bar{a}^{q_{1}}$ (the block with minimal $\mathbb{k}(B)$ value) and hence $m_{a}(p)=t+1$.

It would seem that the previous result may not be the best possible. For example, it states that $\{2, \ldots, 10\} \subseteq \operatorname{Min}(p)$ for all primes $p>90$. Calculations indicate that this is actually the case for all primes $p \geqslant 41$. In fact, further calculations show that $\{2, \ldots, 17\} \subseteq \operatorname{Min}(97)$.

We now turn our attention to the large values in $\operatorname{Min}(p)$. Before doing so, we record the following result in the spirit of our earlier calculations.

Lemma 4.6. Let $n>3$.
(a) If $3 \mid n$, then $m_{3}(n)=1, n \in \operatorname{Min}(n)$ and $\rho\left(\mathcal{B}_{3}(n)\right)=1$.
(b) If $3 \nmid n$, then $m_{3}(n)=\left\lfloor\frac{1}{3}(n+4)\right\rfloor\left\lfloor\frac{1}{3}(n+4)\right\rfloor \in \operatorname{Min}(n)$ and

$$
\rho\left(\mathcal{B}_{3}(n)\right)=\frac{n}{\left\lfloor\frac{1}{3}(n+4)\right\rfloor} .
$$

Proof. The case $3 \mid n$ has already been established in Theorem 3.4 (1). The argument for $3 \nmid n$ considers the two cases $n \equiv 1(\bmod 3)$ and $n \equiv 2(\bmod 3)$. We have used the notation $\left\lfloor\frac{1}{3}(n+4)\right\rfloor$ to unify the result, but note that $\left\lfloor\frac{1}{3}(n+4)\right\rfloor=\left\lfloor\frac{1}{3} n\right\rfloor+1$ when $n \equiv 1$ $(\bmod 3)$ and $\left\lfloor\frac{1}{3}(n+4)\right\rfloor=\left\lfloor\frac{1}{3} n\right\rfloor+2$ when $n \equiv 2(\bmod 3)$.

Case 1. $n \equiv 1(\bmod 3)$. In this case $n=3 q+1$ provides the only type 1 irreducible and $q+1=\left\lfloor\frac{1}{3} n\right\rfloor+1$.

Case 2. $n \equiv 2(\bmod 3)$. Here there are two type 1 irreducibles given by $n=3 q+2$ and $2 n=3(2 q+1)+1$. The second yields a quotient plus remainder value of $2 q+2$, which is greater than $q+2$ (as $n>3)$. Thus the minimum value that gives $\rho\left(\mathcal{B}_{3}\right)$ is $q+2=\left\lfloor\frac{1}{3} n\right\rfloor+2$.

The previous lemma yields that the value $\left\lfloor\frac{1}{3}(p+4)\right\rfloor$ will be in $\operatorname{Min}(p)$ for all primes $p \geqslant 5$. We will now show that for all primes $p \geqslant 13$, this value is the second largest value of $\operatorname{Min}(p)$. Hence, for $p \geqslant 13$ there will always be a gap (increasing in length as p increases) between the two largest values of $\operatorname{Min}(p)$, namely $\left\lfloor\frac{1}{3}(p+4)\right\rfloor$ and $\frac{1}{2}(p+1)$. This 'gap' was observed for small values of p in [2].

Theorem 4.7. Let p be an odd prime and let a be an integer with $3 \leqslant a \leqslant p-1$ and $a \neq \frac{1}{2}(p+1)$. Then $m_{a}(p) \leqslant \frac{1}{3}(p+4)$ and hence

$$
\rho\left(\mathcal{B}_{a}(p)\right) \geqslant \frac{p}{\frac{1}{3}(p+4)} .
$$

Proof. We split the proof into two cases.

Case 1. Suppose that $3 \leqslant a \leqslant \frac{1}{2}(p-1)$. If $p=a q+r$ with $0 \leqslant r<a$, we will then argue that $q+r \leqslant \frac{1}{3}(p+4)$, which implies that

$$
\rho\left(\mathcal{B}_{a}(p)\right) \geqslant \frac{p}{\frac{1}{3}(p+4)} .
$$

Now, $q=\lfloor p / a\rfloor$ and $r=p-a\lfloor p / a\rfloor$. Hence $q+r=p+\lfloor p / a\rfloor(1-a)$. By Lemma 4.4 (b), since $1-a<0$,

$$
\left\lfloor\frac{p}{a}\right\rfloor(1-a) \leqslant \frac{2}{3}\left(\frac{p-2}{a-1}\right)(1-a)=\frac{2}{3}(2-p)
$$

Therefore, $q+r \leqslant p+\frac{2}{3}(2-p)=\frac{1}{3}(p+4)$.
Case 2. Suppose that $p-1 \geqslant a>\frac{1}{2}(p+1)$. For $1 \leqslant c<\frac{1}{2}(p-1)$ set $a=\frac{1}{2}(p+1)+c=$ $\frac{1}{2}(p+2 c+1)$. We fix $c \geqslant 1$ and consider all primes p. It is sufficient to get the result if we know there exists $t \geqslant 1$ so that $t p=a q_{t}+r_{t}$ with $0 \leqslant r_{t}<a$ and $q_{t}+r_{t} \leqslant \frac{1}{3}(p+4)$ (i.e. we need not be concerned with 'irreducibility' as an irreducible factor will have even smaller ' $q+r$ '). Let $b=2 c+1$ (an odd integer greater than or equal to 3) and $b<p$. First note that $p=a(1)+(p-a)=a(1)+\frac{1}{2}(p-b)$ and $q_{1}+r_{1}=\frac{1}{2}(p-b+2) \leqslant \frac{1}{3}(p+4)$ whenever $p \leqslant 3 b+2$. For other primes $p>3 b+2>3 b$, choose $k \geqslant 1$ so that

$$
\begin{equation*}
b(2 k+1)=b+2 b k<p \leqslant b+2 b(k+1) . \tag{*}
\end{equation*}
$$

We have the following identity

$$
(k+1) p=\left(\frac{1}{2}(p+b)\right)(2 k+1)+\left(\frac{1}{2}(p-b(2 k+1))\right) .
$$

The condition $(*)$ gives $0 \leqslant \frac{1}{2}(p-b(2 k+1))<a=\frac{1}{2}(p+b)$ and that $k+1 \leqslant a-1$. Hence, this is the result of the division algorithm when $(k+1) p$ is divided by a. Now $q_{k+1}+r_{k+1}=$ $\frac{1}{2}(2(2 k+1)+p-b(2 k+1))$. We claim that $\frac{1}{2}(2(2 k+1)+p-b(2 k+1)) \leqslant \frac{1}{3}(p+4)$ (i.e. $6(2 k+1)+3 p-3 b(2 k+1) \leqslant 2 p+8$ and hence $p \leqslant 3 b(2 k+1)-6(2 k+1)+8$ is needed). By $(*), p \leqslant b+2 b(k+1)$, so we need only show $p \leqslant b+2 b(k+1) \leqslant 3 b(2 k+1)-6(2 k+1)+8$ or $b+2 b k+2 b \leqslant 6 b k+3 b-12 k+2$ or $0 \leqslant 4 b k-12 k+2$ or $6 k \leqslant 2 b k+1$. But this is true if $b \geqslant 3$, which it is (recall for $b=1$ and $c=0$ that $a=\frac{1}{2}(p+1)$, which has elasticity $\left.p /\left(\frac{1}{2}(p+1)\right)\right)$.

We summarize what we have for \mathbb{Z}_{p} regarding elasticity in terms of the set $\operatorname{Min}(p)$ (where p is prime). The lower end of the set has consecutive numbers $2,3, \ldots$ (Theorem 4.5). At the other extreme, the largest value is $\frac{1}{2}(p+1)$. The next possible value less than $\frac{1}{2}(p+1)$ is $\left\lfloor\frac{1}{3}(p+4)\right\rfloor$. These are equal for $p=3$ and 5 and differ by one for $p=7$ and 11. However, for $p \geqslant 13$ there is a gap between these two values and since $\frac{1}{2}(p+1)-\frac{1}{3}(p+4)=\frac{1}{6}(p-5)$, this gap between values gets large as p increases in size. We end this section with an application of the above in a slightly more general setting.

In [2], the following set of elasticities is considered (where p is an odd prime):

$$
\Upsilon(p)=\left\{\rho\left(\mathcal{B}\left(\mathbb{Z}_{p}, S\right)\right) \mid \emptyset \neq S \subseteq \mathbb{Z}_{p} \backslash\{0\}\right\}
$$

In that work, they observed that

$$
\Upsilon(p) \subseteq\left\{\frac{1}{2} p, \frac{1}{3} p, \ldots, p /\left(\frac{1}{2}(p+1)\right), 1\right\} .
$$

They also noted there were 'gaps' in the sets $\Upsilon(p)$ for $p=13,17,19$ and 23 . With the simple observation that

$$
\rho\left(\mathcal{B}\left(\mathbb{Z}_{p}, S \cup T\right)\right) \geqslant \max \left\{\rho\left(\mathcal{B}\left(\mathbb{Z}_{p}, S\right)\right), \rho\left(\mathcal{B}\left(\mathbb{Z}_{p}, T\right)\right)\right\}
$$

and the fact that

$$
\rho\left(\mathcal{B}_{a}(n)\right)=\frac{p}{\frac{1}{2}(p+1)}
$$

for $a=2$ or $a=\frac{1}{2}(p+1)$, we easily use the analysis of this section to conclude that the only possible set S that could have $\rho\left(\mathcal{B}\left(\mathbb{Z}_{p}, S\right)\right)$ between $p /\left(\frac{1}{2}(p+1)\right)$ and $p /\left\lfloor\frac{1}{4}(p+3)\right\rfloor$ would be $S=\left\{\overline{1}, \overline{2}, \overline{\frac{1}{2}(p+1)}\right\}$. However, in [2, Lemma 12 (c)] it is shown that $\rho\left(\mathbb{Z}_{p},\left\{\overline{1}, \overline{2}, \overline{\frac{1}{2}(p+1)}\right\}\right)$ is not between these values. Hence, we have the following theorem.

Theorem 4.8. Let $p \geqslant 13$ be a prime. There is no subset $S \subseteq \mathbb{Z}_{p} \backslash\{0\}$ with

$$
\begin{equation*}
\frac{p}{\frac{1}{2}(p+1)}<\rho\left(\mathcal{B}\left(\mathbb{Z}_{p}, S\right)\right)<\frac{p}{\left\lfloor\frac{1}{4}(p+3)\right\rfloor} \tag{**}
\end{equation*}
$$

Hence, for such a prime p, there is no Krull domain D with divisor class group \mathbb{Z}_{p} whose elasticity $\rho(D)$ satisfies the inequality $(* *)$.

Acknowledgements. The authors thank the referee for many helpful comments and suggestions.

References

1. D. F. Anderson, Elasticity of factorizations in integral domains: a survey, Lecture Notes in Pure and Applied Mathematics, vol. 189, pp. 1-29 (Marcel Dekker, New York, 1997).
2. D. F. Anderson and S. T. Chapman, On the elasticities of Krull domains with finite cyclic divisor class group, Commun. Alg. 28 (2000), 2543-2553.
3. S. T. Chapman and A. Geroldinger, Krull monoids, their sets of lengths and associated combinatorial problems, Factorization in integral domains, Lecture Notes in Pure and Applied Mathematics, vol. 189, pp. 73-112 (Marcel Dekker, New York, 1997).
4. S. T. Chapman and W. W. Smith, An analysis using the Zaks-Skula constant of element factorizations in Dedekind domains, J. Alg. 159 (1993), 176-190.
5. A. Geroldinger, On non-unique factorizations into irreducible elements, II, Colloq. Math. Soc. Janos Bolyai 51 (1987), 723-757.
6. A. Geroldinger and F. Halter-Koch, Non-unique factorizations in block semigroups and arithmetical applications, Math. Slovaca 42 (1992), 641-661.
