EXPLICIT EXPRESSIONS FOR A CLASS
OF PERMUTATION PROBLEMS
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The purpose of this paper is to give some explicit
formulae for probability problems such as those dealing with
maximum runs upon tossing a coin n times in succession.
Although the actual computation involved is quite lengthy, and
generating functions can be used for approximations, the
lemmas obtained may be of some interest in themselves.
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LEMMA 1*. Let Aj+1(n,k) be equal to the number of

ways of choosing k elements from n elements xi, cee s X
n

so that no j+1 consecutive elements appear in any choice.
Then

*
This is a generalization of Problem E-1479, Elementary
Problems and solutions section of The American Mathematical
Monthly, Vol. 69, 1962, n.235.
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Proof. We wish to find the number of distinguishable
arrays of n-k dashes and k dots along a straight line with
the restriction of j+1 consecutive dots appearing. To do this
we array only the n-k dashes along a straight line and con-
sider the n-k+1 spaces or slots, those between the dashes,
the space before the first dash and the space after the last
dash. We divide the k dots into i1 groups of j consecutive
dots each, iz - i1 groups of j-1 consecutive dots each,

is - iz groups of j-2 consecutive dots each, and soon in a

like manner until we have ij - ij 4 Broups of 1 dot each.
Also iu_>_ iv if u>v and necessarily i +i +... +1i =k

i,
J

For a fixed selection of such i's there are | distinguishable

divisions of the k dots into such groups. Thus there are

-k+1
i
J

possible distinguishable insertions of the groups of
2
g

the division into the n-k+1 slots, with at most one group
being inserted into any one slot. The lemma follows.

The case when j =1 is quite interesting and was first
given by Kaplansky [2] as a Lemma, in obtaining the ''quickest"

346

https://doi.org/10.4153/CMB-1964-031-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-031-5

solution to the ""Probléme des Ménages".
The number of ways of chocsing k from n. so that the

maximum number of consecutive elements in each choice is
exactly j is denoted by & (n,k); clearly
J

A(n,k) = A, (n,k) - A (n,Kk) .
j jti j

For example, if p is the probability of obtaining a head in a
single toss, then

n n
T Z Ak p-p)E =1,
k=0 j=k

and we have here a probability distribution with the value of the
random variable being equal to the length of the maximum run.

n

k -k
Z A_,mKp(1-p)
=0

is the probability that heads will not appear j+1 times in
succession.

Further, we denote by A,+1(n) all possible distinguishable
J
choices from among x,,X_,... ,xn such that no j+1 consecutive

1 2
elements appear in any choice. That is,

n
A (n)=2Z A, (nk).
j+1 =0 j+1

LEMMA 2.
Aj+1(n) = Aj+1(n-1) + Aj+1(n-2) + ...+ Aj+i(n-_]-‘l)

i+l

= Z -X) .
o Aj+1(n x)
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Proof. In order to obtain Aj+1(n) we may proceed as

follows.

First we find the number of all possible distinguishable

choices from among xz, x3, «..,x with the "j+1'" restriction.
n

This is equal to Aj+1(n-i). Now each possible choice from

among X “es xn with the "j+41' restriction when added

3 Xy
to x, gives rise to a choice from among xi,x3, ...,X each
n

containing x, and with the 'j+1'" restriction. In factall

such choices arise in this manner and hence we find their

total number to be A,+1(n—2). To find all choices each con-
J

taining both xi,x2 but not x3, we consider x4,x5, veey xn

and find their total number to be A,+1(n-3). We continue in

a like manner and stop when we have found the number of
possible choices with the "j+41'" restriction, each containing

XXy ,xj, and which is equal to Aj+1(n-j-i). By addition

the lemma follows.
If we let P denote the probability that a run of j+1

heads is not observed if a true coin is tossed n times, then,
as is easily verified,

i
P =— A (n)
a o j+1
2
and
1 1
P, =3 + = + ..
n 2 Pn-‘l 2 Pn-z _}+1 P "j"i
e 2
j+1
=z Pn-x where = = - =1
x=1 Zx pO Pi—..._pj_ .
For j =2, it can be shown that, p - 1.236840 ,

(1. 08737781
[Feller, 1].
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We now consider the probability of neither of the sequences
HTH and HHH appearing in n tosses. In the following Lemma
3, an H is identified with an element which is chosenanda T
with an element not chosen. Hence in the proof of the Lemma,
an H is identified with a dash and T with a dot.

LEMMA 3. The number of different ways of choosing

k elements from among xi, ...,% so that no two elements
n

x,,x.‘,_2 (i=1,2,...,n-2) appear in any choice is equal to
i i

[ n-2k+2+1
)
_ i
i=0

Proof. We proceed here in the same manner as we
would for . A3(n,k), that is for j=2, in the proof used for

Lemma 1 with the additional restriction that no two consecutive
slots both contain dots. Hence, in inserting a division of the

k dots consisting of i groups of two dots each and k-2i groups
of one dot each into the n-k+1 slots we use the formula
Az(n-k«l-i. k-i). The Lemma follows.

Further, these same considerations lead to an explicit
expression for the related probability in a permutation problem
treated for the first time in the literature in 1956 by
Mendelsohn [3]. Here the restrictions imposed on a random
permutation of n integers 4,2,...,n are: "4 is 2 nd",

"n is (n-1)th" and for i=2,3,4,...,n-1, '"iis (i-1)th" and
"i is (i+4)th". Let (i,j) denote the event that- "i is in the
jth position'" under the permutation, i and j being integers.
Then the problem is to find the probability, denoted by Pn'

that none of the 2(n-1) events
(1,2),(2,1),(3,2),(2,3),(3,4),(4,3),..., L

(where L is the event (n,n-1) or (n-1,n) depending upon
whether n is even or odd), occur. Here the probability of
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{n-k)!

n!

any k events occurring jointly is equal to either or 0.

The probability of the joint occurrence of any two distinct events
(i,j), (4,m) is zero only when, i=1 or j=m. Hence, using

the well known, ''principle of inclusion and exclusion', together
with Lemma 3, wherein 2(n-1) replaces n, we have

n [-IZS} 2n-2k+i k (n-K)!
Pn = T = k-i (-1) _“'!_' .
k=0 i=0 i o
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