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Introduction. Let A' be a compact Hausdorff space, let C(X) denote the algebra of
all continuous functions on X, let B be a Banach algebra, and let 9 : C(X)-+B be a
(possibly discontinuous) homomorphism with dense range. A classical theorem by W. G.
Bade and P. C. Curtis ([2, Theorem 4.3]) describes in great detail the structure of 9; we
shall refer to this result as the Bade-Curtis theorem. Before we give a brief sketch of this
theorem, we fix some notation. For YcX let I(Y) and J(Y) denote the ideals of all
functions in C(X) that vanish on Y and on a neighborhood of Y respectively; if Y = {x}
for some xeX, we write tnr and Jx for 1{Y) and J(Y) respectively. According to the
Bade-Curtis theorem there is a finite set {xt,. . . ,xn) c X, the so-called singularity set of
9, such that d\J({xu. . . ,x,,}) is continuous. As a consequence, the restriction of 9 to
the dense subalgebra of C{X) consisting of all those functions which are constant near
each Xj (j = l,...,n) is continuous, and extends to a continuous homomorphism
emm : C(X)->B. Let 0sing:= 9 - 9cont. Then 0sing|/({x,,. . . ,*„}) is a homomorphism
onto a dense subalgebra of rad(fi). 0con, and 0sing are called the continuous and the
singular part of 9 respectively. Moreover, there are linear maps 9^, . . . , flying : C(X)—>
B such that

V1/ "sing "sing T • • • T "sing*

( i i ) 0£m g | i i V (j = 1 , - • • , n ) is A h o m o m o r p h i s m , a n d
(Hi) 0Wi{JXi) = {0}(j = l , . . . , n ) .

Condition (iii) forces the homomorphisms 9^g |mV|,. . . , 9^Jg\mXii to map into rad(fl);
such homomorphisms are called radical homomorphisms.

When H. G. Dales and J. Esterle independently proved—assuming the continuum
hypothesis—that if X is infinite, then there is a discontinuous homomorphism from C(X)
into a Banach algebra ([3], [6], [8] and [7]), they did so by constructing a radical
homomorphism from a maximal ideal of C{X).

At least parts of the Bade-Curtis theorem on the structure of a discontinuous
homomorphism from C(X) still hold in the non-commutative case; i.e. with C(X)
replaced by an arbitrary C*-algebra. See ([20, Theorem 4.1], [23], and [13, Corollary 8]).
Let A be a C*-algebra, let B be a Banach algebra, and let 9 : A^>B be a homomorphism
with dense range; let J>(9) denote the continuity ideal of 9. Then J>(9) has finite
codimension in A, and there is a dense subalgebra of A containing #(9) such that the
restriction of 9 to this subalgebra is continuous. Let 9COM : A —> B be the continuous
extension of this restriction, and put 0sing:= 9 — 9coM. Then 9sin&\$(d) is a homomorph-
ism onto a dense subalgebra of 3(0) , where 3(0) is the separating space of 9, which
contains rad(B). Comparing the Bade-Curtis theorem and its partial non-commutative
analogue, two questions arise naturally.

1. Does 0sing map^(0) into rad(fl)? (This is equivalent to the big open problem of
whether every homomorphism from a C*-algebra onto a dense subalgebra of a
semisimple Banach algebra is automatically continuous.)

2. Does a further splitting of 0sing as in the commutative case exist in general?
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210 VOLKER RUNDE

In the present paper, we investigate these questions. We proceed as follows. In the
first section, we put together some preliminary material for easier reference later.

Then, in Section 2, we show that under certain conditions the singular part of a
homomorphism from a C*-algebra A admits a splitting as in the commutative case
(Theorem 2.3); these conditions are automatically satisfied whenever A is an AW*-
algebra or a unital C*-algebra whose primitive spectrum Prim(/1) is Hausdorff. In these
two cases, we also have that 0sing maps^(0) into rad(fl) (Corollary 2.4).

As we shall see in the third section, not all assertions of the Bade-Curtis theorem
carry over to the non-commutative situation. We give an example of a homomorphism
from a separable liminal C*-algebra for whose singular part no further splitting exists.

Finally, in section four, we extend some results by B. E. Johnson ([10]) on the
structure of discontinuous homomorphisms from C(X) to the non-commutative setting
(Theorem 4.2 and Theorem 4.3).

1. Preliminaries. We begin with the notion of the separating space of a linear
operator, a concept which is fundamental in automatic continuity.

DEFINITION 1.1. Let E and F be Banach spaces, and let 0:£—>F be a linear
operator. Then

3(0) := {y e F: there is a sequence {.r,,},%i in E such that AT,,—»0 and d(x,,)—>y}

is called the separating space of 0.
It is easy to see that 3(0) is a closed, linear subspace of F. In terms of Definition 1.1,

the closed graph theorem states that 0 is continuous if and only if 3(0) = {0}. For more
information about separating spaces see the first chapter of A. M. Sinclair's monograph
[22].

If A and B are Banach algebras, and 6 :A—>B is a homomorphism, then <z(6) is a
closed ideal of 8{A). In this context another ideal is of importance for the continuity
properties of 0.

DEFINITION 1.2. Let A and B be Banach algebras, and let 8:A^>B be a
homomorphism. Then

J-(d) := {a e A : 0(a)3(0) = 3(0)0(a) = {0}}

is called the continuity ideal of 8.
The concept of the continuity ideal of a homomorphism was introduced by B. E.

Johnson in [9] with a slightly different definition that lacked symmetry. The present
definition is due to A. M. Sinclair ([20]).

The following proposition collects the essential facts about the continuity ideal when
the domain is a C*-algebra.

PROPOSITION 1.3. Let A be a C*-algebra and let 6 : A—* B be a homomorphism into a
Banach algebra B. Then

(i) ${8) is an ideal whose closure has finite codimension,
(ii) 8 is continuous if and only if J*(8) is closed,

(iii) if I c 4 is an ideal, then 8 I is continuous if and only if I cj'(d).

Proof, (i) is part of [20, Theorem 3.8], (ii) is [22, Remark 12.3], and (iii) is stated as
[11, Remark 1]. •
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Let X be a compact Hausdorff space, let B be a Banach algebra, and let
8:C(X) —*B be a homomorphism onto a dense subalgebra of B with singularity set
{*, x,,}. The fact that

x,,}) c *(B) <zf(d) = /({*„ . . . , *„})

plays a crucial role in the proof of the commutative splitting result. To obtain a
non-commutative analogue, we need a substitute for J{{xu. . . ,x,,}) in the context of
arbitrary C*-algebras. An appropriate replacement was introduced by G. K. Pedersen in
[15]; its usefulness in the study of discontinuous homomorphisms was first observed by
K. B. Laursen and A. M. Sinclair ([13, Corollary 8]).

For a C*-algebra A let A+ denote the cone of its positive elements.

DEFINITION 1.4. Let A be a C*-algebra. Put

0n(/4) := {a eA+ : there is x eA+ such that ax = a}\

let

3>+{A):= {aeA+ : there are *,,. . . ,xne%(A) such that a<xx + . . . +*„},

and define SP(A) as the linear span of 2P+(A). Then 2P(A) is called the Pedersen ideal of
A.

If A = C{)(X) for a locally compact Hausdorff space X, then 8P(A) is the ideal Cm(X)
of all continuous functions on X having compact support.

THEOREM 1.5. Let A be a C*-algebra. Then 2P(A) is a dense hereditary ideal of A, and
equals the intersection of all dense ideals of A.

Proof. Although our definition of $>{A) apparently defines a larger set than the
definition in [17] does, an inspection of the proof of [17, 5.6.1] reveals that the definitions
are equivalent (see also [14, Proposition 2.3]). •

If A" is a locally compact Hausdorff space, and 6 : Cn(X)—*B a homomorphism,
where B is a commutative Banach algebra, then 0 maps into rad(B) if and only if
d(Cm(X)) = {0}. This statement has a non-commutative analogue.

For a Banach algebra B, let 2.(B) denote the set of its quasinilpotent elements.

PROPOSITION 1.6. Let A be a C*-algebra, let B be a Banach algebra and let 6 : A—> B
be a homomorphism. Then d(&(A)) = {0} if and only if 9(A) c 2L(B).

Proof. Assume that 6(0i(A)) = {0}. We have an isomorphism of complex algebras
/4/ker 6 = 9(A). Since ^(A) and hence ker 6 is dense in A,A/ker 6 is a radical algebra;
(see, for example, [13, Lemma 4]). Hence 6(A) is a normed radical algebra; i.e. for each
x e 8(A) we have aB{x) <=. oe(A)(x) = {0}.

Conversely assume d(A)c.2L{B). First, let ae%(A). Suppose that there is xeA

such that ax = a. Inductively, we obtain ax" = a(n e N), and therefore

\\d(a)\\u"<\\e(a)\\ll"\\9(xy\\u" (neN).

Since d(x)e£(B), lim,,^ ||0(0)11"" =0, which is possible only if 0(a) = O. Now, let
a e 8P+(A). By definition, there are xu .. . ,xne %{A) such that a ^xx + . . . +x,,. Since

x, +. . . +xn is self-adjoint and 0(JC, + . . . +xn) = 0 by the foregoing, we have by
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[21, Lemma 4.1] that 8((xt + . . . +x,,)U2) = 0. The generalized polar decomposition
([17, 1.4.5]) yields ueA such that a = u(xt + . . . + xn)

m, where 6{a) = 0. It is clear now
that 6(&(A)) = {0}. •

REMARK. TO show that 6{§'{A)) = {0} it actually suffices to assume that d(A+)c
2.(B). Hence, we have

6(A) c 2(B)» d(A+)

2. A non-commutative splitting result. Our goal in this section is to establish a
splitting result for the singular part of discontinuous homomorphisms from certain
non-commutative C*-algebras.

To make formulations less cumbersome, we introduce a definition.

DEFINITION 2.1. Let A be a unital C*-algebra, and let 6 : A—* B be a homomorphism
into a Banach algebra B. We say that 6 admits a splitting if there are linear maps
0s'ng, • • • , 0s!ng :A^>B such that the following conditions hold.

(1) 0sing

(iii) 9ipns(A). 6^S(A) = {0} (; # *).
(iv) Let m, , . . . ,m , , be the maximal ideals in hu\\(^(9)). Then 0s/nB|»V 'S a

homomorphism for j = 1,. . . , n.
(v) 0</>g(<?>(my)) = {O} (/ = 1 n).

The part of the Bade-Curtis theorem we want to generalize then plainly states that
every homomorphism from C(X), where A' is a compact Hausdorff space, admits a
splitting, and the problem we are concerned with reads as follows.

QUESTION. Does every discontinuous homomorphism from a unital C*-algebra admit
a splitting?

When no restrictions are imposed on the domain C*-algebra, the answer to this
question is "no". We will soon give an example of a discontinuous homomorphism from a
liminal separable C*-algebra that does not admit a splitting. Nevertheless, the class of
C*-algebras for which a splitting result holds will turn out to be large enough to contain
all AW*-algebras and all unital C*-algebras with Hausdorff primitive spectrum.

In order to give as weak as possible a condition for our non-commutative splitting
theorem to hold, we require another definition:

DEFINITION 2.2. Let A be a unital C*-algebra, and let X a Prim(,4). Then Z(A), the
center of A, is said to separate the points of X, if the map

PrimG4)^Prim(Z(,4)), P^PDZ(A) (1)

is injective when restricted to X.

REMARKS. 1. By [19, Theorem 2.7.5], Prim(y4) is mapped by (1) continuously onto

2. If X = Prim(/4) (respectively X equals the set of maximal ideals of A), and Z(A)
separates the points of A', A is called central (respectively weakly central) ([19, Definition
2.7.6]).
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3. All AW*-algebras—and hence all von Neumann algebras—are weakly central
([25, Theorem 2.5]).

4. Assume A to be central. Since Prim(/1) is compact and Prim(Z(>4)) is Hausdorff,
(1) is a homoemorphism, and Prim(/4) is Hausdorff as well. If conversely Prim(/1) is
Hausdorff, then it follows from the Dauns-Hofmann theorem ([17, 4.4.8]) that A is
central.

THEOREM 2.3. Let A be a unital C*-algebra, and let 6 : A—>B be a homomorphism
into a Banach algebra B. Suppose that Z(A) separates the points of hull{J>{d)). Then 8
admits a splitting.

Proof. Put I = $•(6), and let m , , . . . , m;, be the maximal ideals in hull(/). Since
Z(A) was assumed to separate the points of hull(/), they give rise to n distinct points
JCI, . . . ,xn e Prim(Z(y4)). Choose eu. . . ,ene Z{A)+, viewed as continuous functions on
Prim(Z(/4)), such that for j = 1,. . . , n

(i) ey = l o n a neighborhood of x,-, and
(ii) ej = 0 on a neighborhood of U**y {**}•

Define for j = 1,. . . , n

a):=ds,n&{eja) (aeA).

The proof that these 0 ^ provide the desired splitting carries over from the commutative
case almost verbatim; only Definition 2.1(v) requires some more attention. For
convenience, we check Definition 2.1(i) and (iv) in detail.

Recall that 0s i n g | / is a homomorphism which vanishes on 3>{d) and hence on £?(/).
n

The element 1 — £ e, is zero on a neighborhood of {x\,. . . ,xn} when viewed as a

function on Prim(Z(/l)), and hence is contained in 5P(1). Thus, we have

0sing(«) - S 6%(a) = 0, i n g((l - f)a) = 0 (a e A),

n

'•e- #sing = £ 0'mg- Now, fix / , and let a, b e ny. Then e,a, ep e my, and we have
y=i

b) ~ OlA(at>) = ^,n,{ejaejb - e,ab) = 0sing((^2 - e,)ab) = 0,

since ej — ej vanishes on a neighborhood of {xu . . . , x,,}, and therefore is contained in

To see that Definition 2.1(v) holds, let first a e 0o(tny). Then there is x e my with
ax=a. Choose ft e Z(A)+ that vanishes on a neighborhood of U {**}> a n d satisfies

fjej = ej. Then f,x el, and ejafjx=fjejax = eja, i.e. ejae%(I), which yields 6i{^(a) = 0.
Now, assume a e 0>+(m,-). Let y, , . . . , ym e ^o(my) such that a <y , + . . . + ym. Then

ea = emae"2<e^av em+ + e'/2v eu2 = ev, + +ev

Since etyu . . . ,ejym e ^{1), we have esa e 9>+{l) and again di(lg(a) = 0. Hence ,

^ y ) ) = { 0 } . D
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As a consequence of Theorem 2.3, for some classes of non-commutative C*-algebras
a perfect analogue of the Bade-Curtis theorem holds.

COROLLARY 2.4. Let A be a unital C*-algebra that is an AW*-algebra or has
Hausdorff primitive spectrum; let B be a Banach algebra, and let 6 : A—* B be a
homomorphism with dense range. Then 6 admits a splitting, and rad(B) = 2(0).

Proof. As we remarked before, both AW*-algebras and unital C*-algebras with
Hausdorff primitive spectrum are weakly central. Since S(6) has finite codimension, all
primitive ideals in hull(^(0)) are maximal ideals, and Theorem 2.3 applies.

To see that rad(S) = 3(0) , we may assume that B is primitive. We then have to
show that 6 is continuous. In view of [11, Theorem 6] and [11, Theorem 11] (see also
[24]), it is sufficient to show that d\Z(A) is continuous. Clearly, d(Z(A))c Z(B). Since
B is primitive, we have Z(B) = C; i.e. d\Z(A) is a character. Consequently, 8\Z(A) is
continuous. •

REMARKS. 1. A closer inspection of the proof of Theorem 2.3 reveals that the
conclusion of the theorem holds as well, if

= 9(I)n9(J)

for all closed ideals / and J of A containing
2. The following example given in [12] shows that Theorem 2.3 is far from being the

best possible result. Let .£ be an infinite-dimensional Hilbert space, and let x e 58(.<p) be
self-adjoint with a(x) = [0,1]. Put A =C*(x,\di,)+ %($). Then A is a C*-algebra, and
/4/3if(.(p) = C([0, 1]). Under the assumption of the continuum hypothesis, there is a
discontinuous homomorphism from C([0,1]). It is easy to see that the induced
discontinuous homomorphism from A admits a splitting. However, Z(A) = Cid ,̂.

3. It follows from Theorem 2.3 that every homomorphism from a weakly central
C*-algebra admits a splitting. In [1], E. Albrecht and H. G. Dales conjectured that if a
C*-algebra A has only a finite number of ^-dimensional, irreducible*-representations for
every n eN, then every homomorphism from A into a Banach algebra is continuous. It
was pointed out in [24] that if this conjecture were true at least for weakly central
C*-algebras, then every homomorphism from a weakly central C*-algebra A which is
continuous on Z(A) would be continuous. Consequently, Corollary 2.4 would extend to
all homomorphisms from weakly central C*-algebras.

3. A counterexample. Let A be a C*-algebra, and let / and / be closed ideals of A.
It is easy to see that 9(1) D 9(J) is dense in / f l / , whence

9(IDJ)c9(l)n9(J). (2)

If A = C(X) for a compact Hausdorff space A', we clearly have equality in (2). We note in
passing that a more general result holds.

PROPOSITION 3.1. Let A be a unital C*-algebra, let I and J be closed ideals of A, and
suppose that Pr\m(A) is Hausdorff. Then 9(1 C\J) = 9(1) D 9(J).

Proof. Let a e 9(1) n 9(J). By [14, Lemma 5.39], {P e Prim(/): a $ P) and
{P e Prim(y): a £ P} are relatively compact subsets of Prim(/) and Prim(7) respectively.
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Hence,

is a compact subset of Pr\m(A) that is disjoint from hull(/) Uhull(7) = hull(/ HJ). Let
/ : Prim(A)—> U+ be a continuous function which is one on K and zero on hull(/ C\J). By
the Daus-Hofmann theorem, there is x e Z(A) such that

x + P=f(P)l + P (PePrim(A)).

Then ax + P = a + P (P e Pr\m(A)), and hence ax = a. On the other hand, x is clearly
contained in I DJ, which yields a e 9{l ("17). •

The following example, which appears (somewhat disguised) already in [16], was
communicated by G. K. Pedersen. It shows that already for rather simple C*-algebras the
inclusion (2) can be proper, even if both / and J are assumed to be primitive ideals of
codimension one. Moreover, the C*-algebra in this example will turn out to be the
domain of a homomorphism which does not admit a splitting.

EXAMPLE. Let 8 e (0,1), and let A be the C*-algebra of all continuous functions
/ : [0, d]—*M2, where M2 is the algebra of all 2 x 2-matrices with complex entries, such
that /(0) is a diagonal matrix. The irreducible ^representations of A are either point
evaluations at t e (0, 6] or the maps

21 /22-I

which yields in particular that A is liminal. Let rrt| and m2 denote the respective kernels of
the maps (3). Consider the functions p, q : [0, d]—> M2, where

p(t)=[ °Q J] and rt) = [y/iL? ^ f ] (re (0,6]).
Then p and q are projections contained in nil. It is easy to see that p(C*(p, q)) = p(m,)
for every irreducible *-representation p of A, which by [5, 11.1.6] implies C*(p, q) = m,.
By [17, 5.6.2] and [17, 5.6.3], C*(p,q)c 0>(m,) holds; i.e. we have 0>(m,) = m,. An
analoguous reasoning where p and q are replaced by \—p and l — q shows that
Sf(m2) = m2 as well. However, ^(tn, n m2) is the ideal of all functions in A that vanish on
a neighborhood of 0. Hence

^(m, n m2) c §>{mx) D

To construct a homomorphism from A that does not admit a splitting, note that A
can be viewed as a subalgebra of M2(C([0, 6])), the algebra of all 2 x 2-matrices with
entries in C([0, <5]):

/ 22

where m0 is the maximal ideal of C([0, <5]) consisting of all functions that vanish at 0. Let
p be a non-maximal prime ideal of C([0, 8]) contained in m0. Since C([0, <5]) is separable,
C([0, 8])/p has cardinality 2N". Assuming the continuum hypothesis, there is a discon-
tinuous homomorphism 8 from C([0, d]) with p as its kernel into a Banach algebra B. 6
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induces a homomorphism M2(C([0, d]))—> M2(B). Let its restriction to A be denoted by
0. Obviously,

i.e. hull(^(0)) = {m,, m2}. If 0 admitted a splitting, then—by Definition 2.1(v) and the
fact that 0>(m,) = iny—, 0^g(m,) = {0} (j = 1,2), and hence 0sing(^(O)) = {0}. It would
follow that 0 is continuous. This contradicts the definition of 0 .

4. Another non-commutative splitting result. In [10], B. E. Johnson further refined
the structural analysis of discontinuous homomorphisms from C{X), making use of the
Stone-Cech compactification. We seek non-commutative extensions of Johnson's results
([10, Theorem 2.5]).

We start with a technical lemma.

LEMMA 4.1. Let A be a C*-algebra, let I cz A be a closed ideal, and let 6 : I —» B be a

homomorphism into a Banach algebra B. Define

Then J*(d) is an ideal of A whose closure has finite codimension, and the restriction of 6 to
n / is continuous.

Proof. Put J: = J>(6). By [4, Theorem 4.4.13], J has finite codimension. Let
xeSf(J)ni, and assume first that * > 0 . Then, by [17, 5.6.2], xme0>{J)C\I as well; in
particular, xme${6) HI. By the definition of ${&), x = xmxmxm e ${d). By Proposi-
tion 1.3, 0\#(d) is continuous. Let y := ||0 |^(0)| | . Then we have ||0(JC)|| < y ||A:||. If* is
an arbitrary element of ^ ( / ) n / , let xux2,x^x4 be positive elements in SP(J)CiI such
that

0) IM=£ ||jc|| (7 = 1,2,3,4),
(ii) x = (*, - x2) + i(x? -x4).

(By [17, 5.6.2], the standard decomposition of x will do.) Then

which yields that d \ &(!) n / is continuous. D

For a C*-algebra A let M{A) denote its multiplier algebra (see [17] for a definition
and basic properties). If A" is a locally compact Hausdorff space, then M(C()(X)) = Ch(X),
the algebra of continuous bounded functions on X, whose primitive spectrum is the
Stone-Cech compactification of X. Therefore, the multiplier algebra of a C*-algebra can
be viewed as a non-commutative analogue of the Stone-Cech compactification. For more
on this aspect of multiplier algebras see the survey article [18].

THEOREM 4.2. Let A be a non-unital C*-algebra, and let 6 : A—* B be a non-zero
homomorphism into a Banach algebra B such that 0(^(/l)) = {0}.

(i) There is a proper closed ideal J of M{A) that contains A and has finite
codimension in M{A) such that d(2P(J)r\A) = {0}.
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(ii) Moreover, assume that Z(M(A)) separates the points of hull(7) in Pnm(Ji(A)),
say til,,. . . , mn. Then there are homomorphisms 6l,...,9n:A—*B such that

(a) 6 = 61 + ... + 8n,
(b) 0,(,4 n 0>(m,)) = {0} (j = \,...,n),

(c) ker 0 = H ker 0y.

Proof. To show (i), view A as a closed ideal of M(A), and define J =J>(0), as in
Lemma 4.1. Then J has finite codimension in M(A), and 0 \ 2P(J) DA is continuous. Since
#(d)(lA=>J'(d)=>2/>(A), JHA=>A; i.e. J contains A. So, &>(J) HA is a dense ideal in
A=JDA, and therefore contains @(A). Since by assumption 0 vanishes on SP(A), we
have 6(9>(J)nA) = {0}.

The proof of (ii) is quite similar to the proof of Theorem 2.3. We choose elements
eu . . . , en e Z(A)+ such that each ey = 1 on a neighborhood of x,-, where xs is the point in
the spectrum of Z(A) corresponding to m,, and e , = 0 on a neighborhood of U {•**}•
Moreover, we can assume that eyeA = 0 (j =t k). Then define for j = 1,. . . , n k*j

0,(a):=0(e,a) (aeA).

Emulating the proof of Theorem 2.3, we see easily that dt, ...,&„ are homomorphisms,
and that (a) and (b) hold. Since for all a e A, 6j{a)dk(a) = 0 (/ =£k), we have

0y(fl)0(«) = 0,(a)2 (aeA,j = l,...,n),

which implies (c). •

;
 THEOREM 4.3. Let A be a unital C*-algebra, and let 6 : A^> B be a discontinuous
homomorphism into a Banach algebra B. Then there is a proper closed ideal I of A with
finite codimension in A, and a proper closed ideal J of Jt(I) that contains I and has finite
codimension in M(I) such that 9>{J) D / c J>(6).

Proof. Put / = ^ ( 0 ) , and apply Theorem 4.2(i) to 0sing : 1^ B. Then 0sing(0>(./) l~l /)
= {0}; i.e. 0 10>{J) n / = 0con, | 9>(J) n /. This yields that 0 10>(J) D /is continuous, and hence,
by Proposition 1.3, that SP(J) D / a J>(d). O
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