SOME POLYNOMIALS OF TOUCHARD CONNEGTED WITH THE BERNOULLI NUMBERS

LEONARD CARLITZ

In a recent paper (4) Touchard has constructed a set of polynomials $\Omega_{n}(z)$ such that

$$
B^{r} \Omega_{n}(B)= \begin{cases}0 & (0 \leqslant r<n) \tag{1}\\ K_{n} & (r=n),\end{cases}
$$

where after expansion of the left member B^{m} is replaced by B_{m},

$$
e^{B x}=\sum_{m=0}^{\infty} B_{m} x^{m} / m!=\frac{x}{e^{x}-1},
$$

and

$$
\begin{equation*}
K_{n}=\frac{(-1)^{n}}{2 n+1} \frac{1}{2^{n}} \frac{(n!)^{4}}{[1.3 .5 \ldots(2 n-1)]^{2}} . \tag{2}
\end{equation*}
$$

(Touchard writes $Q_{n}(z)$ in place of $\Omega_{n}(z)$; we have changed the notation in order to avoid a clash with the Legendre function of the second kind.) It is proved by Touchard that

$$
\begin{equation*}
\Omega_{n+1}(z)=(2 z+1) \Omega_{n}(z)+\frac{n^{4}}{4 n^{2}-1} \Omega_{n-1}(z) . \tag{3}
\end{equation*}
$$

Using (3), Wyman and Moser (5) showed that

$$
\begin{equation*}
\Omega_{n}(z)=2^{n} n!\binom{2 n}{n}^{-1} \sum_{2 r \leqslant n}\binom{2 z+n-2 r}{n-2 r}\binom{z}{r}^{2} . \tag{4}
\end{equation*}
$$

In the usual notation of generalized hypergeometric functions (4) may be written

$$
\Omega_{n}(z)=2^{n} n!\binom{2 n}{n}^{-1}\binom{2 z+n}{n} \cdot{ }_{4} F_{3}\left[\begin{array}{c}
-\frac{n}{2}, \frac{1}{2}-\frac{n}{2},-z,-z ; \tag{5}\\
1,-z-\frac{n}{2},-z+\frac{1}{2}-\frac{n}{2}
\end{array}\right] .
$$

Now Bateman (1;2) has introduced a polynomial

$$
F_{n}(z)={ }_{3} F_{2}\left[\begin{array}{c}
-n, n+1, \frac{1}{2}(1+z) ; \tag{6}\\
1,1
\end{array}\right]
$$

such that

$$
\begin{equation*}
F_{n}(-z)=(-1)^{n} F_{n}(z) ; \tag{7}
\end{equation*}
$$

also in place of (6) there is the alternate expansion

$$
F_{n}(z)=(-1)^{n}\binom{z}{n}_{4} F_{3}\left[\begin{array}{c}
-\frac{n}{2}, \frac{1}{2}-\frac{n}{2}, \frac{1+z}{2}, \frac{1+z}{2} ; \tag{8}\\
1, \frac{z+1-n}{2}, \frac{z+2-n}{2}
\end{array}\right]
$$

Using (7), (8) becomes

$$
F_{n}(2 z+1)=(-1)^{n}\binom{2 z+n}{n}{ }_{4} F_{3}\left[\begin{array}{c}
-\frac{n}{2}, \frac{1}{2}-\frac{n}{2},-z,-z ; \tag{9}\\
1,-z-\frac{n}{2},-z+\frac{1}{2}-\frac{n}{2}
\end{array}\right]
$$

Comparison of (9) with (5) yields at once

$$
\begin{equation*}
\Omega_{n}(z)=(-1)^{n} 2^{n} n!\binom{2 n}{n}^{-1} F_{n}(2 z+1) \tag{10}
\end{equation*}
$$

In the next place we recall Bateman's formula (2)

$$
\begin{equation*}
F_{n}\left(\frac{d}{d z}\right) z \operatorname{cosech} z=\operatorname{cosech} z \cdot Q_{n}(\operatorname{coth} z), \tag{11}
\end{equation*}
$$

where $Q_{n}(z)$ denotes the Legendre function of the second kind. We have also in the notation of Nörlund (3, Ch. 2)

$$
z \operatorname{cosech} z=\sum_{0}^{\infty} D_{m} z^{m} / m!\quad\left(D_{2 m+1}=0\right)
$$

where (symbolically)

$$
\begin{equation*}
D_{m}=(2 B+1)^{m} . \tag{12}
\end{equation*}
$$

Expanding the left member of (11) we get

$$
\sum_{r=0}^{\infty} \frac{z^{r}}{r!} D^{r} F_{n}(D)
$$

in view of (10) and (12) this is equal to

$$
(-1)^{n}\left(2^{n} n!\right)^{-1}\binom{2 n}{n} \sum_{r=0}^{\infty} \frac{z^{r}}{r!}(2 B+1)^{r} \Omega_{n}(B)
$$

Since

$$
Q_{n}(z)=\frac{2^{n}(n!)^{2}}{(2 n+1)!} \frac{1}{z^{n+1}} F\left(\frac{n}{2}+\frac{1}{2}, \frac{n}{2}+1 ; \frac{n}{2}+\frac{3}{2} ; z^{-2}\right) \quad(|z|>1)
$$

we accordingly get

$$
\begin{equation*}
\sum_{r=0}^{\infty} \frac{z^{r}}{r!}(2 B+1)^{r} \Omega_{n}(B) \tag{13}
\end{equation*}
$$

$$
=(-1)^{n} \frac{2^{2 n}(n!)^{5}}{(2 n+1)!(2 n)!} \sinh ^{n} z \operatorname{sech}^{n+1} z F\left(\frac{n}{2}+\frac{1}{2}, \frac{n}{2}+1 ; n+\frac{3}{2} ; \tanh ^{2} z\right)
$$

From (13) it is clear that

$$
(2 B+1)^{r} \Omega_{n}(B)=0 \quad(0 \leqslant r<n)
$$

and therefore

$$
\begin{equation*}
B^{r} \Omega_{n}(B)=0 \quad(0 \leqslant r<n) \tag{14}
\end{equation*}
$$

As for $r=n$, we have

$$
(2 B+1)^{n} \Omega_{n}(B)=(-1)^{n} \frac{2^{2 n}(n!)^{6}}{(2 n+1)!(2 n)!} ;
$$

using (14) this becomes

$$
\begin{equation*}
B^{n} \Omega_{n}(B)=(-1)^{n} \frac{(n!)^{4}}{2^{n}(2 n+1)[1.3 .5 \ldots(2 n-1)]^{2}}=K_{n} \tag{15}
\end{equation*}
$$

This evidently completes the proof of (1).
It may be of interest to remark that (1) can be verified rapidly in the following way. Using (6) and (10) we see that

$$
\begin{aligned}
\Omega_{n}(B) & =(-1)^{n} 2^{n} n!\binom{2 n}{n}-1{ }_{3} F_{2}\left[\begin{array}{c}
-n, n+1, B+1 ; \\
1,1
\end{array}\right] \\
& =(-1)^{n} 2 n!\binom{2 n}{n}^{-1} \sum_{s=0}^{n}(-1)^{s}\binom{n}{s}\binom{n+s}{s}\binom{B+s}{s} .
\end{aligned}
$$

But (3, p. 149)

$$
(B+1)(B+2) \ldots(B+s)=\frac{s!}{s+1}
$$

so that

$$
\begin{aligned}
& \sum_{s=1}^{n}(-1)^{s}\binom{n}{s}\binom{n+s}{s}\binom{B+s}{s}=\sum_{s=0}^{n}(-1)^{s}\binom{n}{s}\binom{n+s}{s} \frac{1}{s+1} \\
&=F(-n, n+1 ; 2 ; 1)=0
\end{aligned}
$$

Thus $\Omega_{n}(B)=0$. Repeated use of the recurrence (3) now completes the proof of (14). Finally (3) yields

$$
\begin{aligned}
(2 B+1)^{n} \Omega_{n}(B) & =(-1)^{n} \frac{n^{4}(n-1)^{4} \ldots 1^{4}}{\left(4 n^{2}-1\right)\left(4(n-1)^{2}-1\right) \ldots(4-1)} \\
& =(-1)^{n} \frac{(n!)^{4}}{(2 n+1)[(2 n-1) \ldots 3.1]^{2}}
\end{aligned}
$$

which gives (15).

References

1. H. Bateman, Some properties of a certain set of polynomials, Tôhoku Math. J., 37 (1933), 23-38.
2. --, The polynomial $F_{n}(x)$, Ann. Math., 35 (1934), 767-775.
3. N. E. Nörlund, Vorlesungen über Differenzenrechnung (Berlin, 1924).
4. J. Touchard, Nombres exponentiels et nombres de Bernoulli, Can. J. Math., 8 (1956), 305-320.
5. M. Wyman and L. Moser, On some polynomials of Touchard, Can. J. Math., 8 (1956), 321-326.

Duke University

