
Canad. J. Math. Vol. 51 (6), 1999 pp. 1230–1239

Symmetric Tessellations
on Euclidean Space-Forms
With best wishes to H.S.M. Coxeter for his 90th birthday.

Michael I. Hartley, Peter McMullen and Egon Schulte

Abstract. It is shown here that, for n � 2, the n-torus is the only n-dimensional compact euclidean space-form
which can admit a regular or chiral tessellation. Further, such a tessellation can only be chiral if n = 2.

1 Introduction

The study of regular (reflexible) or chiral (irreflexible) maps on closed surfaces is a clas-
sical branch of topology which has seen many applications (Coxeter & Moser [3]). Such
maps on orientable surfaces of genus g � 6 have been completely enumerated (Sherk [18],
Garbe [7]). It is well-known that there are infinitely many regular or chiral maps on the
2-torus, but that an orientable surface of genus g � 2 can only admit finitely many such
maps. Each regular or chiral map on a non-orientable surface is doubly covered by a map
of the same kind on an orientable surface (Wilson [19]). However, in contrast to the 2-
torus, the only non-orientable surface of Euler characteristic zero, the Klein bottle, does
not admit any regular or chiral tessellation [3].

In this paper, we shall investigate tessellations on n-dimensional euclidean space-forms.
We shall prove that the n-torus is the only compact euclidean space-form which can admit
a regular or chiral tessellation, and that chirality can only occur if n = 2. For n = 2, this
gives another proof that such tessellations cannot exist on the Klein bottle.

For n � 3, the regular toroids of rank n + 1, that is, the regular tessellations on the
n-torus, were completely enumerated in [15]; see [3] for the case n = 2. It was also proved
there that there are no chiral toroids of rank greater than 3; that is, an n-torus can admit
a chiral tessellation only if n = 2. Together with the results of the present paper, this
now completes the classification of all regular or chiral tessellations on compact euclidean
space-forms.

In Section 2, we recall some basic facts about polytopes and tessellations, and discuss
sparse subgroups. In Section 3, we give a detailed proof of our result for those tessellations
which are regular. Chiral tessellations are then treated in Section 4.
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2 Polytopes and Tessellations

Following [15], [16], an (abstract) polytope of rank n, or simply an n-polytope, satisfies the
following properties. It is a partially ordered set P with a strictly monotone rank function
whose range is {−1, 0, . . . , n}. The elements of rank j are called the j-faces of P; the set
of j-faces of P is denoted P j . For j = 0, 1 or n − 1, we also refer to j-faces as vertices,
edges or facets, respectively. The flags (maximal totally ordered subsets) of P each contain
exactly n + 2 faces, including the unique minimal face F−1 and unique maximal face Fn of
P. Further, P is strongly flag-connected, meaning that any two flags Φ and Ψ of P can be
joined by a sequence of flags Φ = Φ0,Φ1, . . . ,Φk = Ψ, which are such that Φi−1 and Φi

are adjacent (differ by one face), and such thatΦ∩Ψ ⊆ Φi for each i = 1, . . . , k. Finally, if
F and G are a ( j − 1)-face and a ( j + 1)-face with F < G, then there are exactly two j-faces
H such that F < H < G.

When F and G are two faces of a polytope P such that F � G, we call G/F := {H | F �
H � G} a section of P. The conditions ensure that this section is itself a polytope, whose
rank is dim G − dim F − 1. It is usually safe to identify a face F with the section F/F−1.
When F is a vertex, then the section Fn/F is called the vertex-figure of P at F.

An n-polytope P is regular if its (automorphism) group Γ(P) is transitive on its flags. Let
Φ := {F−1, F0, . . . , Fn−1, Fn} be a fixed or base flag of P. The group Γ(P) of a regular n-
polytope P is generated by distinguished generators ρ0, . . . , ρn−1 (with respect to Φ), where
ρ j is the unique automorphism which keeps all but the j-face of Φ fixed. These generators
satisfy relations

(ρiρ j)
pi j = ε (i, j = 0, . . . , n− 1),(2.1)

with

pii = 1, pi j = p ji � 2 (i �= j), pi j = 2 (|i − j| � 2).(2.2)

The numbers p j := p j−1, j ( j = 1, . . . , n− 1) determine the (Schläfli) type {p1, . . . , pn−1}
of P. Further, Γ(P) has the intersection property (with respect to the distinguished genera-
tors), namely

〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉 for all I, J ⊂ {0, . . . , n− 1}.(2.3)

Observe that, in a natural way, the group of the facet of P is 〈ρ0, . . . , ρn−2〉, while that
of the vertex-figure is 〈ρ1, . . . , ρn−1〉.

By a string C-group, we mean a group which is generated by involutions such that (2.1),
(2.2) and (2.3) hold. The group of a regular polytope is a string C-group. Conversely, given
a string C-group Γ, there is an associated regular polytope P(Γ) whose automorphism
group is Γ.

We denote by {p1, . . . , pn−1} the (universal) regular n-polytope whose group is the
Coxeter group [p1, . . . , pn−1] which is abstractly defined by the relations (2.1) and (2.2).

An n-polytope P is called (globally) spherical if it is isomorphic to the face-lattice of a
convex n-polytope. (We shall ignore here the rather less interesting case where the Schläfli
symbol has an entry 2, when the group Γ(P) is an internal direct product.) Then each facet
and vertex-figure, and, more generally, proper section of P is again a spherical polytope. If
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a spherical polytope is regular, then it is isomorphic to a convex regular polytope ([12]).
Further, we say that a polytope P is locally spherical if all its proper sections are spherical
polytopes, or equivalently, if all its facets and vertex-figures are spherical. However, we do
not require here that P itself be spherical. Thus, if P is regular, then its facets and vertex-
figures are isomorphic to convex regular polytopes.

Let P be a regular n-polytope with group Γ(P) = 〈ρ0, . . . , ρn−1〉, and let N � Γ(P)
be any subgroup. We write P/N for the poset whose elements are the orbits of the faces
of P under N (with the induced partial order); this is the quotient of P by N . Under suit-
able conditions on N , this is again an n-polytope [14]. We are interested here in quotients
which preserve the facets and vertex-figures of P, so that the quotient map acts in a “global”
rather than “local” fashion; this property is assured using an interesting class of subgroups
N known as sparse (compare Lemma 2.6 below). The term “sparse” was introduced in [10],
but the groups themselves occur earlier, for example in [4], [11], [14] (we are indebted to
Wolfgang Kühnel and Jörg Wills for drawing our attention to the first two of these refer-
ences).

A subgroup N of Γ(P) is called sparse if

ϕNϕ−1 ∩ 〈ρ1, . . . , ρn−1〉〈ρ0, . . . , ρn−2〉 = {ε} for each ϕ ∈ Γ(P).(2.4)

We shall establish three lemmas about sparse subgroups; our main results do not actually
need them in full generality. The first describes a simple characterization in terms of the
action of N on P, and gives a combinatorial interpretation of sparseness.

Lemma 2.5 Let P be a regular polytope, and let N � Γ(P). Then N is sparse if and only if
each orbit of N meets each proper section of P in at most one face.

Proof Let Γ(P) = 〈ρ0, . . . , ρn−1〉. First assume that the condition on the orbits holds.
Let ϕ ∈ Γ(P), and let τ ∈ N be such that ϕτϕ−1 ∈ 〈ρ1, . . . , ρn−1〉〈ρ0, . . . , ρn−2〉. Then
F0ϕτ � Fn−1ϕ in P. Since F0ϕ is the only element in its orbit which is a vertex of the facet
Fn−1ϕ/F−1 of P, we must have F0ϕτ = F0ϕ. It follows that τ maps the whole vertex-figure
Fn/F0ϕ of P onto itself. Since an orbit meets this vertex-figure in at most one face, τ must
fix each face of Fn/F0ϕ. But then τ = ε, as required.

It is sufficient to prove the converse for facets and vertex-figures, because every proper
section of P is a section of a facet or a vertex-figure. Taking duality into account, we need
only consider the case of a facet Fn−1ϕ/F−1, with ϕ ∈ Γ(P). An i-face of this facet has
the form Fiαϕ, for some α ∈ 〈ρ0, . . . , ρn−2〉. Now, if an orbit of N meets Fn−1ϕ/F−1 in
two i-faces, then there are α, β ∈ 〈ρ0, . . . , ρn−2〉 and τ ∈ N such that Fiαϕ = Fiβϕτ . If
necessary, we replace ϕ by βϕ and α by αβ−1, and then we may assume that β = ε. Thus
Fiαϕ = Fiϕτ , and hence

ϕτϕ−1α−1 ∈ 〈ρ j | j �= i〉 = 〈ρ j | j > i〉〈ρ j | j < i〉 ⊆ 〈ρ1, . . . , ρn−1〉〈ρ0, . . . , ρn−2〉.

But α ∈ 〈ρ0, . . . , ρn−2〉, and so we also have ϕτϕ−1 ∈ 〈ρ1, . . . , ρn−1〉〈ρ0, . . . , ρn−2〉. Since
N is sparse, this implies that ϕτϕ−1 = ε, so that τ = ε. It follows that the two faces in the
same orbit must actually coincide.

We are particularly interested in the case when N � Γ(P), since the quotient is then a
candidate to be a regular polytope.
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Lemma 2.6 Let P be a regular n-polytope with group Γ(P) = 〈ρ0, . . . , ρn−1〉, and let N be
a normal subgroup of Γ(P) such that Γ(P)/N is a string C-group. Then N is sparse if and
only if

N ∩ 〈ρ0, . . . , ρn−2〉 = {ε} = N ∩ 〈ρ1, . . . , ρn−1〉.

Proof If N is sparse then, since ϕNϕ−1 = N for each ϕ ∈ Γ(P), the claimed property
obviously holds. For the converse, let τ ∈ N∩〈ρ1, . . . , ρn−1〉〈ρ0, . . . , ρn−2〉, say τ = αβ−1

with α ∈ 〈ρ1, . . . , ρn−1〉 and β ∈ 〈ρ0, . . . , ρn−2〉. Since Γ(P)/N is a string C-group,
from (2.3) we have

Nα = Nβ ∈ 〈Nρ1, . . . ,Nρn−1〉 ∩ 〈Nρ0, . . . ,Nρn−2〉 = 〈Nρ1, . . . ,Nρn−2〉,

so that Nα = Nβ = Nγ with γ ∈ 〈ρ1, . . . , ρn−2〉. But then αγ−1 ∈ N ∩ 〈ρ1, . . . , ρn−1〉,
and hence α = γ. Similarly, β = γ, and therefore τ = αβ−1 = ε.

Lemma 2.7 Let P be a locally spherical regular n-polytope of type {p1, . . . , pn−1}, and let
T := {p1, . . . , pn−1}. Then P = T/N, where N is a sparse normal subgroup of Γ(T).

Proof Let Γ(T) = 〈ρ0, . . . , ρn−1〉 (= [p1, . . . , pn−1]) and Γ(P) = 〈σ0, . . . , σn−1〉, with
respect to appropriate distinguished generators. Then the mappings ρi �→ σi (i = 0, . . . ,
n − 1) induce a homomorphism κ : Γ(T) → Γ(P). Let N := ker(κ), so that Γ(P) =
Γ(T)/N . Then we know that Γ(T)/N is a string C-group. Since the facets and vertex-
figures of T and P are of the same kind (recall the definition of “locally spherical”; indeed,
this is all what we really need of the assumptions), we must also have

N ∩ 〈ρ0, . . . , ρn−2〉 = {ε} = N ∩ 〈ρ1, . . . , ρn−1〉.

Lemma 2.6 then implies that N is sparse. Clearly we also have P = T/N (see [14]).

We next discuss tessellations on real manifolds (see [16]). We shall only consider tessel-
lations whose tiles are homeomorphic images of convex polytopes, and which thus come
equipped with a natural face structure.

Let X be any n-dimensional real manifold; we shall always assume here that manifolds
are without boundary. A family P of subsets of X (including ∅ and X itself) is called a
(locally finite) tessellation in X if the following three conditions are satisfied. First, for each
proper subset F ∈ P there exist a convex polytope F ′ and a homeomorphism γ : F → F ′

such that Gγ−1 ∈ P for each face G of F ′. The subsets in P are called the faces of P, and
the subsets Gγ−1 of F the faces of F. In particular, F is a j-face of P if F ′ is a j-polytope,
and Gγ−1 is a j-face of F if G is a j-face of F ′. The n-faces of P are also called the tiles or
facets of P. Second, if F1, F2 ∈ P, then F1 ∩ F2 ∈ P also (possibly this is ∅). Third, each
point in X is contained in a tile of P, and has a neighbourhood which meets only finitely
many tiles (this last is what is meant by local finiteness). In other words, X is the underlying
polyhedron (in the topological sense) of a possibly infinite cell-complex.

We shall usually identify a tessellation P with the poset consisting of its faces ordered
by inclusion. This context explains why it was convenient to adjoin to P the underlying
manifold X as an (improper) (n+1)-face. It is then straightforward to check that P becomes
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an abstract (n + 1)-polytope. (In the terminology of [1], the manifold X is then associated
with the polytope P.) A tessellation P on X is called (combinatorially) regular if, as an
abstract polytope, P is regular.

In our applications, X will be a compact euclidean space-form. Recall that an n-dimen-
sional euclidean space-form is the quotient (or orbit) space En/N of euclidean n-space En by
a discrete group N of euclidean isometries which acts freely on En. Spherical or hyperbolic
space-forms are defined similarly, with En replaced by the unit n-sphere Sn or hyperbolic
n-space Hn, respectively [20].

There is a close connexion between the classes of locally spherical polytopes and of tes-
sellations on space-forms [4], [11], [16].

Theorem 2.8 Let P be a locally spherical regular (n + 1)-polytope of type {p1, . . . , pn}.

(a) Combinatorially, P is a quotient T/N of the regular tessellation T = {p1, . . . , pn} in
spherical, euclidean or hyperbolic n-space E by a (sparse) normal subgroup N of Γ(T),
which, when considered as a group of isometries of E, is discrete and acts freely on E.

(b) Topologically, P can be viewed as a regular tessellation on the corresponding spherical,
euclidean or hyperbolic space-form E/N (whose fundamental group is isomorphic to N).
This tessellation is regular, in the strong sense that its symmetry group in E/N is simply
flag-transitive and isomorphic to Γ(P).

Theorem 2.9 Let P be a regular tessellation on an n-dimensional real manifold X (without
boundary). Then X is homeomorphic to a space-form X ′, and P can be viewed as a tessellation
on X ′. More precisely:

(a) if P has only two tiles, then X ′ = Sn and P is a ditope (polytope with only two facets) on
Sn;

(b) if P has more than two tiles, then P is a locally spherical regular (n+1)-polytope (to which
Theorem 2.8 applies).

In either case, X is homeomorphic to |C(P)|, the underlying space of the order complex C(P)
of P.

Recall that C(P) is the simplicial n-complex whose simplices are the totally ordered sub-
sets of P which do not contain the minimal or maximal face.

By Theorem 2.9, a regular tessellation on a space-form X determines X up to home-
omorphism. It is a standard result in topology that, for compact space-forms, the type
of geometry is uniquely determined by the topology. (Spherical space-forms are distin-
guished topologically from euclidean and hyperbolic space-forms by the finiteness of their
fundamental groups. The Gromov norm for manifolds distinguishes topologically between
euclidean and hyperbolic space-forms (see [8]); it takes a positive value for hyperbolic
space-forms of finite volume, but it is zero for all euclidean space-forms.)

Lemma 2.10 Let n � 2, and let P be a regular tessellation of type {p1, . . . , pn} on an n-
dimensional compact space-form X. Let T := {p1, . . . , pn}, the universal polytope of which
P is a quotient. Then the geometry of X determines the geometry of the space E of T; that is,
E = Sn, En or Hn according as X is a spherical, euclidean or hyperbolic space-form.
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In fact, if P = T/N , we may view P as a tessellation on the space-form E/N which is
homeomorphic to X. Hence the two space-forms must have the same type of geometry.
For example, if X is euclidean, then T must be a euclidean tessellation.

3 Regular Tessellations

We prefer to work with (n + 1)-polytopes here, because it is natural to take the underlying
space-forms to be n-dimensional. We begin with a result about sparse subgroups, which is
the key to our non-existence result for regular or chiral tessellations. Its proof is geometric.
For the cubical tessellation {4, 3n−2, 4}, this result was also obtained in [10], with a more
algebraic proof. We shall also find it convenient to assume that a regular tessellation T in En

is strongly regular in the sense of Theorem 2.8(b), so that its euclidean symmetry group acts
flag-transitively. We can then identify this symmetry group with the automorphism group
Γ(T), and write Γ+(T) for its subgroup (of index 2) consisting of all orientation preserving
symmetries; the latter is the rotation subgroup of Γ(T).

Theorem 3.1 Let T be a regular tessellation in euclidean n-space En, and let Λ be the trans-
lation subgroup of its symmetry group Γ(T). Then a sparse subgroup N of Γ(T) whose nor-
malizer contains Γ+(T) is a subgroup of Λ.

Proof First observe that, if necessary, we may replace the given regular tessellation T in
En by its dual. In fact, dual tessellations have the same translation subgroups and rotation
subgroups, and the concept of sparseness is also invariant under duality. In particular, of a
pair of dual tessellations, we shall take T to be the one with a vertex-transitive translation
subgroup Λ (see [2] for the reason why such a choice can always be made). We may then
identify the vertex-set T0 with the translation vectors in Λ whenever it is convenient, and
so write T0 = Λ; in particular, the base vertex of T is the zero vector o. More precisely,
T = {4, 3n−2, 4} (for n � 2), {∞}, {3, 6} or {3, 3, 4, 3}, as appropriate.

Let Γ(T) = 〈ρ0, . . . , ρn〉, so that Γ0 := 〈ρ1, . . . , ρn〉 is the stabilizer of the base vertex
o of T. The corresponding rotation subgroups are thus Γ+(T) = 〈ρ0ρ1, ρ1ρ2, . . . , ρn−1ρn〉
and Γ+

0 = 〈ρ1ρ2, . . . , ρn−1ρn〉. For t ∈ En, we write τ (t) for the translation defined by
xτ (t) := x + t for x ∈ En.

If ϕ ∈ Γ(T), then for x ∈ En we have xϕ = xω + t , with t ∈ En and ω a linear mapping;
in fact, t = oϕ, which is thus a vertex of T, and ω = ϕτ (−t). Since Λ is vertex-transitive,
we also know that τ (t) ∈ Λ, and therefore ω ∈ Γ(T). Then ω ∈ Γ0, because oω = o. This
proves that Γ(T) is the semi-direct product of Λ by Γ0.

Now let N be a sparse subgroup of Γ(T) which is normalized by Γ+(T). Let ϕ ∈ N , and
for x ∈ En let xϕ = xω + t , as above. Note that ϕ−1 is given by xϕ−1 = (x − t)ω−1 for
x ∈ En. We claim that ω = ε, the identity mapping on En, and therefore thatϕ = τ (t) ∈ Λ.

Assume, if possible, that ω �= ε. We define

D := {F ∈ Tn | o ∈ F},

the set of facets of T which contain the initial vertex o. Our strategy is to prove that, if
Λ ′ := Λ ∩ N denotes the subgroup consisting of the translations in N , then D + Λ ′ covers
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the vertex-set T0 = Λ. We then show that D contains an image of o under an element
ϕ ∈ N \ {ε}, which will contradict the assumption that N is sparse.

So, let v be any neighbouring vertex of o in T. By our assumption on Λ, we know that
τ (v) ∈ Λ � Γ+(T). Set ψ(v) := τ (−v)ϕ−1τ (v)ϕ. Writing this as ψ(v) = τ (v)−1ϕ−1τ (v) ·
ϕ, which is a product of elements of N because N is normalized by Γ+(T), we see that
ψ(v) ∈ N . For x ∈ En, we have

xψ(v) = xτ (−v)ϕ−1τ (v)ϕ = (x − v − t)ω−1τ (v)ϕ

=
(
(x − v − t)ω−1 + v

)
ω + t

= x + (vω − v).

Hence ψ(v) = τ (vω − v). Since ω �= ε, there is a neighbour v of o such that vω �= v. We
define w := vω − v; then oψ(v) = w, and hence w ∈ T0.

Since vω is also a neighbour of o and T is centrally symmetric, w is a neighbour of −v.
It follows that N contains a translation, namely τ (w), which maps o onto some second
neighbour, by which we mean a neighbour (different from o) of one of its neighbours.

Now N is normalized by Γ+(T), and so it is invariant under conjugation by the elements
in the subgroup Γ+

0 . It follows that τ (wσ) = σ−1τ (w)σ ∈ N for all σ ∈ Γ+
0 , so that, by

definition, τ (wσ) ∈ Λ ′ (= Λ ∩N , as defined above). We perform a similar analysis to that
used in [15] in the construction of the regular toroids of rank n + 1, working through the
individual cases. As in [15], we define Λa � Λ to be the subgroup generated by a vector
a ∈ Λ and its conjugates under Γ(T) (or under Γ0).

First let T = {4, 3n−2, 4}, with vertex-set T0 = Λ = Zn. The second neighbours of o
are ±ei ± e j (with 1 � i < j � n) and ±2ei (with i = 1, . . . , n), where e1, . . . , en are the
standard unit vectors in Zn. Since the generating vector w of Λw � Λ ′ is such a second
neighbour, then we can argue as in [15] that Λ ′ � Λ(1,1,0n−2) or Λ(2,0n−1) (note that the case
n = 2 is not exceptional, even though rotations only may be employed). In either case,
D + Λ ′ covers T0.

Next let T = {3, 3, 4, 3}, with vertex set Λ = Z4 ∪
(
( 1

2 ,
1
2 ,

1
2 ,

1
2 ) + Z4

)
. The sec-

ond neighbours of o now consist of the neighbours themselves, comprising the vectors
±ei (with i = 1, . . . , 4) and (± 1

2 ,±
1
2 ,±

1
2 ,±

1
2 ), the vectors obtained from (±1,±1, 0, 0),

(±1,±1,±1, 0) or (± 3
2 ,±

1
2 ,±

1
2 ,±

1
2 ) by permutations of the coordinates, and 2v for each

neighbour v. Again arguing as in [15], we see that Λ ′ � Λ(1,0,0,0), Λ(1,1,0,0) or Λ(2,0,0,0), as
the generating vector w is a neighbour, one of the vectors (±1,±1, 0, 0), (±1,±1,±1, 0) or
(± 3

2 ,±
1
2 ,±

1
2 ,±

1
2 ), or twice a neighbour. (For the second case, note the typical calculations

(0, 0, 1, 1) = (1, 1, 1, 0)−(1, 1, 0,−1) and (0, 0, 1, 1) = ( 3
2 ,

1
2 ,

1
2 ,

1
2 )−( 3

2 ,
1
2 ,−

1
2 ,−

1
2 ), which

only use rotations. If we can employ the full symmetry, we actually obtain Λa = Λ(1,0,0,0)

(= Λ) when a = (±1,±1,±1, 0) or (± 3
2 ,±

1
2 ,±

1
2 ,±

1
2 ).) As before, in each case D + Λ ′

covers T0.
For T = {∞} with vertex set Z, the second neighbours are ±2e1, and trivially D + Λ ′

covers T0.
If T = {3, 6}, then Λ is generated by two unit vectors v1 and v2 which are inclined at

an angle π/3. The second neighbours then comprise the neighbours, the six images under
rotation through multiples of π/3 of v1 + v2, and twice the neighbours. Then we have
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Λ ′ � Λ(1,0), Λ(1,1) or Λ(2,0), and once again D +Λ ′ covers T0. (Here, a suffix a = (a1, a2) is
shorthand for a = a1v1 + a2v2.)

We are now able to finish the proof. Consider the translation vector t ∈ Λ of the element
ϕ ∈ N with which we began. Since D + Λ ′ covers T0 = Λ, there exists a translation
τ (u) ∈ Λ ′ � N such that t0 := tτ (u) (= t + u) is a vertex in D. Define ϕ0 := ϕτ (u) ∈ N ,
so that xϕ0 = xω + t0 for x ∈ En. Now o and t0 (= oϕ0) are vertices of some common facet
F ∈ D. Since they belong to the same orbit of N , we must necessarily have t0 = o; here
we have used Lemma 2.5. But then ω = ϕ0 ∈ N \ {ε}. This is a contradiction, because
N ∩ Γ0 = N ∩ 〈ρ1, . . . , ρn〉 = {ε} when N is sparse. It therefore follows that ω = ε, and
hence N consists of translations alone, as was claimed.

Our main result is a straightforward consequence of Theorem 3.1.

Theorem 3.2 For n � 2, the n-tori are the only (topological types of) n-dimensional com-
pact euclidean space-forms which admit regular tessellations.

Proof Let P be a regular tessellation on an n-dimensional compact euclidean space-form
X, and let P be of type {p1, . . . , pn}. By Theorem 2.9, pn > 2 and P is locally spherical.
Let T := {p1, . . . , pn}. By Theorem 2.8 (or Lemma 2.7), P = T/N for some sparse normal
subgroup N � Γ(T). By Lemma 2.10, T is a euclidean tessellation. In particular, we
may view P as a tessellation on the euclidean space-form En/N . Since N is normalized by
Γ+(T), Theorem 3.1 applies, and shows that N can only consist of translational symmetries
of T. It follows that En/N is an n-torus and that P is a regular toroid on it. Since X is
homeomorphic to En/N , this completes the proof.

4 Chiral Tessellations

We begin the discussion of chiral toroids with an immediate consequence of Theorem 3.1.

Theorem 4.1 Under the conditions of Theorem 3.1, if n > 2, then the sparse subgroup N is
normal in Γ(T).

Proof Since we now know that N consists only of translations, we may employ the straight-
forward argument of [15, Theorem 9.1]; we shall not repeat it here.

Recall that a polytope P is chiral if its group Γ(P) has two orbits on the flags, such
that adjacent flags are in distinct orbits ([17]). Let P be a chiral (n + 1)-polytope, and let
Ψ := {G−1,G0, . . . ,Gn+1} be a fixed or base flag of P. For i = 1, . . . , n, let G ′i denote the
i-face of P with Gi−1 < G ′i < Gi+1 and G ′i �= Gi , and let βi be the automorphism of P

which fixes each face G j for j �= i − 1, i, and cyclically permutes consecutive i-faces of P in
the (polygonal) section Gi+1/Gi−2 of rank 2, mapping G ′i to Gi . Then Γ(P) = 〈β1, . . . , βn〉,
where the “rotations” β j satisfy the relations

β
p j

j = ε for 1 � j � n,

(β jβ j+1 · · ·βk)2 = ε for 1 � j < k � n;
(4.2)
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here, {p1, . . . , pn} is again the (Schläfli) type of P.
Let T := {p1, . . . , pn} and Γ(T) = [p1, . . . , pn] = 〈ρ0, . . . , ρn〉, where the generators

are defined with respect to the base flag Φ = {F−1, F0, . . . , Fn+1} of T. Let α j := ρ j−1ρ j

for j = 1, . . . , n. Then the rotation subgroup Γ+(T) := 〈α1, . . . , αn〉 has index 2 in Γ(T).
If P is a chiral (n + 1)-polytope with group Γ(P) = 〈β1, . . . , βn〉, then the mappings
α j �→ β j for j = 1, . . . , n induce a surjective homomorphism κ : Γ+(T) → Γ(P), so
that Γ(P) ∼= Γ+(T)/N with N := ker(κ). In fact, P is isomorphic to the quotient T/N ,
and an isomorphism T/N → P is given by

Fiϕ · N → Gi(ϕκ) for i = −1, 0, . . . , n + 1 and ϕ ∈ Γ+(T);

see [17] for the tools needed in the proof, and [14] for a similar proof for regular polytopes.
Now suppose that P is a chiral tessellation of type {p1, . . . , pn} on an n-dimensional

manifold X (as usual, without boundary). Then the tiles must be isomorphic to convex
n-polytopes which are actually regular. In fact, the subgroup 〈β1, . . . , βn−1〉 of Γ(P) is now
a subgroup of index 1 or 2 in the (finite) group of a tile of P, and since convex polytopes
cannot be chiral, it must actually have index 2. Hence the tiles have a flag-transitive group,
and thus are regular.

On the other hand, the vertex-figures must also be isomorphic to convex regular poly-
topes. In fact, since X is a manifold, each vertex-figure of P is now an n-polytope each of
whose sections of rank at least 2 has an order complex which is topologically a sphere. But
this implies isomorphism with a convex regular polytope, because the vertex-figure has a
Schläfli symbol [5], [12], [13]. In particular, chirality implies that pi > 2 for each i.

It follows that P is a locally spherical chiral polytope, and that T = {p1, . . . , pn} is a reg-
ular tessellation in E = Sn, En or Hn (we could have obtained this directly from [4], [11]).

Now write P = T/N as above. Then we can generalize Lemma 2.7 and show that N is
sparse. Indeed, since the facets and vertex-figures of P are isomorphic to those of T (and
again, this is all that we need), we must have

N ∩ 〈α1, . . . , αn−1〉 = {ε} = N ∩ 〈α2, . . . , αn〉.

Further, since Γ+(T)/N is the group of a chiral polytope (namely P), it must satisfy the in-
tersection property for such groups, and so we can conclude, as in the proof of Lemma 2.6,
that

N ∩ 〈α1, . . . , αn−1〉〈α2, . . . , αn〉 = {ε}.

It is now immediate that N is sparse, because the groups in (2.4) are obtained from those
here by adjoining ρ1, and ρ1Nρ1 is the only subgroup (distinct from N) which is conjugate
to N .

Just as for regular polytopes, we can now view P as a chiral tessellation on the corre-
sponding space-form E/N , which is homeomorphic to the original manifold X (and to
|C(P)|).

Now suppose that X is a compact euclidean space-form. Then again, E = En, T is
euclidean and N is a sparse subgroup of Γ(T) which is a normal subgroup of Γ+(T). By
Theorem 3.1, N can only consist of translational symmetries, so that X is an n-torus and P
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a chiral tessellation on it. Since by Theorem 4.1 (see also [15, Theorem 9.1]), N is normal
in Γ(T) if n > 2, then there are no chiral tessellations on an n-torus with n > 2, and so we
must have n = 2.

Summarizing, we see that we have proved

Theorem 4.3 If an n-dimensional compact euclidean space-form X admits a chiral tessella-
tion, then n = 2 and X is the 2-torus.
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