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Summary
A simple approximate formula is obtained for the capacity of the condenser

formed by a " small" conductor placed inside a much larger one. The formula
involves a constant whose choice is, to a certain extent, arbitrary and it is shown
that, for problems involving spheroids inside cylinders and between parallel
plates, the constant may be found in a simple fashion so as to give very accurate
results. A similar formula is obtained for the loss in potential energy due to a
crack or cavity in a circular beam or a thick plate. For the particular cases of
the boundary value problems considered which have been treated by other
means very close numerical agreement is obtained between those results and
ones deduced in the present paper.

1. Introduction
Recently, several papers have appeared treating particular cases of the

general problem of determining the electrostatic potential in the region between
two conductors St and S2 with the potential given on S1 and S2. (1, 2, 3, 4.)
The methods used in the above references are moderately elaborate and consist
in reducing the problem to the solution of an infinite set of equations (1, 2) or
to a Fredholm integral equation of the second kind (3, 4). Furthermore, in
order to make any appreciable progress with these methods it has been found
necessary to assume that the minimum distance (b) between a point of Sx and
a point of S2 is much greater than the maximum distance (a) between two
points of S1.

In view of the complexity of the boundary value problem, even for simple
surfaces St and S2, it seems inevitable that elaborate methods of the above type
will have to be used in order to obtain a complete solution. It does seem,
however, to be of interest to examine whether it is possible to obtain some
results of physical significance without much elaborate calculation. The present
work is concerned with this particular aspect of the general electrostatic problem
and of similar problems in elastostatics. For the electrostatic problem it
transpires that a simple and, in some cases, very accurate form can be obtained
for the capacity C of the conductor formed by St and S2.
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90 W. E. WILLIAMS

In Section 2 the electrostatic boundary value problem is formulated as a
Fredholm integral equation of the first kind and it is shown that, neglecting
O(a2/b2), a solution can be obtained in terms of the solution for the corre-
sponding problem in the absence of S2. To this order of accuracy a simple
relationship is then derived between C and Co, the capacity of St in free space.
The relationship obtained is valid for arbitrary S^ and S2 and, neglecting
O(a2/b2), is precisely that which would have been obtained by a direct perturba-
tion approach. The relationship involves a constant A and there is a certain
degree of freedom available as to the most appropriate value of A to choose.
It is shown that, when S2 is an infinite cylinder or a pair of parallel planes, it
is possible to choose A so that C/Co is determined correct including terms of
O(a2lb2). Furthermore, for the particular cases of spheroids in circular cylinders
or between parallel plates it is shown that A can be chosen in a simple way so
that the error in the formula obtained for C/Co is O(a6/b6).

In Sections 4, 5, various problems for cracks and cavities in circular beams
and thick plates are considered. For the case of an axi-symmetric crack in a
circular cylinder subjected to an axial couple simple expressions involving one
constant are found for the effect of the crack on the strain energy and the angle
of twist. The error in these expressions is O(a''/b7) for arbitrary cracks but for
spheroidal cavities it is shown that the constant may be chosen so that the
error is O(a1A/b1A). For the particular case of a penny shaped crack a power
series in a/b is derived for the strain energy and this agrees with a corresponding
result obtained by Collins (5). For a spherical cavity in a cylindrical beam the
numerical values obtained for the angle of twist are in very close agreement
with those of Ling (6). Problems involving spheroidal cavities in a thick plate
under torsion are also examined. The problem of an oblate spheroidal cavity
rotated as a rigid body in a thick plate with fixed plane surfaces is considered
briefly and an expression given for the applied couple necessary to give the
prescribed rotation. The numerical value of the applied couple agrees exactly
with that obtained by Fox (7) for the case when the sphere radius is half that
of the cylinder.

2. Basic Formula
The problem considered is that of determining the electrostatic potential in

the region between two conductors St and S2, St being completely contained in
S2 and kept at unit potential, the potential on S2 being zero. The maximum
distance between two points on St will be denoted by a and the minimum
distance between a point of Sx and a point of S2 will be denoted by b. It will
also be assumed that (a/b) is small compared to unity.

The potential Fwill be of the form

F = f G(P, Q)a(P)dS, (1)
Js,

where Q is an arbitrary point in the region between the conductors, P is a point
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of 5j, a(P) denotes the charge density at P and G(P, Q) is the Green's function
vanishing on S2. From equation (1) it follows that the boundary value problem
reduces to the solution of

1 = 1 G(P, Q)a{P)dS, QonS1 (2)
Jst

G(P, Q) can be written as the sum of the free space Green's function G0(P, Q)
and a perturbation term GX(P, Q) and hence equation (2) becomes

QMP)dS+ f G^P, Q)a(P)dS, QonS, (3)= f GoOP, QMP)dS+ f
JSi Js,

Physically the second integral on the right hand side of equation (3)
represents the effect of the conductor S2 on the potential on Ŝ  and hence it
will be of O(e) times the first integral, where t = ajb. It will now be assumed
that, on Su Gx can be written as A + G2(P, Q) where A is a constant and G
is O(Ae). Clearly this can always be done as one possible value for A is the
value of Gi(P, Q) for any arbitrary pair of points P and Q on St. G2 would
then be the deviation of Gt on S from this constant value and would thus be
of the stated order. Hence

1 = f G0(P, Q)a(P)dS+A f <r(P)dS+ f G2(P, Q)o(P)dS, Q on St. ...(4)
Js, jst Jst

Equation (4) can be re-written as

1= f G0(P, Q)o-(P)dS+ \ G2(P, Q)a'(P)dS, QonS, (5)

where

f
Js,

\-A I adS
Js,

_ J>
It follows from equation (6) that

I a'dS
•(7)

l+A
.

a'dS

The above arguments show that the second integral on the right hand side
of equation (5) is O(e2) times the first. Hence, neglecting terms of this order,
a' is the electrostatic charge density on St when raised to unit potential in free
space. It will be assumed that St is such that the solution to this problem can
be found. It now follows from equation (7) that the capacity C of the conductor
formed by Sx and S2 is given by

https://doi.org/10.1017/S0013091500025839 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500025839


92 W. E. WILLIAMS

Equation (8) is the basic equation of the present paper and all the electro-
static results are derived directly from it. Equation (8) shows that

CjC0 = l-ACo + O(e2)

and if A is interpreted as the value of G(P, Q) for any pair of points P, Q on 5j
this result for the capacity is precisely that which would have been obtained
by a simple perturbation procedure. The usefulness of equation (8) in
determining the electrostatic capacity lies in the fact that in many situations it
is possible to show that, by a suitable choice of A, the error term can be shown
to be O(e3). This type of situation occurs when G2 is O(e2A) and is best
illustrated by considering two particular cases which give rise to this type of
situation.

The first case is that when S2 is a circular cylinder of radius c. G, then has
the form (4)

G1 = £ (2-3Or)G[r\Pl, p2, Z l , z 2 ) c o s r ( ^ - ^ 2 ) (9)
r = 0

where

= - J f cos p{zY-z2)dp, (10)
lr(pc)

and dOr is the Kronecker delta. {pl, zl, <f>j) are the cylindrical polar coordinates
of P referred to a coordinate system whose axis coincides with that of the
cylinder, (p2, z, (j>2) are the corresponding coordinates for Q. The corresponding
result for the case when S2 is a pair of parallel plates a distance Id apart is also
given by equation (9) where Gt is now defined by

(ir) = | ~ ; - , {e~pd cosh K z i - z 2 ) - ^ cosh p(zl + z
J o sinh 2pd

(11)

The symbols pi,z1,(j>1, etc., have the same meaning as in equation (10) except
that the z-axis is now perpendicular to the plane of the plates with the origin
midway between the plates.

It follows from equation (10) that, when S2 is a circular cylinder, the
deviation of G, on St from the value of GX(P, P), where P is on the axis of the
cylinder, is of the second order. Hence if A is defined by

A=--I(0), (12)
nc

where
/(2m) f°° w2mA'0(u)

du,
2m + 1 Jo /0(u)

it follows that the error term in equation (8) is O(e3). Hence for a conductor
St placed near the axis of a circular cylinder the capacity C of the combined
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conductor is given by

£ = ( l - - Co/(0)) +O(83) (13)
Co \ nc )

The known solutions (4) for a disc or a cap in a circular cylinder are of the
above form, [n1 in equation (74) of (4) should be replaced by n.~\

It follows similarly from equation (11) that, if A is defined as Gt(P, P)
where P is any point on the plane z = 0, the error term in equation (8) is again
O(e3). Hence for a conductor St in the neighbourhood of the plane z = 0

+ O(e3) (14)

The known solutions for a cap and a disc between two parallel planes satisfy
equation (14).

It has thus been shown that for certain conductors S2 the result of equation
(8) is somewhat more accurate than one would have expected initially. For
certain bodies S1 such as spheres or spheroids it is possible to show that A
can be chosen in a simple fashion so that the error in equation (8) is O(eb).
These particular cases will now be discussed.

3. Problems involving spheroids

The general approach will be illustrated by considering the particular case
of a sphere of radius a placed with its centre O on the axis of a circular cylinder
of radius c. Since the problem considered is axi-symmetric it follows that the
only contribution to the second integral in equation (3) will come from G(°\
It also follows from the form of G^ given in equation (10) and the general
theory of solutions of Laplace's equation that, on the sphere

G[°\P, Q) = — Re{ £ e ^ ^ / c o s <9,)}{ £ e^nPn(cos 92)\. ...(15)
[ J ( J

In equation (15) Qx and 02 denotes the angles between Oz and OP, OQ,
respectively, ^ denotes a/c and the constants An are dimensionless constants
of order unity with A2n+1 being purely imaginary. From the arguments of
Section 2 it follows that a' = ao(a constant)+ 0(<r0ei), and it follows from this
result, equation (14) and the orthogonality properties of the Legendre function
that the second term on the right hand side of equation (5) has the form

A
— {elA2P2(cos 02) + et/l4/>

4(cos G2)}

provided that A ~ —A\\c. In this case the value of A is again that given by
equation (12). It thus follows that the terms of 0{GQZ\) and O(o-O£i) in a' will
be proportional to P2(cos 0j) and P4(cos 0j) and hence make no contribution

to a'dS. Hence equation (13) is valid with the O(e3) term replaced by O(e6)
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94 W. E. WILLIAMS

and equation (14) can also be shown to be valid to the same order of error. To
this order of approximation equations (13) and (14) had previously been
obtained by the author (4) and Collins (3) respectively, by different more
elaborate methods.

The above analysis can now be extended almost immediately to cover the
cases of oblate and prolate spheroids placed with their centres on the axis of a
circular cylinder and with their axes of symmetry coinciding with that of the
cylinder. The case of an oblate spheroid will be considered first. It is con-
venient to use an oblate spheroidal coordinate system such that the coordinates
of P and Q are, respectively, (f t , £lf <!>,), (£2, £2> $2) where the oblate co-
ordinates are related to the corresponding cylindrical polar ones by the formulae

}*, ' = 1.2 (16)

a denotes the semi major axis of the spheroid and e the eccentricity of its elliptic
cross-section.

It follows by an extension of the analysis for the sphere that equation (8)
will again be valid with an error of 0(E\) if A is taken to be the constant term
in the expansion of G? on the spheroid as a series in Pn(£i), P„(£?)• Hence A
will now be given by

\ j P , (17)

where

hiPP)eip2 = £ B,(p)Pr(Z)PXi0 (18)
r = 0

Equation (18) is a formal identity between two solutions of Laplace's equation
both non singular at the origin, it is thus formally valid for all p, z, £,, £ and
hence setting £ = — / gives

and hence

e"*= £ Br(p)Pr(O
r = 0

Bo= —s inh pae (19)
pae

Equations (17) and (19) may be combined to give an exact expression for A
but since equation (8) will only be valid to O(e\) only terms up to O(s\jc) need
be retained in the expression for A. Thus the appropriate value to be used in
equation (8) is

A = Zl\m+ C^) + A MW, (20)
nc I 9 225 J

numerical values of the /'s have been obtained by Smythe (2). It now follows
from equations (8) and (20) and the known result for the capacity of an oblate
spheroid that the capacity C of the conductor formed by the spheroid and the
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cylinder is given by

C = - = — 1 ^ \ i 1(0) + - (e£l)
2 - ^ + — («ii)4/(4)} + O(ef).

s i n ' ^ L ^ s i n " 1 ^ 9 9 225 JJ
(21)

For the particular case of a disc the result of equation (21) agrees with one
previously obtained by the author when it is taken into account that due to an
arithmetical error 17/360 in the expression for C in (4) should be 16/360 (i.e.
2/45). For the case of a spheroid with e = >/3/2 detailed numerical calculations
for C have been carried out by Smythe (2) and the difference between Smythe's
result and that of equation (21) is less than 2 in 106 for st = 0-5 and the per-
centage error is less than 0-7 for st = 0-7.

The analysis for a prolate spheroid of semi major axis a and eccentricity e
almost exactly duplicates that for the oblate spheroid. A is again given by
equation (17) where now

1
Bo(P) = — s m Pae

pae
and hence

c = . 2ae

log ^ « log ' 1 + ̂ ' ^ 2 2 5

•A
(22)

The numerical values of C for e = s/3/2 were compared with those obtained
by Smythe, the difference between the values was less than 2 in 104 for et = 0-4
and the percentage error was found to be less than 0-5 for s1 = 0-8.

The corresponding result for an oblate spheroid placed with its centre
midway between two parallel planes and its axis of symmetry normal to the
planes may be written down almost immediately from equations (10), (11) and
(17). The appropriate value for A in equation (8) is now given by

~pd sin2 pae

Jo cosh pd (pae)

and expansion in powers of e2(= a/d) gives
Jo

A=- | _V-.^-^rfp,

A = — [log 2 - £(ee2)
2£(3) + Te(e£2)4£(5)] + O(slld) (23)

For the particular case of a circular disc of radius a equations (8) and (27) give

~ = 1+ - Iog2e 2 + [Il\og2
2a n \n

+ 0 ( s f )
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96 W. E. WILLIAMS

The above expression for C correct up to the term in s2 has previously been
obtained by Collins (3).

The appropriate value for A in equation (8) for a prolate spheroid between
two planes is obtained by replacing e by ie in equation (23).

4. Application to elastostatics
The approach of Section 2 can also be generalised to derive equations

analogous to equations (6) and (7) for problems involving cracks and cavities
under torsion. We consider first the general problem of an axi-symmetric
crack, whose surface will be denoted by St, inside a circular cylinder of radius c.
The axes of symmetry of the crack and cylinder are assumed to coincide and
it is also assumed that the cylinder is maintained under torsion by a couple
applied about the axis of symmetry. The definition of a crack is that adopted
by Sadowsky and Sternberg (8) i.e. that St separates the material and hence that
there is no stress across Sj .

Polar coordinates p, z, <f> are chosen with the z-axis coincident with the
axis of symmetry and we then have that in Love's notation (9) the only non-
vanishing stresses z<j>, p(j> are derived from the axi-symmetric torsion function
Xi by

P 5p pz dp
where

dp2 p op 8z2

and p. is the shear modulus. If the applied couple is given by \np.xc*, where T
is a constant, then it follows from the formulations of Ling (6) and Collins (5)
that Xi = X + i^p4, where x vanishes on the cylinder and is equal to — \tpA

on S1. The constant T is the angle of twist per unit length for a cylinder without
a crack.

If x is written as p2ij/ then

dp2 p dp dz2 p2

Thus \j/ cos 2(f> is a solution of Laplace's equation vanishing on S2 and equal to
— \xp2 on Sx. It now follows immediately from potential theory that

= I p2, z l s z2) + 2nG[2\p1, p2, zu z2)']<j(p1, zjpjs, ...(27)

where C is the bounding curve of S1 in the meridian plane, the notation in
equation (27) is that of Sections 2, 3, i.e. the suffix 1 refers to a point P on S1,
and 2 to an arbitrary point Q. In this notation nG^ is the coefficient of
cos 2(0!— (j>2) in the Fourier expansion of the free space Green's function
G0(P, Q), G[2) is defined by equation (10) with r = 2 and Ana is the discontinuity
in the normal derivative of \j/ across C.
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The boundary value problem for ip thus reduces to solving

[GtfXpi, p2, zu z2)+27iG(!2)(pi> P2> zi» Z2)]ff(Pi> zJPids,

(j}2, z 2 ) o n C . (28)

If a is used to denote the maximum distance between two points of C it follows
from equation (28) that on C

2«G<1
2> = plpliA + G^,, p2, zu z2)} (29)

where G3 is O(Aa2/c2) and

A= - 3 f / ? 4 (30)
64c

where

7T(2r)!j0 I2{v)

and the p"s have been tabulated by Ling up to p"24 (5).
By an analysis similar to that of Section 2 is now follows that equation (28)

may be re-written

f 2 f
Jc Jc

where

a' = o\ 1 + — I p\ods I (32)
L T Jc J

and hence
I* p\ads= [ p\o'ds.\\- — f pjff'dsl X (33)

[For notational convenience the dependence of a', GQ2), G3 on p l s z1? etc., is
not demonstrated explicitly in the above equations.]

Equations (29) and (30) and simple dimensional considerations show that
the ratio of the second integral on the right hand side of equation (31) to the
first is O(e7) where e = a/c. Hence a' = <ro[l + O(e7)] where

= f
Jc

(34)

It also follows from equation (33) that

f p\<rds= f p ? f f o d s . | " l - ^ f pfffodsl ' +O(£7) (35)

Equation (34) is the integral equation for a crack in an infinite medium and it
will be assumed that the solution of this problem can be found in a convenient
form. Equations (32) and (35) then show that the solution for a crack in a
cylinder may be found up to O(e7) immediately from the solution in the infinite
medium. Equation (35) may be used to obtain a simple relationship between
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El —the loss of potential energy due to a crack in an infinite medium and E2

the corresponding quantity due to a crack in the cylinder. From equation (35)
and the expression for the energy derived in (10) it follows that

' +O(e7) (36)

For the cases of spherical and penny shaped cracks equation (36) agrees with
a result derived by Shail (11)

Another quantity of physical interest which can be expressed in terms of the
left hand side of equation (35) is colt the increase in the angle of twist due to the
presence of the crack in the cylinder. We have that (6)

i d r 2 r« ,, i
PISPIL j-00 J

where i/' is given by equation (27). After reduction this gives

p\ads (37)f
If G(!2) is denned by equation (11) with r = 2 then equation (28) is the

appropriate integral equation for a crack SL in a plate of thickness Id with the
axis of symmetry of the crack normal to the faces of the plate. In this case
the plate is maintained under torsion by a shear stress pxp2 applied over its
faces. Equations (32) to (36) will once more be valid if A is now defined by

A = ^ 1 £(5), (38)
1024d5

where £(•?) is the Riemann Zeta function. For spherical and penny shaped
cracks the ratio E2/Ei derived from equation (36) and (38) agrees with a
corresponding result derived by Shail (11). As for the electrostatic problems
it is possible to improve the accuracy of equation (35) for the particulars cases
of spheroidal cavities in a cylinder or a thick plate. These particular cases will
now be examined in the following section.

5. Problems involving spheroidal cavities
We consider first an oblate spheroidal cavity in a circular cylinder of radius c.

The centre of the spheroid is assumed to be on the axis of the cylinder and
its axis of symmetry assumed to coincide with the cylinder axis. Equations (27)
and (28) will still be valid provided that Ana is now interpreted as

on

where d/dn denotes the outward normal derivative on C.
By a simple extension of the analysis of Section 3 it can be shown that,

provided A is the coefficient of p\p\ in the expansion of 2nG{2) on the spheroid

https://doi.org/10.1017/S0013091500025839 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500025839


SOLUTIONS OF BOUNDARY VALUE PROBLEMS 99

as a series in PJ,2X^i)PJ,2X^2)> o' = Co[l + O(e14)] and hence that equation (35)
is valid with an error term of 0(e14).

Thus A will now be given by
&P)K2(pc)

2(pc)
where

Jo h<
•dp (39)

eipzI2(PP) = I (ae)2Br(p)P?X<;)P?Xi0 (40)
r = 2

It follows from equation (40) (letting £, -> — i) that

B2=
 5J- f1 (l-v2)2e-°epvdv.

384 J _ /
The integral in the above expression is elementary but the subsequent

manipulation is considerably simplified by re-writing the equation as

^ f ^ k i ( p ) ( 4 1 )
3 8 4 ( ) 2

Thus from equations (39) and (41)

A = ~225n r ^ v* i2i(-ev)dv

32c5 J o I2(v) (ev)5

Equation (42) is an exact expression for A but, as equation (35) is only valid up
to O(e14), the appropriate form of A for use in equation (35) will be a power
series in e. The series expansion for II (12) considerably simplifies the manipula-
tions involved in the derivation of the series for A. The final result is

125/?10(e8)6
A = ^l\l± + W**) 5/?8(£e)

c5 [192 896 1008 29568

+ ~Pi2(ee)8 + O(Bl0)i (43)

The appropriate value of A for a prolate spheroid is obtained from equation
(42) by replacing e by ie. It follows from an examination of the analysis leading
to equation (43) and a comparison of equations (10) and (11) that the appropriate
value of A for an oblate or prolate spheroid in a thick plate may be deduced
from the corresponding result for a spheroid in a cylinder by replacing £ by
ia/d and j?2r by (1 -2~2r)C(2r+1).

For the case of a penny-shaped crack in a circular cylinder the ratio E2/El

has been calculated by Collins (5), who reduces the problem to a Fredholm
integral equation of the second kind. Collins obtains the ratio correct to
O(e12) and, to this order, his result agrees with that obtained from equations
(36) and (43). Corresponding agreement is also obtained for a penny-shaped
crack in a thick plate.

Numerical values of coj obtained from equations (35) and (37) with A
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defined by equation (43) [with e = 0] show complete agreement with the
numerical values of a^ obtained by Ling (6) for a spherical cavity in a cylinder
for e:gO-5. The discrepancy between the results of equations (35) and (37) and
those of Ling is less than 3 in 105 for e = 2/3.

The procedure can also be applied to the problem of a spheroidal cavity in
a thick plate of thickness 2d whose faces are kept fixed when the cavity is
rotated about its axis of symmetry through a small angle a. It is assumed that
the axis of symmetry is normal to the faces of the plate and that the centre of
the spheroid is midway between the faces of the plate. It can be shown that,
for an oblate spheroid, the applied couple G necessary to produce the dis-
placement is given by

+O(e10), (44)

where £ = ct/d, Go is the corresponding couple for an infinite medium and

9(£e)
2C(5) 729(ee)7C(7) 51(e£)C(9)l

3200 320 J
C(9)l

JA =

2d3\_ 8 32 3200 320
For the case of a sphere and e = \ expressions (44) and (45) give a value for G
which agrees exactly with that given by Fox (7).

6. Possible extensions
The general procedure of the preceding sections can be easily extended to

solve the general non-axisymmetric problems for spheroids in cylinders and
between parallel planes. Two particular cases have been examined in detail
and the problem treated briefly at the end of Section 5 can be reduced to the
problem of finding a function ij/ satisfying prescribed boundary conditions and
such that i/f cos </> is a solution of Laplace's equations. Problems where the
normal derivative of a potential function are prescribed on S2 may also be
treated similarly.

The present work has been concerned with the simple determination of some
significant physical parameter in the various problems treated but it is of interest
to note that the integral equation formulation of Section 2 may be adapted to
obtain more detailed properties of the solution without recourse to elaborate
perturbation procedures, etc. This approach will now be examined very briefly
for the particular case of the sphere placed symmetrically in a cylinder. It
follows from equation (15) that equation (3) becomes

= f G0(P,1 = | G0(P, Q)a(P)dS- * Re<{ £ ^AnPn(cos 62)

f f «!
Jst » = o

AaPJLco$91)o(P)dS (46)
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The equation

PJLcos 92) = I oG0{P, Q)dS-i
is the equation occurring in the electrostatic boundary value problem for 5 t

when the prescribed potential is /"n(cos 92)- This problem is soluble by standard
methods giving a — BnPn(cos 92) where Bn may be found. Thus equation (46)
may be re-written as

= a- f

Equation (47) is a Fredholm integral equation of the second kind for a and may
be solved by iteration. The above approach is not the most suitable for the
sphere as it has been shown (4) that a simpler governing integral equation can
be obtained for a function S which is directly related to a. Equations analogous
to equations (46) and (47) can be derived for the problem of a spheroid in a
cylinder and a formal solution could be obtained. The kernels of these equations
will necessarily be complicated and it does not seem possible to use the technique
of (4) to reduce them to a simpler form.
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