PRIME POWER REPRESENTATIONS OF FINITE
LINEAR GROUPS 1II

ROBERT STEINBERG

1. Introduction. The aim of this paper is two-fold: first, to extend the
results of (4) to the exceptional finite Lie groups recently discovered by
Chevalley (1), and, secondly, to give a construction which works simultanc-
ously for the groups 4,, B,, C,, D,, E,, Fy and G (in the usual Lie group
notation), and which depends only on intrinsic structural properties of these
groups. It seems likely that the statements of this paper, especially (1) to (14)
upon which the later work is based, also hold for the other known simple
linear groups, namely the unitary and second orthogonal groups (4).

Throughout this paper, the phrase ‘‘finite Lie group” and the symbol I
refer to any of the groups in the first list above. We lean heavily on the pro-
perties of these groups developed by Chevalley (1), and use his notations,
slightly modified. The symbols u, %, etc., always denote elements of the groups
U, H, etc., respectively, these groups being defined in §2.

2. Basic properties of finite Lie groups. In this section we set forth the
properties of the groups G = L to be used in the sequel. Statements (1) to
(10) are extracted from (1), and the others are proved in §4.

(1) There exist two subgroups U and H of G such that UMNH =1, U H is a
group, and U is normal in U H (1, p. 40, Lemma 9).

(2) There exists a group W (the Weyl group) and for each w € W an element
of G which is also denoted by w such that the union of the sets H w is a group, I1
is a normal subgroup, and the quotient group s the isomorphic image of W under
the map w — H w (1, p. 37 Lemma 3).

(3) Corresponding to each w € W, U has two subgroups U,’ and U, (this
is U, in (1)) such that

('L) U= Uu'/ Uu'r

b)) w U,/ w ' C Uand

(6) Uy, = Ufor somew, ¢ W (1, pp. +1-43).

(7) G isthe union of the sets U H w U, and

whwy e, = G hws ty,
implies that w = a, h = h, w, = w,, and

Uy = Uy

(1, p. 42, Theorem 2).
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(8) W contains a set of elements {wa} (the fundamental reflections) such that

(9) wa* = 1 for each a and

(10) {we.} generates W (3, p. 1605, Theorem 1).

(11) For each a, if w = w,, we set U, = U, and U, = U,'; then the union
of Uy Hand Uy H wy Uy is a group.

(12) For each w and o, at least one of

U'a g Uw’y Ua g D'u'u'al

holds.
(13) There is a homomorphism e of W onto the group {1, — 1} of two
elements such that e(w,) = — 1 for each a.

(14) There is an element u such that w § U, for all w = 1.

These properties are not independent. For example, the condition U M H
= 1 of (1) follows from (7), and (9) follows from (4), (5), (7) and (11). The
complete list is given here for ready reference in what follows.

3. The ideal I and the representation R. In this section, we assume
that G is a group for which (1) to (14) hold. Let F be any field and 4 the group
algebra of G over F. For any subset S of G, let the symbol S also denote the
sum of the members of .S considered as elements of 4, and |S| the cardinality
of S. Let ¢ be the element of A defined by
(15) ¢ = UH Ze(w) w,

the summation being over the elements of IW. Then we can state the following
fundamental result.

LEMMA 1. Let ¢ be defined by (15). Then (i) e we = — e; (ii) if u, = 1, then
(16) Wo U Wa ' = o I W Uy
for some tiq, Uy and h, and
(17) e (o W™ — e + 1) = 0.

Proof. Equation (i) follows from (2) and (13). By (7), wa tts § Us Hw,.
Thus wa %, wa— § U, H, and (11) implies (16). By (9) and (12), each right

coset of W relative to the group {1, w,} consists of two elements v and vw,
such that U, C U,’. Hence, by (1), (2), (56), (9), (13) and (16), we get

(18) UHvu, w,' = UHovw,,
(19) UHv = UH v, and
(20) UHvWetha W™t = U H v Wy U

Now to get (17), multiply (18), (19), and (20) by €(v), €(v) and e(vw,), add,
and then sum on the right cosets of W relative to the group {1, w,}.

THEOREM 1. Let e be given by (15), and let I be the right ideal of A generated
by e. Then the set B = {eu,u € U} is a vector space basis for I. The dimension
of Iis |Ul|.
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Proof. For a fixed u, by (4), (5), (6), and (7), the coset U H w, « is present in
e u with a coefficient e(w,) and is not present in e u; if #; 5 u. Thus B is linearly
independent. Let I, be the linear span of B. Thene € I, C ¢ A = I. Thus
I, = I if it can be shown that I, is an ideal. For any » and %, I, « C I, and
Iy h C Iy, by (1) and (2). Also for any # and «, by (4) we can write # = w4, %,
and then e u w,™! = (€ % Wa™') (Wa %’ wo™') € Iy, using Lemma 1 and (5);
hence I, w,~! € Io. By (2), (7), and (10), 4 is generated by elements of the
form u, h and w,~'. Thus Iy A © I, and Theorem 1 is proved.

COROLLARY. If s € T and s = Zy, e u, v, € F, then v, 1s e(wo) times the
coefficient of U H wo u in the right coset decomposition of s relative to U H, and
2 v 1S the coeffictent of UH. If x € G and ex = Z v, ewu, then v, =1, — 1
or 0, and at most |W| of the v, are non-zero.

Proof. The first statement follows from (6), (7) and Theorem 1. Since ¢
is the signed sum of |W| right cosets relative to U H, the same is true of e x,
and the last statement now follows from the first.

LEMMA 2. Let m be the index of U Hin G: m = 2|U,|. Then

(21) eUZe(w)w = me.
Proof. For each x € G, writeex = Z v(x; #) e u so that
(22) e =2v(x; u) eux .
Here v (x; u) is e(w w,) if
(23) UHwyu=UHwx

for some w and is 0 otherwise, by the corollary to Theorem 1. Now (23) is
equivalent to u x~!' € wy~! U H w. Thus summation of (22) on x € G gives

|Gle = 2, Zpe(wwo) ewy ™ UHw = Ze UH Zpe(w) w = |U Hle U Ze(w)w

by (1), (2) and (13). If the base field F has characteristic 0, division by | U H |
yields (21). Since only integral coefficients occur in (21), it remains valid for
any field.

We now state the principal result of this section.

THEOREM 2. Let G be a group for which (1) to (13) hold. Let I and B be as in
Theorem 1, let m be the index of U H in G, and let R be the representation of G
on I by right multiplication. Then

(i) R restricted to U is equivalent to the right regular representation of U, the
degree of Ris | U [;

(ii) relative to B, R is represented by a set of matrices each of which has only
entries of 1, — 1 or 0 with at most | W | non-zero eniries in each row;

(iii) if the base field F has characteristic O or prime to m, then R s irreducible.

Proof. Theorem 1 and its corollary imply (i) and (ii). We prove (iii) by
showing that any element s # 0 of I generates all of I under right multiplica-
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tion by the elements of 4, the linear span of G. If s ## 0, there is a coset
U H x represented in s with a coefficient v £ 0. Then U H has the coefficient
v in s ¥~ By the corollary to Theorem 1, s x™!' = v, ¢ u with £ v, = «v.
Hence, by (1) and LLemma 2,

sxV'{(ym T UZe(w)w = (ym)™ ' Z,v,eulUZ,e(w)w = e.
Thus I = e A CsA C I, and (iii) is proved.

We use the condition (14) for the first time in the proof of the following
converse to Theorem 2.

THEOREM 3. In the notation of Theorem 2, if (1) to (14) hold for G and if the
characteristic of F divides m, then R s reducible.

Proof. By (6) and (7), e U # 0 so that ¢ U generates a non-zero invariant
subspace I of I. We complete the proof by showing that I, # I or, equiva-
lently, that ¢ ¢ I,. Lemma 2, with the elements of G replaced by their in-
verses, implies, because of (1), (2), and (13), that Z e(w) w is a left annihilator
of ¢ U and hence of I,. But it is not a left annihilator of ¢. Indeed we show that
an element « for which (14) holds appears in 2 e(w) w ¢ with a coefficient 1.
Now u € w, U H w, implies that w,™'u € U Hw,. By (2) (7), and (14),
w; = 1 and then w, = 1. Again by (2) and (7), # can be written uniquely as
1 % k1, so that all assertions are proved.

4. Representations of finite Lie groups. In order to apply the results of
§3 to the groups L, we first prove:

LEMMA 3. Each group L has properiies (1) to (14).

Proof. As has already been stated in §2, (1) to (10) are extracted from
(1). In the proof of (11) to (14), we use the standard Lie algebra terminology
(2), and note that the index set {a} of (8) refers to a simple system of positive
roots and the w, are the reflections in these roots. It is proved in (3, p. 19-01,
[Lemma 1) that w, maps « upon — « and permutes the remaining positive
roots. Then (11) follows by (1, pp. 36, 41). Also

(wwy) (o) = w(— a) = — w(a).

Thus either (w w,) (a) or w(a) is positive, and (12) is true. For each w, let
n(w) be the number of roots » such that » > 0 and w(r) < 0. Then e(w)
= (— 1)™® fulfils the requirements of (13). Finally, if w # 1, then w(a) < 0
for at least one « (3, p. 16-08, Theorem 2), and so, by the same reasoning as
above, U, C U,/ for some e, and similarly, Ug C U, if 8 5 v. Thus, if we
choose u#, # 1 for each « and set u = ITu,, then u ¢ U, for each «, hence
u ¢ U, for each w # 1, and (14) is proved.

[f the group L is defined over a field of ¢ elements and of characteristic p,
it is further proved in (1) that U can be chosen as a p-Sylow subgroup of L,
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U H as the normalizer of U, and then | U, | = ¢"®, with n(w) as above. Thus
we have:

THEOREM 4. Let L be a finite Lie group over a field of q elements and of charac-
teristic p. Let U be a p-Sylow subgroup of L, and let m be the index of the normalizer
of U in L, this number being given by m = 2q". Let I be any vector space of
dimension | U | over a field of characteristic O or prime to m. Then L has an
irreducible representation R of degree | U | which has I as the representation space
and for which the results of Theorem 2 are valid.
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