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1. Introduction. The aim of this paper is two-fold: first, to extend the 
results of (4) to the exceptional finite Lie groups recently discovered by 
Chevalley (1), and, secondly, to give a construction which works simultane­
ously for the groups An, Bn, Cn, Dn, En, F4 and G» (in the usual Lie group 
notation), and which depends only on intrinsic structural properties of these 
groups. It seems likely that the statements of this paper, especially (1) to (14) 
upon which the later work is based, also hold for the other known simple 
linear groups, namely the unitary and second orthogonal groups (4). 

Throughout this paper, the phrase "finite Lie group" and the symbol L 
refer to any of the groups in the first list above. We lean heavily on the pro­
perties of these groups developed by Chevalley (1), and use his notations, 
slightly modified. The symbols u, h, etc., always denote elements of the groups 
U, H, etc., respectively, these groups being defined in §2. 

2. Basic properties of finite Lie groups. In this section we set forth the 
properties of the groups G = L to be used in the sequel. Statements (1) to 
(10) are extracted from (1), and the others are proved in §4. 

(1) There exist two subgroups U and H of G such that U C\ II — 1, UII is a 
group, and U is normal in U H (1, p. 40, Lemma 9). 

(2) There exists a group W (the Weyl group) and for each w Ç W an element 
of G which is also denoted by w such that the union of the sets II w is a group, II 
is a normal subgroup, and the quotient group is the isomorphic image of W under 
the map w —> H w (1, p. 37 Lemma 3). 

(3) Corresponding to each w f W, U has two subgroups UJ and Uw (this 
is Uw" in (1)) such that 

(4) U = UJ Uw, 
(5) w UJ w~l Ç U and 
(6) UW0 = Uforsomewo £ W (1, pp. 41-43). 
(7) G is the union of the sets U II w Uu-, and 

u h W\ uWl = U h w2 uw.2 

implies that u = û, h — h, W\ — w>2, and 

(1, p. 42, Theorem 2). 
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(8) W contains a set of elements {wa} (the fundamental reflections) such that 
(9) wa

2 = 1 for each a and 
(10) {wa} generates W (3, p. 16-05, Theorem 1). 
(11) For each a, if w = wa, we set Uw = Ua and UJ = UJ \ then the union 

of Ua H and Ua H wa Ua is a group. 
(12) For each w and a, at least one of 

Ua Ç UJ, Ua Ç UWWJ 

holds. 
(13) There is a homomorphism e of W onto the group { 1 , - 1 } of two 

elements such that e(wa) = — 1 for each a. 
(14) There is an element u such that u $ UJ for all w ^ 1. 
These properties are not independent. For example, the condition U C\ H 

= 1 of (1) follows from (7), and (9) follows from (4), (5), (7) and (11). The 
complete list is given here for ready reference in what follows. 

3. The ideal / and the representation R. In this section, we assume 
that G is a group for which (1) to (14) hold. Let F be any field and A the group 
algebra of G over F. For any subset S of G, let the symbol 5 also denote the 
sum of the members of 5 considered as elements of A, and |5 | the cardinality 
of S. Let e be the element of A defined by 

(15) e = UH 2e(w) w, 

the summation being over the elements of W. Then we can state the following 
fundamental result. 

LEMMA 1. Let e be defined by (15). Then (i) e wa = — e\ (ii) if ua ^ 1, then 

(16) Wa Ua Wa~
l = Ua h Wa Ûa 

for some ua, ûa and h, and 

(17) e (ua Wa"1 - ûa + 1) = 0. 

Proof. Equation (i) follows from (2) and (13). By (7), wa ua i Ua Hwa. 
Thus waUaWa~l $ UaH, and (11) implies (16). By (9) and (12), each right 
coset of W relative to the group {1, wa) consists of two elements v and vwa 

such that Ua Q U/. Hence, by (1), (2), (5), (9), (13) and (16), we get 

(18) UHvuaWa~l = UHvwa, 
(19) UHv = UHvûaand 
(20) U H V Wa Ua Wa~

l = U H V Wa Ûa. 

Now to get (17), multiply (18), (19), and (20) by e(v), e(v) and e(vwa), add, 
and then sum on the right cosets of W relative to the group {1, wa}. 

THEOREM 1. Let e be given by (15), and let I be the right ideal of A generated 
by e. Then the set B — {e u, u 6 U\ is a vector space basis for I. The dimension 
of!is\U\. 
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Proof. For a fixed u, by (4), (5), (6), and (7), the coset U H w0 u is present in 
e u with a coefficient e(w0) and is not present in e U\ if U\ ^ u. Thus B is linearly 
independent. Let J0 be the linear span of B. Then e £ I0 Q e A = I. Thus 
Jo = / if it can be shown that J0 is an ideal. For any u and A, IQ u Q I0 and 
hh Ç. Jo, by (1) and (2). Also for any w and a, by (4) we can write w = wa uj 
and then e w wa~

l = (e w« «V""1) (wa uj wa~
l) G Jo, using Lemma 1 and (5) ; 

hence J0 wa
_1 C J0. By (2), (7), and (10), ̂ 4 is generated by elements of the 

form u, h and wa~
l. Thus J0 A C J0 and Theorem 1 is proved. 

COROLLARY. If s £ I and s = 2 7„ ^ M, 7„ £ F, /Aew 7W is e(w0) Jiraes Âe 
coefficient of U H w0 u in the right coset decomposition of s relative to U H, and 
2 yu is the coefficient of UH. If x Ç G and ex — 2 yu e u, then yu = 1, — 1 
or 0, and at most \ W\ of the yu are non-zero. 

Proof. The first statement follows from (6), (7) and Theorem 1. Since e 
is the signed sum of \W\ right cosets relative to UH, the same is true of e x, 
and the last statement now follows from the first. 

LEMMA 2. Let m be the index of U H in G: m = 2| Uw\. Then 

(21) e U 2 e (w) w = m e. 

Proof. For each x £ G, write e x = 2 y(x; u) e u so that 

(22) e = 2 Y(X; W) e w x - 1 . 

Here 7(x; w) is e(w WQ) if 

(23) U Hwou = UHwx 

for some w and is 0 otherwise, by the corollary to Theorem 1. Now (23) is 
equivalent to u x~l G w<rl U H w. Thus summation of (22) on x G G gives 

\G\ e = 2U 2we(ww0) ewo'1 UHw = 2Me J7H 2we(w) w = \UH\e U 2e(w)w 

by (1), (2) and (13). If the base field F has characteristic 0, division by | U H \ 
yields (21). Since only integral coefficients occur in (21), it remains valid for 
any field. 

We now state the principal result of this section. 

THEOREM 2. Let G be a group for which (1) to (13) hold. Let I and B be as in 
Theorem 1, let m be the index of U H in G, and let R be the representation of G 
on I by right multiplication. Then 

(i) R restricted to U is equivalent to the right regular representation of U; the 
degree of R is \ U | ; 

(ii) relative to B, R is represented by a set of matrices each of which has only 
entries of 1, — 1 or 0 with at most | W \ non-zero entries in each row; 

(iii) if the base field F has characteristic 0 or prime to m, then R is irreducible. 

Proof. Theorem 1 and its corollary imply (i) and (ii). We prove (iii) by 
showing that any element s =̂  0 of J generates all of J under right multiplica-
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tion by the elements of A, the linear span of G. If s j* 0, there is a coset 
UII x represented in 5 with a coefficient y 9£ 0. Then U H has the coefficient 
7 in 5 x _ 1 . By the corollary to Theorem 1, s x~~] = 2 yu e u with 2 yu = y. 
Hence, by (1) and Lemma 2, 

s x~] {y m)~l U 2 e(w) w — (7 m)~l 2M Y„ eu U 2W e(w) w = e. 

T h u s I = d Ç , ? i Ç J , and (iii) is proved. 

We use the condition (14) for the first t ime in the proof of the following 
converse to Theorem 2. 

T H E O R E M 3. In the notation of Theorem 2, if (1) to (14) hold for G and if the 
characteristic of F divides m, then R is reducible. 

Proof. By (6) and (7), e U 9^ 0 so t h a t e [ /genera tes a non-zero invar iant 
subspace I\ of / . We complete the proof by showing t h a t I\ 9^ I or, equiva-
lently, t ha t e $ I\. Lemma 2, with the elements of G replaced by their in­
verses, implies, because of (1), (2), and (13), t ha t 2 e(w) w is a left annihi lator 
of e U and hence of I\. Bu t it is not a left annihi lator of e. Indeed we show t h a t 
an element u for which (14) holds appears in S e(w) w e with a coefficient 1. 
Now u Ç Wi UIIw2 implies t h a t w{~1 u Ç UIIw2. By (2) (7), and (14), 
W\ = 1 and then w2 = 1. Again by (2) and (7), u can be wri t ten uniquely as 
1 û h 1, so t ha t all assertions are proved. 

4. R e p r e s e n t a t i o n s of finite Lie g r o u p s . In order to apply the results of 
§3 to the groups L, we first prove: 

LEMMA 3. Each group L has properties (1) to (14). 

Proof. As has already been s ta ted in §2, (1) to (10) are extracted from 
(1). In the proof of (11) to (14), we use the s t andard Lie algebra terminology 
(2), and note t h a t the index set {a} of (8) refers to a simple system of positive 
roots and the wa are the reflections in these roots. I t is proved in (3, p . 19-01, 
Lemma 1) t h a t wa maps a upon — a and permutes the remaining positive 
roots. Then (11) follows by (1 , pp. 36, 41) . Also 

(w wa) (a) — w(— a) — — w(a). 

T h u s either (w wa) (a) or w{a) is positive, and (12) is t rue . For each w, let 
n(w) be the number of roots r such t h a t r > 0 and w(r) < 0. Then e(w) 
= (— l)n(w) fulfils the requirements of (13). Finally, if w 9e 1, then w(a) < 0 
for a t least one a (3, p . 16-08, Theorem 2) , and so, by the same reasoning as 
above, UJ C Ua' for some a, and similarly, Up C Uy

f if /3 9^ y. T h u s , if we 
choose ua 9e 1 for each a and set u = Uua, then u $ [/«' for each a, hence 
u i UJ for each w 9^ 1, and (14) is proved. 

If the group L is defined over a field of q e lements and of characterist ic p, 
it is further proved in (1) t ha t U can be chosen as a />-Sylow subgroup of L, 
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U H as the normalizer of U, and then | Uw \ = qn(w), with n(w) as above. Thus 
we have: 

THEOREM 4. Let L be a finite Lie group over afield of q elements and of charac­
teristic p. Let U be a p-Sylow subgroup of L, and let m be the index of the normalizer 
of U in L, this number being given by m — Hqn(~w). Let I be any vector space of 
dimension \ U \ over a field of characteristic 0 or prime to m. Then L has an 
irreducible representation R of degree \ U \ which has I as the representation space 
and for which the results of Theorem 2 are valid. 
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