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dered as forming the original triangle, it follows that four triangles
can be obtained each containing three cycles of six circles.

§ 7. Since ZC'S and DB'C are in perspective,
RS passes through C.
Similarly sT ., s A,
and ™R ,, » B.

Since ZC'E and DA'C are in perspective,
D’E passes through C.

Similarly FD ’ B,
and EF ,, " A.

Since ZC is perpendicular to AB, it is bisected perpendicularly
by A'B’, and as CD is parallel to ZX, the figure CDZE isa rhombus,
as are BD'YF and AEXF'.

D’ESR forms a complete quadrilateral two eof whose diagonals

Z(C' and ZO bisect their corresponding angles and are perpendicular
to each other.

Sixth Meeting, April 10, 1891.

J. S. Mackay, Esq, M.A., LL.D,, ex-President, in the Chair.

On some properties of a triangle of given shape inscribed
in a given triangle.

By R. E. ALLarDICE, M. A,

It is well known that in a given triangle a one-fold infinity of
triangles may be inscribed similar to a given triangle This becomes
at once obvious on consideration of the converse problem ; for we
may circumscribe about a given triangle (A), a triangle similar to a
second triangle (B), and having its sides parallel to the sides of (B).

We may also show in the following manner that; in a given
triangle, one triangle and only one can in general be inscribed having
its sides parallel to given directions,

Let D (fig. 16) be a point in the side BC of a triangle ABC ; and
let DE, EF, FI, be parallel to the given directions.

Now D and D’ trace out projective ranges on BC ; and hence to
get the inscribed triangle corresponding to the given directions, we
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must make D coincide with a double point of this double range
But as D and D’ move in opposite directions along BC and reach in
finity together, there is only one double point on this double range.

This way of looking at the problem is of advantage as it suggests
a way of extending some of the following theorems to the case of
polygons of any number of sides. It should be noted however that
in the general case the inscribed polygons will have given angles but
will not in general be of given shape.

Another way of looking at the question is to notice that there
are only five conditions on the inscribed triangle and that therefore
one condition still remains to be satisfied.

Let now (fig. 17), DEF, D'E'F’ be any two triangles of given
shape inscribed in ABC; and let corresponding sides of these
triangles intersect in the points P, Q, R. We shall show that the
triangle PQR is also of constant shape, its angles depending only on
those of ABC and DEF.

We have the following ‘relations among the angles in the
figures :—

QPR=7-FPQ-EPR;
FPQ=BFD'=x-B-BD'F;
EPR=EER=7-C-CDE.
“ QPR=#—-(r-B-BDF)- (»-C-CDE)
=B+C+BDF +CDE -«
=(r-A)+(r-D)-m=m-(A+D)

Now if we suppose the triangle DEF to remain fixed, while
D'E'F’ varies its position, the various positions of PQR will give a
series of triangles of given shape inscribed in DEF. If L, M, N,
are the points of intersection of corresponding sides of two of the
triangles PQR, the triangle LMN will also be of constant shape.
In fact, L=v - (D+P)=7-D-(7-A-D)=A,

That is to say the triangle LMN is similar to the triangle ABC
with which we started. 'We obviously get in the same manner an
infinity of triangles of constant shape inscribed in any one of the
series LMN, and so on ad infinitum,

In other words, we get an infinity of similar triangles DEF in-
scribed in ABC, an infinity of similar triangles PQR inscribed in
any one of the set DEF, and so on; and corresponding angles of
these triangles recur in the order A, D, P, A, D ......, where the
sum of any three consecutive angles is two right angles.

https://doi.org/10.1017/50013091500030807 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500030807

41

A similar set of propositions may easily be proved regarding
triangles of given shape circumscribing a given triangle.

The following is a proof of the known theorem that the triangle
DEF is a minimum (has minimum area and therefore also minimum
perimeter) when the perpendiculars to the sides of ABC at the
points-DEF are concurrent ; and also of the theorem that if P, Q, R,
are the points of intérsection of corresponding sides of the minimum
triangle and the consecutive triangle, then the perpendiculars at
P, Q, R, to the sides of DEF are concurrent.

Let L AEF =z, c AFE=2, . BFD=y, etc.;
then, by drawing perpendiculars from F and E’ on PF' and PE
respectively, we may easily show that

EP cotx, = FP cotu,
PR sina, cotz/ sinE = PQ sin, cot,/ sinF

cosx, cosy, cosy; _ PQsinE QRsinF RPsinD
cosx, COsy, C0S7; " PRsinF QPsinD’ RQsinE
and hence the perpendiculars at D, E, F, to the sides of ABC are
concurrent.
Another proof of this theorem, without the use of infinitesimals,
will be given later.
From the fact that the area of DEF is stationary we get,

AFPF’ + ADQD’' + AERE' - AFQF - ADRD’ - AEPE’ =0,
FPP+ DQ*+ ER’ - FQ*- DR* - EP*=0;

and hence the perpendiculars at the points P, Q, R, to the sides of
DEF are concurrent. (It may be shown that they concur in the
same point).

It may easily be shown that the following construction® gives
the minimum inscribed triangle of given shape :—

On the sides of the triangle ABC (fig. 18), described externally,
triangles BCA', B'CA, BCA/, of the required shape. The lines AA/,
BB, CC’ concur in & point Q. From Q draw perpendiculars QD’,
QE, QF’ to the sides of ABC; and from A,B,C, draw perpendicu-
lars to the sides of D'E'F'. These perpendiculars concur in a point
P such that AP and AQ, BP and BQ, CP and CQ are isogonal lines.
[P and Q are frequently called inverse points ; but as I shall have

* See a paper by Mr M. Jenkins in the Quarterly Journal of Mathematics, vol.
xxi. (1886), p. 84.
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occasion to speak of points inverse with reference to a circle, I shall
call points such as P and Q reciprocal points. This name is appro-
priate since the trilinear co-ordinates of Q are the reciprocals of the
co-ordinates of P.]

If perpendiculars PD, PE, PF be drawn from P to the sides
BC, CA, AB, the triangle DEF will be similar to A'BC, the angles
corresponding in this order.

It may easily be shown further that the angles A, D and D
make up two right angles so that D'E'F’ is similar to the triangle
PQR of fig. 17.

By means of the converse of the theorem that if a parabola
touches the three sides of a triangle the circumcircle of the triangle
passes through the focus, it may easily be proved that the envelopes
of the sides of the inscribed triangle of a given shape are three
parabolas. (Compare the paper by Mr Jenkins already referred to).
For let P (fig. 19) be the point whose pedal triangle has the given
shape ; then, if PD, PE, PF be drawn so that PEAF, PFBD, PDCE
are cyclic quadrilaterals, it may easily be shown that the triangle
DEF is of invariable shape. Hence the sides of DEF envelope three
parabolas of which P is the common focus.

We can now get the condition that the triangle DEF (fig. 19) be
a minimum very simply by means of the propositions just proved.
For if R be the (variable) radius of the circle circumscribing AEPF,
we have EF =2RsinA ; and therefore, as A is constant, EF is a
minimum when R is a minimum, that is, when the circle is described
on AP as diameter. Moreover, in this case, EF is the tangent to
the parabola at the vertex ; and therefore the foot of the perpen-
diculaz from P on FE is the vertex of the parabola, and is the point
of intersection of two consecutive positions of EF, when EF is a
minimum, as was proved above.

It may be noted that the above propositions, taken together, give
the following property of the parabola :—

Let any three confocal parabolas be described so that each
touches two sides of a triangle ABC. Take any point D in BC and
draw a tangent to the first parabola meeting CA. in E; draw a tan-
gent from E to the second parabola meeting ABin F; then the
tangent from F to the third parabola will pass through D, and the
triangle DEF will be of invariable shapo whatever be the position
of D. Further, if R, P, Q, be the points of contact of these tan-
gents, the triangle PQR will also be of invariable shape, and the
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angles will satisfy the relations A+D+P=B+E+Q=C+F+R=
two right angles.

A construction was given above for the minimum inscribed
triangle of a given shape and for what may be called the point cor-
responding to the series of triangles of a given shape.

In the course of the construction it came out that, in order to
make the problem definite, it must be stated in which of the sides
of ABC the different vertices of DEF are to lie. By varying the
positions of these vertices in every possible way we get six series of
triangles of an assigned shape, with, of course, a definite point cor-
responding to each series. Further, in that construction, the triangles
were described externally on the sides of ABC. But if triangles be
described internally on the sides of ABC another series of similar
triangles is obtained with a corresponding point. The relation® be-
tween the series of inscribed triangles obtained by describing triangles
(1) externally and (2) internally on the sides of ABC is that any
triangle of the one series is inversely similar to any triangle of the
second series. This is a point of some interest as it shows that as
regards the problem in hand, two triangles that are inversely similar
are perfectly distinct and have to be considered separately. Of two
such triangles one cannot of course be transformed into the other by
continuous variation. .

We thus get twelve series of triangles of an assigned shape with
a point corresponding to each series; and the question naturally
arises, What is the relation between these twelve points?* In
order to answer this question it is necessary to consider some of the
properties of the three circles, each of which has for diameter the
line joining the points dividing one of the sides internally and ex-
ternally in the ratio of the other two. [These circles are sometimes
known as the circles of Apollonius ; and it will be convenient to call
them by that name, to avoid circumlocution). The following are
some of the properties of these circles :—

(1) They have two points in common; namely the points the
distances of which from the vertices are inversely proportional to the
opposite sides. They have therefore a common radical axis.

* A useful hint in this connection was supplied by the following question in
the Educational T'imes :—10695 (Professor Neuberg.)—Soient P,P/ deux points
inverses par rapport & un cercle d’Apollonius du triangle ABC. Démontrer que

les triangles podaires de ces points par rapport au triangle ABC sont inversement
semblable.

https://doi.org/10.1017/50013091500030807 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500030807

44

(2) They cut the circumcircle orthogonally ; and hence the cir-
cumcentre lies on their common radical axis.

This may be proved as follows :—

Let DD’ (fig. 20) be the diameter of one of the circles of Apol-
lonius of the triangle ABC, and let O be the circumcentre.

LOAB= O-TI/2, . DAP=}A+B;
. LOAP=(C-TI/2)+(}A +B)+}A =TI)2.

It follows from this that the points of intersection of the circles
of Apollonius are inverse with respect to the circumcircle.

(3) One of the circles cuts each of the other two circles at an
angle of 60°; and the two latter therefore intersect at an angle of
120° (v. Lady’s and Gentleman’s Diary, 1845, p. 59).

It may be noted that the central axis and the radical axis of the
circles of Apollonius are two straight lines at right angles to one
another which are symmetrically related to the triangle.

Returning to the question of accounting for the twelve points
the pedal triangles of which are similar, we shall begin by proving
the following proposition which has been already referred to : —

The pedal triangles of two points that are inverse to one another
with respect to one of the circles of Apollonius are inversely similar.

Let Pand P’ (tig. 21) be inverse points with reference to the
circle of Apollonius passing through A, whose centre is L ; and let
DEF, D'E'F, be the pedal triangles of P and P', D and D' lying in
BC, ete. It may easily be seen from fig. 19 that . D=PBA +PCA
(the sign being taken according as the two angles, read in this way,
are traced out in opposite directions or in the same direction).

In the figure we have

PCB=7r-PP'B=APP+PBA+PAB
=PAL+ PBA+P'AB
=PAC+ CBA +P'BA + P'AB
PCB+PAB=(CBA +PBA)+(PAC+PAB+PAB)
= P'BC+PAC;
that is E=F",

Similarly we may show that F=E', D=D".

Hence when we take points inverse with respect to the circle
passing through A, the vertices lying on BC are corresponding ver-
tices, but those lying on CA and AB are not.

If therefore we start with any point, take its inverse with refer-
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ence to each of the circles of Apollonius, take the inverses of these
points again, and so on as long as we get any new points, the pedal
triangles of all the points we get in this way must be similar. An
upper limit to the number of points that may be so obtained, is
given by the fact proved above that there are only twelve such
triangles ; and it might be shown & prior: without much difficulty
that more than six points cannot be obtained in this way. In fact
it is obvious that the two points whose pedal triangles are inversely
similar, but have corresponding vertices on the same sides of the
triangle ABC, cannot be derived from one another by this method.

We shall now show that there are in general six points and only
six that may be derived from one another by repeated inversion with
reference to the circles of Apollonius.

Given two circles (fig. 22) with centres A and B ; let B’ b® the
inverse of the point B with reference to the circle A and A’ be the
inverse of the point A with reference to the circle B. To find the
condition that the inverses of B’ with reference to the circle B and
of A’ with reference to the circle A coincide (in a point T, say).

Let the circles intersect in P.

Since B and B’ are inverse points with reference to A, APB'=
PBA; similarly BPA'=PAB, and TPB=PB'B=PAB + APB"
. A'PT=BPA and BPT=A'PB.

Hence APT=BPT=PAB+PBA=60°; and APB=120".

In fig. 23 the point T does not lie between A and B and APB is
60°.

The condition of this theorem is satisfied by the circles of Apol-
lonius, as these intersect at angles of 60° and 120°. In this case the
point T is the centre of the third circle.

Take now (fig. 24) two circles intersecting at 120° (or at 60°);
and let P be any point.

Let Q be the inverse of P with reference to the circle A,

" R bh " ” P k2 ” 12 bhl B
" T " k2 » Q ” " ” bR B’
»” S bR} n ” R ” » 1 N A

Let AT and BS intersect in O ; to show that O is the inverse of
T with reference to the circle A and also of S with reference to the
circle B,

The points PQSR and the points PQTR are concyclic; and
hence the five points PQSTR are concyclic.
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Let now B’ be the inverse of B with reference to the circle A

’
» 1 A ” » » ‘A 1 ” 1 ”» B
’
» ¥ U » ”» 2 B » b2 ” b} B
’
a'nd also U »” ” » ‘A ” ” ” ” A'

The four points BB'QP are concyclic. Invert the circle on which
these points lie, with reference to the circle B. The straight line
which is the inverse of this circle passes through U, T and R ; and
hence the straight line RT passes through U. Similarly QS passes
through U.

Hence by the properties of Pascal’s Hexagram O must lie on the
circle passing through P,Q,S,T,R.

No new point can be got by inverting any of these six points
with reference to any of the circles of Apollonius.

Hence we see that six of the twelve points the pedal triangles
of which are similar, are got by inverting any one of the points, in
every possible way, with reference to the circles of Apollonius, and
that the six points obtained in this way all lie on the circumference
of a circle which cuts the circles of Apollonius orthogonally.

. We shall next proceed to account for the other six points and
shall begin by proving the following theorem :—

If P and P’ (fig. 25) are inverse points with reference to the cir-
cumcircle of a triangle ABC, then the pedal triangles of P and P’
are inversely similar and have corresponding vertices on the same

sides of ABC.
Let O be the circumcentre ; DEF, D'E'F, the pedal triangles of
Pand P
Then
LEx= tPAB+ L PCB= L PAO+ PCO+ B= L APC+ L B;
and

LtE=LPAF + L PCD'= L APC+ .B=LE

Hence the remaining six of the twelve points under considera-
tion are got by inverting the six already obtained, with reference to
the circumcircle, The new set of six points will of course also lie
on a circle cutting the circles of Apollonius orthogonally ; and the
two circles on which the two sets of six points lie are inverse to one
another with reference to the circumcircle. It may be noted that all
the six points belonging to one set are obtained, according to the
construction given above, by constructing triangles of the required
shape on the sides of ABC externally ; while those belonging to the
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other set are obtained by constructing the triangles on the sides of
ABO internally.

It may be of interest now to consider the positions of these
twelve points in certain particular cases.

In the first instance, let the pedal triangle of any one of the
twelve points be similar to the given triangle.  In the set obtained
by constructing the triangles externally one of the points is the
circumcentre and two others are the Brocard points ; and hence the
circle on which the six points lie is the Brocard circle. The other
three points lie on the symmedians and are therefore the points
where the symmedians meet the Brocard circle. [It is known that
the symmedian point lies on the Brocard circle; but its pedal
triangle is not similar to ABC.] As a consequence of previous
theorems, these six points are all inverses of one another With
reference to the circles of Apollonius; and the Brocard circle cuts
the circle of Apollonius orthogonally.

Considering now the other set of six points we may easily show
that three of them are the centres of the circles of Apollonius and
hence the circle on which these six points lie becomes in this case
a straight line, namely the central axis of the circles of Apollonius.
[This may easily be seen otherwise, as follows. Since the circle on
which the six points lie is the inverse of the Brocard circle with,
reference to the circumecircle, the centre of which lies on the Brocard
circle, it must be a straight line ; and the only straight line that
cuts the circles of Apollonius orthogonally is their central axis.]

One of the three remaining points is at infinity, being the in-
verse of the circumcentre ; and the other two are the inverses of the
centres of two of the circles of Apollonius with reference to the third
circle. These two points are the inverses of the Brocard points with
reference to the circumcircle, It may easily be shown that the
central axis of the circles of Apollonius is the radical axis of the
circumcircle and the Brocard circle.

A few other results may be stated without proof. The demon-
strations will be found to be in all cases very simple.

Let P be any point in the plane and DBF its pedal triangle, D
lyingin BC, Ein CA and Fin AB. We may impose any condi-
tions (as regards shape) on DEF and look for the corresponding
locus of P,

If the ratio DE: DF is constant (=!: m) the locus of Pis a
circle on QR as diameter where Q and R are points dividing BC
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internally and externally in the ratio me: 5. It should be noted
that the twelve points which have similar pedal triangles will not
all lie on this circle.

If DEF is isosceles (with DE = DF) the locus of P is the circle
of Apollonius passing through A. Sinoce all the points whose pedal
triangles are isosceles lie in one or other of the circles of Apollonius,
it is evident that all the six points that give isosceles triangles of a
given shape lie on the circles of Apollonius, two on each. [The
twelve points of the general case reduce to six when the pedal
triangle is isosceles.] From this it may easily be seen that of the
three circles of Apollonius any two are inverse to one another with
reference to the third. If further any point on one of the circles of
Apollonius be inverted in every possible way with reference to these
circles, only three points in all can be obtained ; and these together
with their inverses with reference to the circumecircle are the six
points that have pedal triangles isosceles and of given shape,

As a particular case of the above, the points whose pedal triangles
are equiangular must lie on all the circles of Apollonius and. must
be one or other of the two points common to these three circles.
This is a well-known property of these two points.

If in the triangle DEF the angle D is constant, the locus of P
will be a circle passing through B and C. If we make D equal to
two right angles, the angles X and F will also be constant, each
being zero, and the locus of P will be the circumcircle. Hence we
get the property of the pedal line (or so-called Simson line) as a par-
ticular case of the above theory. A flat triangle is the only triangle
the angles of which may be assigned without determining the shape
of the triangle The general method given above for determining
the twelve points whose pedal triangles have a given shape may be
applied even in the case where the triangles are flat ones. The
twelve points reduce in this case to six.

A particular case of this again that may be specially considered
is when the flat triangle is isosceles. There are three points on the
circumcircle the pedal lines of which may be considered as flat
isosceles triangles. The above method applied to the construction
of these points shows that they are the points where the symmedians
meet the circumcircle. Since their pedal triangles are isosceles
these points must lie on the circles of Apollonius ; hence we get the
theorem that the symmedians are the common chords of the circum-
circle and the circles of Apollonius.
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