ON THE TRANSCENDENCE OF SOME INFINITE SERIES

JAROSLAV HANČL* AND JAN ŠTĚPNIČKA

Department of Mathematics and Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic
e-mail: hancl@osu.cz, janstepnicka@centrum.cz

(Received 23 June, 2006; accepted 31 July, 2007)

Abstract. The paper deals with a criterion for the sum of a special series to be a transcendental number. The result does not make use of divisibility properties or any kind of equation and depends only on the random oscillation of convergence.

2000 Mathematics Subject Classification. 11J81.

1. Introduction. Erdős [2] proved that if \(\{a_n\}_{n=1}^{\infty} \) is an increasing sequence of positive integers such that \(\lim_{n \to \infty} a_n^{1/n} = \infty \) then the number \(S = \sum_{n=1}^{\infty} \frac{1}{a_n} \) is irrational. In [4] it is shown that if \(\lim_{n \to \infty} \log_3 \log_2 a_n > 1 \) and \(a_n \in \mathbb{N} \) for all \(n \in \mathbb{N} \) then \(S \) is a transcendental number. Many other criteria for \(S \) to be transcendental can be found in [1], [5], [6] or [8] but divisibility properties or fulfilling special equations are necessary. It seems to be the case that in general it is not easy to decide when \(S \) is a transcendental number if \(\limsup_{n \to \infty} \log_3 \log_2 a_n < 1 \) holds and divisibility properties or fulfilling certain equations are not required. In this paper we give conditions on sequences \(\{a_n\}_{n=1}^{\infty} \) with \(\limsup_{n \to \infty} \log_3 \log_2 a_n < 1 \) such that \(S \) is transcendental. We prove the following.

Theorem 1.1. Let \(\{a_n\}_{n=1}^{\infty} \) be an eventually non-decreasing sequence of positive integers such that \(a_n > 2^n \) for every sufficiently large \(n \). Suppose that \(a_n < 2^{3^{n/2}} \) and that \(a_{2n} > 2^{3^{n/2} - 4^n} \) for infinitely many \(n \). Then the number \(\sum_{n=1}^{\infty} \frac{1}{a_n} \) is transcendental.

Example 1.1. Let \(a_1 = a_2 = 1 \). For every \(s = 0, 1, 2, 3, \ldots \) set

\[
a_n = \begin{cases}
2^{3^{n/2} + 1} + 3 & \text{if } 2^3 < n \leq 2.2^{3^n} \\
2^{3^{n/2} + 1} + 2^{3^{n/2} + 1} + 3 & \text{if } 2.2^{3^n} < n \leq 2^{3^n + 1}.
\end{cases}
\]

Then the number \(\sum_{n=1}^{\infty} \frac{1}{a_n} \) is transcendental.

It is unclear to the authors if there exists a sequence \(\{a_n\}_{n=1}^{\infty} \) of positive integers such that \(\sum_{n=1}^{\infty} \frac{1}{a_n} \) is an algebraic number and \(a_n > 2^{(\frac{3}{2})^n} \) for all \(n \in \mathbb{N} \).

2. Main results. In the sequel, for a real number \(x \) we use \(\lfloor x \rfloor \) to denote the greatest integer less than or equal to \(x \). Theorem 1.1 is an immediate consequence of the following theorem.

*Supported by the grants no. 201/07/0191 and MSM6198898701
THEOREM 2.1. Let α, β, γ and ν be real numbers with $0 < \beta < \alpha < \log_2 3$, $0 \leq \nu < 1$ and $\gamma > 0$. Assume that $\{a_n\}_{n=1}^\infty$ and $\{b_n\}_{n=1}^\infty$ are sequences of positive integers with $\{a_n\}_{n=1}^\infty$ eventually non-decreasing such that for every sufficiently large n

\[b_n < a_n^\nu \log_2^\gamma a_n \quad (1) \]

and

\[a_n > 2^n . \quad (2) \]

Suppose that there exists a positive real number k with

\[k < \frac{(\alpha - \beta)}{\log_2(\frac{2}{1-\nu} + 1) - \alpha} \quad (3) \]

such that for infinitely many n

\[a_n < 2^{3^{jn}} \quad (4) \]

and

\[a_{n+[k.n]} > 2^{2^{a_n+\lfloor k.a \rfloor}} . \quad (5) \]

Then the number $\sum_{n=1}^\infty \frac{b_n}{a_n}$ is transcendental.

As an immediate consequence of Theorem 2.1 we obtain the following corollary.

COROLLARY 2.1. Let α, β and γ be real numbers with $0 < \beta < \alpha < 1$ and $\gamma > 0$. Assume that $\{a_n\}_{n=1}^\infty$ and $\{b_n\}_{n=1}^\infty$ are sequences of positive integers with $\{a_n\}_{n=1}^\infty$ eventually non-decreasing such that for every sufficiently large n

\[b_n < \log_2^\gamma a_n \]

and

\[a_n > 2^n . \]

Suppose that there exists positive real number k with

\[k < \frac{(\alpha - \beta)}{1 - \alpha} \]

such that for infinitely many n

\[a_n < 2^{3jn} \]

and

\[a_{n+[k.n]} > 2^{2^{a_n+\lfloor k.a \rfloor}} . \]

Then the number $\sum_{n=1}^\infty \frac{b_n}{a_n}$ is transcendental.

REMARK 2.1. Let the sequences $\{a_n\}_{n=1}^\infty$ and $\{b_n\}_{n=1}^\infty$ satisfy all conditions (1)--(5). Then Theorem 2.1 implies that the number $\sum_{n=1}^\infty \frac{b_n}{a_n}$ is transcendental. If in addition
there exists a fixed \(\epsilon > 0 \) such that

\[
a_n < 2^{(2-\epsilon)n}
\]

holds for all sufficiently large \(n \) then there exists a sequence \(\{c_n\}_{n=1}^{\infty} \) of positive integers such that \(\sum_{n=1}^{\infty} \frac{h_n}{c_n a_n} \) is a rational number. For more information see [3].

3. Proof. Proof: (of Theorem 2.1) Let \(N \) be a sufficiently large positive integer satisfying (4) and (5). Assume that \(\delta \) is a sufficiently small positive real number.

Let us define the finite sequence \(\{c_t\}_{t=N}^{T} \) by

\[
c_t = \begin{cases}
 d_t, & \text{if } t = N \\
 \left(\frac{1}{\sum_{i=N}^{T} \alpha_i^{1+\delta}}\right)^{1-N}, & \text{if } t = N + 1, N + 2, \ldots, N + [k.N].
\end{cases}
\]

Set

\[
c_T = \max_{t=N,N+1,\ldots,N+[k.N]} c_t. \tag{6}
\]

If \(c_T = c_N \) then from (4) and (5) we obtain

\[
2N^{2\alpha N} > d_N^N = c_N \geq c_{N+[k.N]} = d_{N+[k.N]} > 2^{\frac{\varphi(N+[k.N])} {\sum_{i=N}^{T} \alpha_i^{1+\delta}}} = 2^{(N+[k.N]) \log \left(\frac{2^{1+\delta}}{1-\nu} \right).}
\]

Applying \(\log_2 \) twice to the above inequality we get

\[
\log_2 N + \beta N > \alpha (N + [k.N]) - [k.N] \log_2 \left(\frac{2^{1+\delta}}{1-\nu} + 1 + \delta \right)
\]

and this is a contradiction with (3).

Therefore \(c_T \neq c_N \) and thus

\[
c_T \geq \max_{j=N,N+1,\ldots,T-1} c_j. \tag{7}
\]

From this and from the fact that the sequence \(\{a_n\}_{n=1}^{\infty} \) is eventually non-decreasing we obtain that

\[
a_T \geq \left(\max_{j=N,N+1,\ldots,T-1} c_j \right)^{(\frac{2}{1-\nu} + 1+\delta)^{T-N}} \prod_{i=N}^{T-1} \left(\max_{j=N,N+1,\ldots,T-1} c_j \right)^{(\frac{2}{1-\nu} + 1+\delta)^{i-N}}. \tag{7}
\]

Here the second inequality comes from the fact that

\[
\frac{\left(\frac{2}{1-\nu} + 1 + \delta \right)^{T-N}} {\left(\frac{2}{1-\nu} + 1 + \delta \right) - 1} > \frac{\left(\frac{2}{1-\nu} + 1 + \delta \right)^{T-N} - 1} {\left(\frac{2}{1-\nu} + 1 + \delta \right) - 1} = \left(\frac{2}{1-\nu} + 1 + \delta \right)^{T-N-1} + \left(\frac{2}{1-\nu} + 1 + \delta \right)^{T-N-2} + \cdots + 1.
\]
positive integers we obtain that
\[a_n = \left(\prod_{i=N}^{T-1} \left(\max_{j=N,N+1,...,T-1} c_j \right)^{\left(\frac{2}{\nu} + 1 + \delta \right)^{i-N}} \right)^{\frac{1}{2^{T-1} + \delta}} \geq \left(\prod_{i=N}^{T-1} c_i^{\left(\frac{2}{\nu} + 1 + \delta \right)^{i-N}} \right)^{\frac{1}{2^{T-1} + \delta}} = \left(\prod_{i=N}^{T-1} a_i \right)^{\frac{1}{2^{T-1} + \delta}}. \]

This implies that
\[a_{1-\nu}^T = \left(\frac{\sum_{i=N}^{\infty} a_i}{a_{N+1}^{\frac{1}{2^{T-1} + \delta}}} \right) \geq \left(\prod_{i=1}^{T-1} a_i \right)^{\frac{1}{2^{T-1} + \delta}} > a_{T^{\frac{1}{2^{T-1} + \delta}}} \cdot \left(\prod_{i=1}^{T-1} a_i \right)^{\frac{1}{2^{T-1} + \delta}}. \]

Now we will prove that for every sufficiently large \(N \)
\[\sum_{n=N+1}^{\infty} \frac{b_n}{a_n} < \frac{2 \log_2 a_{N+1}}{a_{N+1}^{1-\nu}}. \]

From (1), (2) and the fact that \(\{a_n\}_{n=1}^{\infty} \) is an eventually non-decreasing sequence of positive integers we obtain that
\[\sum_{n=N+1}^{\infty} \frac{b_n}{a_n} < \sum_{n=N+1}^{\infty} \log_2 a_n = \sum_{n=N+1}^{\infty} \log_2 a_n^{1-\nu} + \sum_{n=N+1}^{\infty} \log_2 a_n^{1-\nu} - \log_2 a_{N+1}^{1-\nu} + \sum_{n=0}^{\infty} \frac{n}{2^{n+1-(1-\nu)}} \leq 2 \log_2 a_{N+1}^{1-\nu} \cdot a_{N+1}^{1-\nu}. \]

Let \(T \) satisfies (6). Inequalities (8) and (9) imply that for every sufficiently large \(T \)
\[\left| \sum_{n=1}^{\infty} \frac{b_n}{a_n} - \sum_{n=1}^{T-1} \frac{b_n}{a_n} \right| = \left| \sum_{n=1}^{\infty} b_n - \prod_{n=1}^{T-1} a_n \sum_{n=1}^{T-1} b_n \prod_{n=1}^{T-1} a_n \right| = \left| \sum_{n=T}^{\infty} b_n \right| \leq \frac{2 \log_2 a_T}{a_T^{1-\nu}} \cdot a_T^{1-\nu} \cdot \left(\prod_{i=1}^{T-1} a_i \right) \leq \frac{2 \log_2 a_T}{a_T^{1-\nu}} \cdot a_T^{1-\nu} \cdot \left(\prod_{i=1}^{T-1} a_i \right) \leq \frac{2 \log_2 a_T}{a_T^{1-\nu}} \cdot a_T^{1-\nu} \cdot \left(\prod_{i=1}^{T-1} a_i \right)^{1-\nu}. \]
TRANSCENDENCE OF INFINITE SERIES

Set \(q_T = \prod_{n=1}^{T-1} a_n, \quad p_T = \prod_{n=1}^{T-1} d_n \sum_{n=1}^{T-1} \frac{b_n}{a_n} \) and \(\epsilon = \frac{\delta(1-\nu)}{1+\frac{\nu}{2}(1-\nu)}. \) Because

\[
\frac{2 \log_2 a_T}{\frac{\delta}{(1-\nu)^3}} \quad \text{tends to zero when} \quad T \quad \text{tends to infinity}
\]

we obtain the inequality

\[
\left| \sum_{n=1}^{\infty} \frac{b_n}{a_n} - \frac{p_T}{q_T} \right| < \frac{1}{q_T^{2+\epsilon}} \quad (10)
\]

which holds true for all sufficiently large \(T. \)

The fact that we can find infinitely many pairs \((p_T, q_T)\) satisfying (10) and the Roth’s Theorem [7] imply that the number \(\sum_{n=1}^{\infty} \frac{b_n}{a_n} \) is transcendental.

\[\Box\]

ACKNOWLEDGEMENTS. We thank Professor Radhakrishnan Nair from the Department of Mathematical Sciences, University of Liverpool, for his help with the presentation of this article.

REFERENCES