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A CRITERION FOR HYPERBOLICITY

by MICHAEL BATTY

(Received 12th May 1997)

The usual definition of hyperbolicity of a group G demands that all geodesic triangles in the Cayley graph
of G should be thin. Using the theorem that a subquadratic isoperimetric inequality implies a linear one, we
show that it is in fact only necessary for all triangles from a given combing to be thin, thus giving a new
criterion for hyperbolicity of finitely presented groups.

1991 Mathematics subject classification: 20F32.

1. Slim triangles

Given a group G, the Cayley graph fs(G) of G with respect to a generating set S of
G is the graph whose vertex set is G and whose edge set is {(g, gs)\g e G,s e S}. Given a
path p in rs(G), we write l(p) for the number of edges in p. If p originates at the
identity of G then we write p for the group element at the terminus of p (i.e. p is the
group element represented by the word p in S).

Definition 1.1. A triangle in a group G is the data

(01.02-03. #12. #23.

where gi,g2, and gt are elements of G called the vertices of the triangle and 0y is a path
in the Cayley graph of G from gt to g} (called a side of the triangle). If the sides are
geodesic paths, the triangle is said to be geodesic.

For a triangle A as above, we denote by 3A the loop 0|2* #23*031. called the
boundary of A and we write 7t(A) for /(3A), the perimeter of A.

The following definition is based on the familiar geodesic case.

Definition 1.2. Let 5 > 0. A triangle A in G is 5-slim if for each of the three sides
6 of A and for all t e 9, d(t, ffu9")< 3, where & and 6" are the other two sides of A.

If there exists a finite generating set S of a group G and 8 > 0 such that all geodesic
triangles in fs(G) are 5-slim then we say that G is hyperbolic. In fact hyperbolicity of
groups does not depend on the finite generating set chosen. Also note that it is a
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FIGURE 1: Collapsing a Triangle

consequence of the definitizon that all hyperbolic groups are finitely presented (these
facts are proved in [10] and [4]).

2. Thin triangles

Let /, > 0, l2 > 0 and f3 > 0 be real numbers satisfying the triangle inequality (in all
possible permutations) and let / , , 72 and 73 be the real intervals [0, / , ] , [0, /2] and [0, /3]
respectively with endpoints i,, t{, i2, t2, i3 and £3. Let /(/,, l2, f3) be the disjoint union of
/ , , I2 and 73. Then we define the abstract triangle AA(lu l2, /3) to be the quotient space of
I(h>h<h) by identifying t, with i2, t2 with i3 and t3 with i,. Now there exist points
T, e / , , T2

 G h a n d T3 e 73 with the following property: Suppose that T, divides 7, into
segments 7j and l], I2 into 72 and 72 and 73 into 73 and 73 as in Figure 1. Then the
length l(l\) = 1(1]), /(72) = /(7f) and /(73) = /(7^). So we may isometrically identify 7] with
73, 72 with l\ and 73 with 72 as in Figure 1 to obtain a quotient space of A/t(Z,, J2,/3)
called the tripod T(/,, l2, /3). We denote the quotient map by r. Then r(7,) n r(72)D r(73)
is a single point, which we call the fork of the tripod.

Definition 2.1. We say that a triangle (#,, g2, g3, 6n, 023, 031) in a group is proper if
the lengths of its sides satisfy the triangle inequality, i.e. for all i^j^k with

+ K0u).

For example, geodesic triangles are proper. Let A = (gu g2, gJt 6l2, 623, d3l) be a
proper triangle in a group G, with l(9l2) = /,, l(02J) = l2 and 1(0^) — /3. If x is a real
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number, denote by [x] the greatest integer not exceeding x. There exists a map
p : /(/,, l2, /3) -> G such that for all x e /, with 0 < x < /,, p(x) = 0,2([x]), for all x e I2

with 0 < x </2, p(x) = 023([x]), for all x e / , with 0 < x </3, p(x) = 03,([x]) and p
induces a map p : A/4(/1, /2, /3) -> G on passage to the quotient.

Definition 2.2. Let <5 > 0. We say that a proper triangle A is 5-thin if for all

We next give a lemma describing the area of thin triangles, where area is in the
following sense. Let G = (S\R) be a finitely presented group. Then recall that a word in
S is equal to the identity in G if and only if there exist words u, in S for 1 < i < n such
that, in the free group F(S) generated by S,

w =

where for all i with 1 < i < n either r, 6 R or r, ' e R.

Definition 2.3. With G as above, let w be a word in S which is equal to the identity
in G. Then the area of w, A(w), is defined to be

mini n e N|w = PJu,r,ur' in

We now describe an equivalent formulation of area which is more geometric and
suited to our methods.

Definition 2.4. A paired alphabet is a finite set S together with an involution
/ : S -> S. We usually write/(s) = s"1.

For example, an inverse closed set of generators of a group is a paired alphabet,
where the involution is the group inverse.

Definition 2.5. A map is a finite, planar, oriented, connected and simply connected
combinational 2-complex. We say that a map M is a diagram over a paired alphabet S
if every edge e of M has a label <£(e) e 5 such that <£(e~') = (<Ke))~'-

The definition of a map ensures that it has a well defined boundary path. Note that
every path in a diagram over S is labelled by a word in S.

Definition 2.6. A van Kampen diagram over a group G = {S, R) is a diagram M over
S such that for all faces / of M the label of the boundary path of / is labelled by some
r±x with r e R. The area of such a diagram is the number of its faces.
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Proposition 2.7 (van Kampen's lemma). Let G = {S, R) be a finitely presented group
and let w be a word in S. Then vv = 1G if and only if there exists a van Kampen diagram
over G with boundary labelled by w.

See [10] for a proof of van Kampen's lemma. We define the Dehn function of G to
be the function D : N -*• N given by D{n) = max{ A(w)} where the maximum is taken
over all words of length at most n in S such that vv = 1G.

Proposition 2.8. Let G be a group and let 5 > 0. Then there exists a linear function
y : N ->• N such that if A is a d-thin triangle in G then A(A) < y(n(A)).

Proof. Suppose that A has side lengths /,,/2 and /3. Let / be the fork of
T(h>k'k)- N o w r~\f) consists of three points T, e /,, T2 e I2 and T3 € 73. Let
f\ = KTi)» fi = viji) and /3 = P(T3). Join /,, f2 and /3 pairwise by geodesies to bound a
triangle, which we denote by a(A), of perimeter no greater than 35 + 3 as in Figure 2.
If D is the Dehn function of G, we thus have 4(<x(A)) < D(35 + 3). To finish the proof,
therefore, it remains to show that the area of A — a(A) depends linearly on 7r(A).

Clearly it suffices to show that the area of each of these triangles depends linearly
on 7t(A). So, consider A,, with sides s, = \gx, / , ] , s2 = [gu /3] and s3 = [/,, /3] (note that
|/(s,) — /(s2)| < 1 and /(s3) < S). We now subdivide A, into further regions as follows.
Ji('i» 2̂> '3) a n < i liih' h' '3) a r e t n e segments of AA(lt, l2, /3) which map by p onto [#,, /,]
and [g\, fi\. Suppose that the maximum of their lengths is /4. Define p) = p(i) for
i e / ,( / , , l2, /3) if i is an integer with 0 < i < /4 — 1 and p] = p(/3 — i) for i e 73(/,, l2, /3) if i
is an integer with 0 < i < / 4 - l . If /(/,(/,, l2, /3)) = /(4) then define p\A = p(/4) and
otherwise define pj, = p(/4 - 1), and make similar endpoint adjustments for the other
segments. For each i pick a geodesic tjt between p] and pf, and let e) be the edge from
p'i to p]

i+l for j — 1 and 2. Define Q, to be a least area quadrilateral bounded by
rj, *ef* fy"1, * (ej)"1 for 0 < i < m - 1. Then

FIGURE 2: Dividing A Thin Triangle
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i=0

< mD{25 4- 2) + £>(2<5 + 1)

< n(A)D(25 + 2) + D(26 + 1),

since m < 7i(A). So we can take y(n) = 3D(2<5 + 2)n + D(38 + 3) + D(25 + 1), which is
linear in n as required. •

The following example shows that the same property does not hold for slim
triangles.

Example 2.9. Let G be the free abelian group of rank 2 with the presentation
{a, b\[a, b]). Define the triangle An to have vertices e, a" and b", and sides described
by the words a"(a~lb)n from e to b", (a~lbyb~n from a" to e and b~"a" from b" to
a" (see Figure 3). Then An is a (3,0)-quasigeodesic O-slim triangle for all n.
However, the perimeter of An is a linear function of n but the area of An depends
quadratically on n.

bn

e a"

FIGURE 3: Slim Triangle with Quadratic Area
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3. Thin and slim combings

If X is a graph then let P(X) denote the set of finite paths in X. Whenever
p e P(X) we shall write i(p) for the initial vertex of p and t(p) for the terminal vertex
of p.

Now let G be a finitely generated group and let S be a finite generating set for G.

Definition 3.1. A combing of a group G with respect to a generating set S is a
map 0 : G - • P(FS(G)) such that for all geG, i(6(g)) = lG and t(9(g)) = g.

Note that we do not assume that the "fellow traveller property" of [3] holds for a
combing.

We can equivariantly extend a combing 9 of G to a map 6 : G x G -» P(rs(G)) via
the rule 0(<7,,g2) = g\9(gilg2). From now on, we shall also write 9 for 9. Now if 9 is a
combing of G and gr,, g2 and #3 are three elements of G, then we use the notation
Ao(0,, 32. S3) f°r t h e triangle

(01. 02. 03. 0(01- 02). 0(02. 03). % 3 . 0l))-

We now introduce two types of constraint on the triangles of a combing. Since the
definition of a thin triangle only applies to proper triangles, we define a combing 9 of a
group G to be triangular if for all glt g2 and g3 in G, A0(g,, gr2, gf3) is a proper triangle.

Definition 3.2. Let <5 > 0. A combing (respectively triangular combing) 9 of a group
G is 5-slim (respectively -thin) if for all gx,g2 and #3 in G,A0(gl,g2,g3) is a <5-slim
(respectively -thin) triangle. We say that 6 is slim (respectively thin) if there exists 5 > 0
such that 9 is (5-slim (resp. -thin).

Proposition 3.3. If a combing 9 of a group G is triangular, then there exists a constant
K > 1 such that for all gx and g2, l(0(gltg2)) < Kd(gug2).

Proof. Let G be a finitely generated group with a finite generating set
S = {s , , . . . ,sp] and let 9 be a triangular combing of G with respect to S. Take K to be
maxJeS{/(0(lG, s))}. For g{ and g2 in G, let w be a geodesic word in S with w = gl~

ig2.
Suppose that w = f]™=1 s"j where m = d(gt,g2) and for each j with \<j<m,
n} G Z - {0} and 1 < i, < p. Let vvt = fJJL, sjj1 for 1 < k < m and let w0 be the empty
word. Then by repeated application of the triangle inequality we have

*=0

< Km

= Kd(g,,g2). D
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Let X and n be real numbers with X > 1 and \i > 0 and suppose that p is a path in a
graph. If for all subpaths q of p we have

\d(i(q), t(q)) -fi< l(q) < Xd(i(q), t(q)) + /z

then we call p a (X, n)-quasigeodesic. If for a path p there exist X > 1 and /i > 0 such
that p is a (X, /i)-quasigeodesic then we simply say that p is a quasigeodesic.

Definition 3.4. A combing 0 of a group G is quasigeodesic if there exist K > 1 and
L > 0 such that every combing line of 0 is a (K, L)-quasigeodesic.

Note that the conclusion of Proposition 3.3 does not imply that 0 is a quasigeodesic
combing. Jean-Philippe Preaux has pointed out the following example due to Hamish
Short.

Example 3.5. Consider the combing of Z = (x) given by

0(x") =

for all n e Z and extending equivariantly to give combing lines between all pairs of
integers. Then /(0(x")) = 3n. Let m,, m2 and m3 be three integers. Now

/(0(m,,m3)) = 3|m, -m3\

— 31m, — m2 + m2 — m3\

< 3|m, - m2\ + 3|m2 - m3|

So 6 is a triangular combing. The conclusion of the previous proposition is clearly
satisfied by 0, with K = 3. But consider the subword (xx~')n of 0(x"). The distance
between the origin and the terminus of this path is 0, but Z((xx~')") = In. So for all
L > 0 and for all K > 1 there exists an element of G, e.g. xL, such that 0(xL) is not a
(K, L)-quasigeodesic. Hence 0 is not a quasigeodesic combing.

It is known that if there exists 5t > 0 such that every geodesic triangle in a group
G is 5-slim then there exists 52 > 0, depending on du such that every geodesic triangle
in G is (52-thin (see e.g. [10]). If we no longer restrict to geodesic triangles, thin triangles
are still slim, so if a group admits a thin combing then it admits a slim one.

Question. If a group admits a slim quasigeodesic combing then does it admit a thin
combing?
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4. Hyperbolicity and thin combings

Reeves [9] has verified that Z © Z admits no thin combing, using work of Neumann
and Shapiro which classifies biautomatic structures on free abelian groups [5]. Reeves
has also asked the following question [8].

Question. Does admission of a thin combing characterise hyperbolicity of
biautomatic groups?

We answer this question in the affirmative, and show that the hypothesis of
biautomaticity is unnecessary. The usual concept of hyperbolicity requires all geodesic
triangles to be (5-thin, but here we show that for hyperbolicity, it is only necessary for
one triangle per triple of points to be thin. Also the sides of the triangle no longer need
to be geodesies. In this sense our main theorem is an "efficient" criterion for
hyperbolicity.

First, recall that a group is said to satisfy a linear isoperimetric inequality if its Dehn
function D is bounded above by a linear function and that a finitely presented group
satisfies a linear isoperimetric inequality if and only if it is hyperbolic (see [4] or [10]).
We restrict to finitely presented groups because every finitely generated group G
satisfies a linear isoperimetric inequality if we include all words equal to the identity in
G as relators. A group is said to satisfy a subquadratic isoperimetric inequality if
lim

n-«»(^r) = 0- The following result, originally due to Gromov [4], will play an
important part in our analysis. Proofs have been given by OFShanskii [6], Papasoglu
[7] and Bowditch [2].

Theorem 4.1. If a group satisfies a subquadratic isoperimetric inequality then it
satisfies a linear one (and so is hyperbolic).

We can now state our main theorem.

Theorem 4.2. A finitely presented group admits a thin combing if and only if it is
hyperbolic.

Proof. Clearly every hyperbolic group G admits a thin combing (in every Cayley
graph with respect to a finite generating set, every geodesic combing is thin).

Conversely, let G be a finitely presented group admitting a 5-thin combing 9. We
are going to show that G verifies a subquadratic isoperimetric inequality. Let
<j) : F(S) -> G be a choice of generators for G, where S is finite, and let w be a word of
length nw in S whose image is equal to the identity in G. In FS(G), w represents a loop
of length nw, originating and terminating at lc. We may assume that w is a simple loop
since, if not, w may be divided into several loops w,, . . . , wn with A(w) < Yl"=\ ^(wi)-

We now define a finite sequence of elements of G. Let n be the smallest power of 2
such that n > nw. Then n < 2nw. For 0 < i < nw, let /i, = w(i) and for nw < i < n, define
ht = lc . We now use the combing lines of 6 to subdivide the loop vv. Let g = h,, gt = h»
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FIGURE 4: A Thin Combing Implies Hyperbolicity
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and g2 = fop and define the triangles A, = A0(lc, gx,g2) and A2 = A0(g, g2, 1G). We next
construct four more triangles on the sides of A, and A2. Let gu = ha, gn — foa, g2i = h&
and g22 = hii, and define An = A0(\a,gn,gx), A12 = &0(9\,9n, 9), A21 = A0(gf, g2Ug2)
and A22 = &o(g2, g22,1G). The process of subdividing is continued for each
1 < p < Iog2(n) — 1 to obtain group elements giy..if and triangles \...ip for i, — 1 and 2,
as in Figure 4.

Let Qp be the set of triangles introduced at the p* stage of the subdivision and let
Q be the union of all the triangles in the subdivision. We then have

A(Q)<
Iog2(n)-I

p=l

Suppose that K is as in Proposition 3.3 and that y is a linear function as in Proposition
2.8. If T e Qp then we have n(T) < -ft and

A(T)<
Ky{n)

Now Qp contains 2P triangles and if D is the Dehn function of FS(G) then we have
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A(w) < A(Q) + nD(K + 1)
Iog2(n)-I ~p

^ £ g
<2Ky(n)log2{n)
< 4Ky(nw) Iog2(2nj + 2nwD[K + 1).

Thus G satisfies an isoperimetric inequality which is 0(n log2n). Since this is
subquadratic, G is hyperbolic by Theorem 4.1. •

Note that the homogeneity (as metric spaces) of Cayley graphs, along with the
equivariance of combings, does not play an important role in the arguments. In fact, it
is possible to generalise the above theorem to path-metric spaces, using a formulation
of area due to Bowditch [2]. This is described in the author's Ph.D. thesis [1].
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