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Abstract. A powerful tool to investigate the stability of the orbits of natural and artificial
bodies is represented by perturbation theory, which allows one to provide normal form estimates
for nearly-integrable problems in Celestial Mechanics. In particular, we consider the orbital
stability of point-mass satellites moving around the Earth. On the basis of the J2 model, we
investigate the stability of the semimajor axis. Using a secular Hamiltonian model including
also lunisolar perturbations, the so-called geolunisolar model, we study the stability of the other
orbital elements, namely the eccentricity and the inclination. We finally discuss the applicability
of Nekhoroshev’s theorem on the exponential stability of the action variables. To this end, we
investigate the non-degeneracy properties of the J2 and geolunisolar models. We obtain that
the J2 model satisfies a “three-jet” non-degeneracy condition, while the geolunisolar model is
quasi-convex non-degenerate.
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1. Introduction

The study of the stability of celestial bodies is one of the major goals in Celestial
Mechanics, especially in view of the growing importance taken, since the mid-20th century
and in particular in the last decades, by the problem of the control of satellites and space
debris orbiting around the Earth.

The dynamics of a small body moving around our planet is influenced by a number
of factors, among which the most important are the attraction of the Earth, taking
into account its non-spherical shape, and of the Sun and the Moon, which, for altitudes
ranging from about 100 to 105 km, can be considered as third body perturbations to the
dominant effect determined by the geopotential.

This work summarizes some stability results presented in De Blasi et al. 2021, where, to
describe the small body’s motion, two different models are considered: the J2 model, which
takes into account only the gravitational force of the Earth by including the associated
geopotential, expanded in spherical harmonics and suitably truncated up to its dominant
term, and the geolunisolar model, where the effects of Sun and Moon are added to the
geopotential (see §2). The Hamiltonian formalism, as well as a particular set of action-
angle variables (the so-called modified Delaunay variables), are used to describe both
models.
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Through a suitable sequence of canonical changes of coordinates (see §3), the
Hamiltonians describing the J2 and geolunisolar models, denoted respectively with
HJ2 and Hgls, are transformed to assume the form of quasi-integrable Hamiltonian
functions, where one or more actions can be considered as quasi-integrals of motion
(namely integrals for a truncated normal form Hamiltonian). Their stability can be esti-
mated by means of suitable perturbation theory procedures as in §4 (compare with
Steichen & Giorgilli 1997). We also mention that other tools can be used to obtain
stability estimates for quasi-integrable systems, such as Nekhoroshev’s theorem (see
Nekhoroshev 1962), which, under suitable hypotheses, provides exponentially long sta-
bility times. One of the main hypotheses required is a non-degeneracy of the integrable
part of the Hamiltonian. In §5 we discuss the non-degeneracy condition of the normalized
Hamiltonians describing the J2 and geolunisolar models.

2. The models

Let us consider a point-mass particle, say a debris S, moving around the Earth along
an elliptic orbit with parameters (a, e, i, M, ω,Ω), that is, semimajor axis, eccentricity,
inclination, mean anomaly, argument of perigee and longitude of the ascending node. The
motion of S is governed by the Earth’s gravitational influence, whose associated potential
can be expressed as an expansion in spherical harmonics (see Kaula 1966) which takes
into account the non-spherical shape of our planet. Additionally to Earth’s Keplerian
attraction, the gravitational influences of Sun and Moon are taken into account.

Both models introduced in §1 are analysed by considering the associated Hamiltonian
functions, denoted respectively with HJ2 and Hgls, first expressed in Cartesian coordi-
nates and then in the modified action-angle Delaunay variables⎧⎪⎨⎪⎩

L=
√
μEa

P =
√
μEa

(
1−√

1 − e2
)

Q=
√
μEa

√
1− e2 (1 − cos i)

⎧⎪⎨⎪⎩
λ=M + ω+ Ω

p= −ω− Ω

q= −Ω,

(2.1)

where μE = GME is the Earth’s mass parameter.
The Hamiltonian HJ2 can be expressed as the sum of a zero-order Keplerian term

and the J2 term, which indicates the deformation in the geopotential due to Earth’s
oblateness. In Delaunay variables, having defined δL=L−L∗ =

√
μEa−√

μEa∗ with a∗
taken as a reference value for the semimajor axis, HJ2 can be expanded in powers of√
δL,

√
P and

√
Q obtaining the Hamiltonian

HJ2 = n∗δL+ ω∗
1P + ω∗

2 +

2N∑
s=1

∑
k1,k2,k3∈Z

0<|k1|+|k2|+|k3|�s

P s,k1
k2,k3

(δL, P, Q) cos (k1λ+ k2p+ k3q) ,

(2.2)
where P s,k1

k2,k3

are polynomials of degree s in the actions and the sum is truncated up to

order 2N† for computational reasons.
The geolunisolar Hamiltonian Hgls is obtained by adding to HJ2 the third-body grav-

itational potentials due the presence of Sun and Moon, assuming the latter to be strictly
on the ecliptic plane. Since in this case the attention is focused on the secular stability
of the parameters (e, i), an average over the satellite’s, Sun’s and Moon’s fast angles is
performed, implying the constancy of the semimajor axis a= a∗. Moreover, the presence
of two perturbing bodies on the ecliptic produces a shift in the equilibrium orbit of S
(leading to the so-called forced elements), which modifies (e, i) = (0, 0) into (e, i) = (0, i∗),

† In the actual computations performed in order to obtain the stability estimates provided
in §4, the index N is set equal to 15.
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with i∗ �= 0: a new set of action-angle variables (I1, I2, φ1, φ2), centered in the correspond-
ing forced values, is considered. Similarly to HJ2 , the final geolunisolar Hamiltonian can
be expressed as a trigonometric expansion in the new variables:

Hgls = ν1I1 + ν2I2 +

N∑
s=3

∑
s1,s2∈N

s1+s2=s

∑
k1,k2∈Z

|k1|+|k2|≤s

hs1,s2
k1,k2

I
s1/2
1 I

s2/2
2 cos (k1φ1 + k2φ2) , (2.3)

where we notice that ν1 
 ν2.

3. Hamiltonian normalization

Taking into account the models described in §2, we can obtain estimates on the stability
times of the orbital parameters of the satellite, in particular of the semimajor axis in the
J2 model and of the quantity

√
1 − e2 (1 − cos i) in the geolunisolar case. The approach

taken to achieve this goal is heavily based on normal form methods (see Efthymiopoulos
2011, to which we also refer for the definition of Lie series transformations): in particular,
using the Lie series technique, a formal elimination of the fast angle in the J2 model and of
a particular quasi-resonant combination of the angles within the geolunisolar framework is
performed, reducing to new quasi-integrable Hamiltonian functions for which the stability
estimates are obtained.

In the case of the model described by HJ2 , expressed by the expansion 2.2, a composi-
tion of near-identity canonical transformations in the form of Lie series allows to remove
the dependence on the fast angle λ up to a prefixed polynomial order in the actions’
square roots, leading to the normalized Hamiltonian†

Hnorm
J2 (δL, P, Q, λ, p, q) = ZJ2(δL, P, Q, p, q) + RJ2(δL, P, Q, λ, p, q),

where ZJ2 , the so-called normal part, does not depend on λ and RJ2 , the remainder, is

of total order M =N − 3 in
√
δL,

√
P ,

√
Q.

It is straightforward from the independence of ZJ2 on λ that the variation of the first
Delaunay action L (and, as a consequence, of the satellite’s semimajor axis a) depends
only on the remainder, as the former is a first integral for the normal part: in this sense,
it can be considered a quasi-integral of the motion induced by the whole Hamiltonian
function Hnorm

J2
.

In the case of Hgls in the form of 2.3, the presence of the 1 : 1 resonance determined
by the relation ν1 
 ν2 translates in the unfeasibility of a normalization procedure which
simply removes the dependence on the angles of selected terms, as it would imply the
uncontrolled growth in the size of the remainder due to the presence of small divisors.
We opt instead for a normalized Hamiltonian in quasi-resonant form, in the sense that
the composition of Lie series transformations removes the dependence on all combina-
tions of the angles φ1, φ2 except for the resonant one φ1 − φ2. The resulting normalized
geolunisolar Hamiltonian takes then the form

Hnorm
gls (I1, I2, φ1, φ2) = Zsec

gls (I1, I2) + Zres
gls (I1, I2, φ1 − φ2) + Rgls(I1, I2, φ1, φ2),

where the sum Zsec
gls + Zres

gls represents the normal part, divided into its secular and reso-

nant terms, and the remainder Rgls is again of total order M =N − 3 in
√
I1,

√
I2. The

† From a rigorous point of view, the variables ofHnorm
J2

are not the original Delaunay variables
(δL, P, Q, λ, p, q). However, since we are dealing with near-identity transformations, they differ
from them only by short-term small oscillations which do not affect the secular stability of the
orbital elements: for this reason, with an abuse of notation, we keep the original notation for
the new Delaunay variables as well.
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dynamics induced by the normal part alone admits the integral

I1 + I2 =L∗
(

1 −
√

1 − e2 (1− cos i)
)
,

which, similarly to the J2 case, can be considered a quasi-integral for the whole
Hamiltonian Hnorm

gls and whose stability will be investigated in §4.

4. Stability estimates

Taking advantage of the peculiar structure of the normalized functions Hnorm
J2

and
Hnorm
gls , stability estimates based on the size of RJ2 and Rgls can be produced.
The size of the remainders can be quantified by means of the sup norm ‖ · ‖∞,D over a

suitable bounded domain D in the variables, which depends on the model. In particular,
if the remainders are small in the above sense with respect to the corresponding normal
parts, the dynamics induced by Hnorm

J2
(respectively Hnorm

gls ) can be considered as a small
perturbation of that defined by ZJ2 (respectively, Zsec

gls + Zres
gls ).

In the case of the J2 model, the derivative of the first Delaunay action L depends only
on the λ−derivative of RJ2 :

d

dt
L=

d

dt
δL= −∂H

norm
J2

∂λ
= −∂RJ2

∂λ
. (4.1)

Let us consider a bounded domain D⊂ [0, 1) × [0, π/2] in eccentricity and inclination;
recalling the dependence of the Delaunay actions on the orbital parameters, define the
sup-norm

‖f‖∞,D = sup
(e,i)∈D

(λ,p,q)∈T
3

∣∣f (e, i, λ, p, q)
∣∣. (4.2)

Suppose now that at time t= 0 the initial value of L is L0; defining by L(T ) the evolution
of L at time T , from (4.1) and the mean value theorem, one obtains∣∣L(T ) −L0

∣∣� ∥∥∥∥∥dLdt
∥∥∥∥∥
∞,D

T =

∥∥∥∥∥∂RJ2

dλ

∥∥∥∥∥
∞,D

T.

Fixing a constant value ΔL, one has that a lower bound for the time T such that
|L(t) −L0| ≤ ΔL is given by

T � TJ2 ≡
ΔL

‖∂RJ2/∂λ‖∞,D
.

With the same reasoning, recalling the definition of Poisson brackets and their relation
to the time evolution of functions under the dynamics induced by a Hamiltonian (see
for example Giorgilli 2002), an analogous stability estimate can be obtained for the
geolunisolar model: in particular, if Γ is the maximal variation allowed for the quantity
I1 + I2 =L∗

(
1−√

1 − e2 (1− cos i)
)

over the time T , one has

T � Tgls =
Γ

‖{I1 + I2,Rgls}‖∞,D
,

where ‖ · ‖∞,D is the supremum of the absolute value of the argument for (e, i) ∈D and
(φ1, φ2) ∈T

2.
The theoretical considerations leading to the definition of the stability times TJ2 and

Tgls are the basis of the numerical investigations on the stability for the J2 and geolu-
nisolar models for different reference values a∗ of the semimajor axis. Such estimates are
obtained by implementing the following procedure:
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Table 1. Stability times Tgls for different values of altitude in the geolunisolar model.

Altitude Stability time in D

3 000 km 4.615 51 × 1013

20 000 km 2.201 44 × 1012

35 790 km 3.512 66 × 1010

50 000 km 1.072 63 × 108

100 000 km 3.366 09 × 104

Figure 1. Stability times TJ2 for different values of altitude (e.g. a∗ −RE) in the J2 model.

• compute the initial Hamiltonians H�N
J2

and H�N
gls , obtained as finite trigonometric

expansions in the action-angle variables;
• normalize up to order M =N − 3 to obtain Hnorm

J2
and Hnorm

gls ;
• compute the stability times TJ2 and Tgls on suitable domains and for chosen val-

ues of ΔL and Γ, provided that the remainders are small enough to represent small
perturbations of the respective normal parts.
Given a reference value a∗ for the semimajor axis, the maximal excursions for L(T ) and
(I0 + I1)(T ) are chosen to be

ΔL= 0.05RE

√
μE
a∗
, Γ = 0.05

√
μE
a∗
,

where the first choice corresponds to a maximal variation of Δa= 0.1RE for the semi-
major axis. Furthermore, for computational reasons, the supremum norm defined in 4.2
is replaced by an appropriate norm ‖ · ‖∞,D∗ over a finite grid D∗ ⊂D, which turns out
to be an upper bound of ‖ · ‖∞,D. To ensure the smallness of the remainders over the
normal parts, D is set equal to [0, 0.15] × [0, π/2] for the J2 model and to [0, 0.1] × [0, 0.1]
in the geolunisolar case.

Figure 1 shows the behaviour of TJ2 for altitudes ranging from 103 to 105 km: as
expected by the fact that the Earth’s oblateness is more relevant for small altitudes, the
stability time increases with a∗, when the J2 model approaches the classical Keplerian
one.

Table 1 lists the values of Tgls for selected values from small to high altitudes; since
the lunisolar influence is stronger far from the Earth, the stability times tend to decrease
with the altitude.

5. Non-degeneracy conditions

One of the most important results of the XX century on the stability of nearly-
integrable Hamiltonian systems is represented by Nekhoroshev’s theorem (Nekhoroshev
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1962; Poshel 1993), which is a fundamental tool to provide exponential stability estimates
for quasi-integrable systems of the form

H(I,φ) = h(I) + εf(I,φ), (5.1)

where (I,φ) ∈U ×T
n, U ⊂R

n, n being the number of degrees of freedom of the system
and ε a small parameter. Typically, h is called the unperturbed function, and is straight-
forwardly integrable as it does not depend on the angles φ, while f is the perturbing
function.

A fundamental assumption in the original version of Nekhoroshev’s theorem is a
non-degeneracy of the unperturbed function h(I) called steepness condition, which is a
geometric assumption rather complex to verify in practice. However, the steepness condi-
tion is implied by stronger non-degeneracy conditions, much simpler to check, such as the
convexity, the quasi-convexity and the three-jet non-degeneracy (see, e.g., Chierchia, et al.
2018).

As a preliminary investigation of the applicability of Nekhoroshev’s theorem to our
cases, we establish whether these conditions are verified or not in the J2 and geolunisolar
models: to this end, a suitable splitting of Hnorm

J2
and Hnorm

gls into unperturbed and
perturbed parts is needed. In particular, as the non-degeneracy conditions involve only
h(I), one has to define precisely the unperturbed functions, denoted respectively as hJ2
and hgls. In the case of the J2 model, we impose hJ2(P, Q) to be the sum of all the
angle-independent terms of Hnorm

J2
, where, given the practical stability of L shown in §4,

δL is supposed to be constant and equal to 0. In the geolunisolar model, hgls(P, Q) is
given by the sum of all the terms of Hnorm

gls which are independent on the angles and at
most quadratic in the actions.

The verification of the non-degeneracy conditions for hJ2 and hgls is performed numeri-
cally in De Blasi et al. 2021 for different values of the altitudes (3000 km, 20000 km, 35790
km and 50000 km) and for (e, i) ∈D= [0, 0.1] × [0, 0.1]. The different non-degeneracy
assumptions are computed as follows:

• convexity: check if the Hessian matrices associated to hJ2 and hgls are positively (or
negatively) defined;

• quasi-convexity: it is equivalent to Arnold isoenergetic non-degeneracy condition,
involving first and second order derivatives of the unperturbed Hamiltonian;

• three-jet non-degeneracy: it is a condition involving up to third order derivatives and
it was verified numerically on a grid of 10000 points in the actions.
For the considered altitudes and in the regime of eccentricities and inclinations defined
by D, we find that hJ2 is three-jet non-degenerate, while hgls is quasi-convex; this result
is of particular relevance, as it implies that the presence of the lunisolar part removes
the degeneracy of the J2 model.
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