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Abstract

For every element x of a finite group G, there always exists a unique minimal subnormal subgroup, say,
Gx of G such that x ∈ Gx. The sub-class of G in which x lies is defined by {xg | g ∈ Gx}. The aim of this
paper is to investigate the influence of the sub-class sizes on the structure of finite groups.

2010 Mathematics subject classification: primary 20E45.

Keywords and phrases: finite group, class size.

1. Introduction

The study of how the arithmetical conditions on conjugacy class sizes affect group
structure has a long history, and this paper is a contribution to this study. Throughout
the following, G always denotes a finite group. For every element x of G, we denote
by xG = {xg | g ∈ G} the conjugacy class of G in which x lies.

The connection between conjugacy class sizes and the structures of finite groups
has been extensively studied. For a nice survey on this subject, see a recent paper by
Camina and Camina [2].

Among the many results on conjugacy class sizes, we are particularly interested in
several results linked to Camina [2] and Itô [7].

The following results study the structure of finite groups when all the conjugacy
class sizes (or a special subset thereof) are not divisible by a single prime.

Theorem 1.1. Let G be a finite group and p be a prime.

(1) The prime p does not divide |xG | for every x ∈ G if and only if G has a central
Sylow p-subgroup.
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(2) (Camina [1, Lemma 1]) The prime p does not divide |xG | for every p′-element
x ∈ G if and only if G = Op(G) × Op′(G).

(3) [10, Theorem 5] The prime p does not divide |xG | for every p′-element x ∈ G of
prime power order if and only if G = Op(G) × Op′(G).

Remark 1.2. In the previous theorem, (1) is well known, (2) strengthens (1), and (3)
further strengthens (2).

The following results study the structure of finite groups when all the conjugacy
class sizes are not divisible by a product of two primes.

Theorem 1.3 (Itô [7, Proposition 5.1]). Let G be a finite group and p, q be different
primes. If pq does not divide |xG | for any x ∈ G, then G is either p-nilpotent (that is, G
has a normal p-complement) or q-nilpotent.

In this paper, we generalize or perhaps in some sense weaken the concepts of
‘conjugacy class’ and ‘conjugacy class size’ as follows.

For every element x of G, it is easy to see that G has a unique minimal subnormal
subgroup in which x lies, and this subnormal subgroup is denoted by Gx. We shall
consider the sub-class

xG?

:= {xg | g ∈ Gx} = xGx

and the sub-class size |xG?

| instead of xG and |xG |, respectively.
The main object of this paper is to investigate Theorems 1.1 and 1.3 for the case

when the class size is replaced by the sub-class size.
The analog for Theorem 1.1 is as follows.

Theorem 1.4. Let G be a finite group and p a prime. Then the following statements are
equivalent.

(1) The prime p does not divide |xG?

| for every x ∈ G.
(2) The prime p does not divide |xG?

| for every p′-element x ∈ G of prime power
order.

(3) G is p-nilpotent.

Observe that the inverse of Theorem 1.3 is clearly not true. To see this, one may
consider the following example. Let G = H n V; here H acts faithfully on V where
H = Z2 o Z2 and V = F2

3. G is 2-nilpotent and has a conjugacy class of size divisible
by 6.

However, if the class size is replaced by the sub-class size, then we have the
following theorem.

Theorem 1.5. Let G be a finite group and p, q be different primes. Then pq does not
divide |xG?

| for every x ∈ G if and only if G is either p-nilpotent or q-nilpotent.

Set cs(G) = {|xG | | x ∈ G} and cs?(G) = {|xG?

| | x ∈ G}.
Let X be a set of positive integers. Let ρ(X) be the set of primes dividing some

member of X. The graph Γ(X) related to X is defined as follows: its vertex set is ρ(X),
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and two vertices p, q ∈ ρ(X) are joined by an edge if pq divides some member of X.
We put

ρ(cs(G)) = ρ(G), ρ(cs?(G)) = ρ?(G),
Γ(G) = Γ(cs(G)), Γ?(G) = Γ(cs?(G)).

Now combining Theorem 1.4 with Theorem 1.5, we conclude the following corollary.

Corollary 1.6. For distinct primes p, q ∈ ρ?(G), there always exists some m ∈ cs?(G)
such that pq | m. In other words, Γ?(G) is a complete subgraph of Γ(G), where
‘complete’ means every pair of vertices is joined by an edge.

For every member m of a set X of positive integers, let σ(m) be the number
of distinct prime divisors of m, and σ(X) = maxm∈X σ(m). Write σ(G) = σ(cs(G)),
σ?(G) = σ(cs?(G)). The connection between |ρ(G)| and σ(G) is studied in [8, § 33]
and elsewhere (see, for example, [3, 4, 11]). This question was first proposed by B.
Huppert and was often referred to as the conjugacy class version of Huppert’s ρ–σ
conjecture. The best known bound |ρ(G)| ≤ 4σ(G) for solvable groups was obtained
by Zhang [11].

Recall that |ρ(G)| ≤ 2σ(G) is not true for solvable groups [3]. But for sub-class size,
we have the following result.

Theorem 1.7. For every finite solvable but not nilpotent group G, |ρ?(G)| < 2σ?(G).

In this paper, we shall freely use the following facts. Let N /G and set G = G/N.
Then |xN |

∣∣∣∣ |xG | for any x ∈ N, and |xG
|

∣∣∣∣ |xG | for every x ∈ G.

Why do we consider the size |xG?

|? The following remarks partially answer this
question.

Remark 1.8. Let N be every normal (or subnormal) subgroup of a finite group G and
x be an element of N. For standard conjugacy class and class size, we have that

xN ⊆ xG and |xN |

∣∣∣∣ |xG |;

but for our sub-class, we have by definition that

Nx = Gx, xN?

= xG?

and |xN?

| = |xG?

|.

Observe further that for an element x ∈G, if we define |xG??

| to be the size of conjugacy
class in the minimal normal subgroup in which x lies, then for a normal subgroup N
with x ∈ N, we obtain that |xN??

| is only a divisor of |xG??

|. This is one of the reasons
why we define the sub-class size in the minimal subnormal subgroup but not in the
minimal normal subgroup.

Remark 1.9. For every pair of elements x, y ∈ G, if x, y are conjugate in G, then
Gx,Gy are conjugate. In fact, if y = xg for some g ∈ G, then Gxg = (Gx)g. In particular,
x −→ |xG?

| is a class function of G.
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Remark 1.10. On the one hand, for every x ∈ G, we have that |xG?

|

∣∣∣∣ |xG | because Gx

is subnormal in G, and that in many cases |xG?

| is much smaller than |xG |. On the other
hand, if we replace the standard conjugacy class size |xG | by the sub-class size |xG?

|,
some known results are still true. For example, it is shown in [5] that G is supersolvable
if all members of cs(G) are square-free, and it is also true that G is supersolvable if all
members of cs?(G) are square-free (see Remark 5.1).

At the end of this paper, we also characterize the finite groups G in which every
m ∈ cs?(G) is a prime power.

We shall also mention that Isaacs has pointed out to us that the concept of sub-class
has some relation with what he calls ‘strong conjugacy’ of subgroups (see [6, Section
9D] for details).

2. On sub-class sizes avoiding a single prime

In this section we prove some preliminary results and study the sub-class analog of
Theorem 1.1.

Lemma 2.1. Let N /G and set G = G/N. For every element x ∈ G, we have that

Gx ≤ Gx, |xG
?

|

∣∣∣∣ |xG?

|, and |xG
?

|

∣∣∣∣ |xG
|

∣∣∣∣ |xG |.

Proof. Observe that x belongs to Gx = GxN/N and that Gx is subnormal in G. It
follows that Gx is a subnormal subgroup of Gx. Also, we have

|xG
?

| = |xGx |

divides |xGx | = |xGxN
|

= |GxN/N : CGxN/N(xN)|
divides |GxN/N : CGx (x)N/N|
divides |Gx : CGx (x)| = |xGx | = |xG?

|.

The rest is clearly true. �

Lemma 2.2. Let P be a group-theoretical property that is closed under taking
subgroups. Suppose that for every finite group H, a normal subgroup of H maximal
with respect to having property P is a characteristic subgroup of H. If N is a subnormal
subgroup with property P of G, then 〈Ng | g ∈ G〉 has property P.

Proof. We may assume that N < G. Let M be a maximal normal subgroup of G
such that N ≤ M. By induction, 〈Ng | g ∈ M〉 has property P, and so N ≤ 〈Ng | g ∈
M〉 ≤ P(M) for some normal subgroup P(M) of M maximal with respect to having
property P. Observe that P(M) is normal in G because P(M) is characteristic in M.
Thus 〈Ng | g ∈ G〉 ≤ P(M), and since the property P is closed by subgroups, the result
follows. �
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Proof of Theorem 1.4. (1)⇒ (2). This is clear.
(2)⇒ (3). Note that if G is a simple group, then |xG | coincides with |xG?

| for every
x ∈ G, and the result follows by [10, Theorem 5]. Suppose that G is not simple and let
N be a minimal normal subgroup of G. Since the hypothesis is inherited by quotient
groups and subnormal subgroups (see Remark 1.8 and Lemma 2.1), we conclude by
induction that both G/N and N are p-nilpotent. By a standard argument, we may
assume that N is the unique minimal normal subgroup of G, and that N is a p-group.
Now it suffices to show that G is a p-group.

Suppose that G is not a p-group. Let x be every p′-element of G of prime power
order. If Gx < G, then induction yields that Gx has a normal p-complement U, and
this implies by Lemma 2.2 that 〈Ug | g ∈ G〉 is a normal p′-subgroup of G, which
contradicts the assumption that N is the unique minimal normal subgroup of G.
Therefore, Gx = G and thus xG has p′-size for every p′-element x ∈ G of prime power
order. As Op′(G) = 1, [10, Theorem 5] yields that G is a p-group, as required.

(3) ⇒ (1). For every x ∈ G, write x = uv = vu, where u is a p-element and v is a
p′-element. Set N = 〈u〉Op′(G). Clearly, N is subnormal in G and p does not divide
|xN |. This implies by Remark 1.8 that p does not divide |xN?

| = |xG?

|. �

Corollary 2.3. Let G be a finite group. Then G is nilpotent if and only if cs?(G) = 1.

Proof. This follows by Theorem 1.4. We also give a direct proof. If G is nilpotent
then for every x ∈ G, 〈x〉 is subnormal by [6, Lemma 2.1], and thus cs?(G) = 1. If
cs?(G) = 1 then for every x ∈ G, 〈x〉 lies in the center of Gx, and thus 〈x〉 is subnormal
in G. By [6, Theorem 2.2], G is nilpotent. �

Remark 2.4. We remark that G is abelian if and only if cs(G) = 1.

Proposition 2.5. Let G be a p-solvable group. Then the p-length lp(G) ≤ 1 if and only
if p does not divide |xG?

| for every p-element x of G.

Proof. The necessary part follows directly by Theorem 1.4. Suppose now that p does
not divide |xG?

| for every p-element x of G. We will show lp(G) ≤ 1.
Let N be a minimal normal subgroup of G. Since the hypothesis is inherited by

quotient groups and subnormal subgroups (see Remark 1.8 and Lemma 2.1), we
conclude by induction that lp(G/N) ≤ 1 and lp(N) ≤ 1. By a standard argument, we
may assume that N is the unique minimal normal subgroup of G, and that N = Op(G) =

CG(N).
Let V be the set of p-elements (of G) outside N, and suppose that V is not empty.
Assume H := Gx < G for some x ∈ V . Then by induction lp(H) ≤ 1. If Op′(H) > 1,

then by Lemma 2.2 G has a nontrivial p′-normal subgroup 〈(Op′(H))g | g ∈ G〉, a
contradiction. Therefore Op′(H) = 1, and so H has the normal Sylow p-subgroup
Op(H). It follows again by Lemma 2.2 that 〈(Op(H)g | g ∈ G〉 is a normal p-subgroup
of G, which leads to a contradiction: x ∈ Op(H) ≤ 〈(Op(H)g | g ∈ G〉 ≤ Op(G) = N.

Assume now that Gx = G for every x ∈ V . Then p does not divide |xG | = |xG?

| for
every x ∈ V , and this implies that V ≤ CG(N), a contradiction.

Therefore V is empty, and so lp(G) = 1 as desired. �
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3. On sub-class sizes avoiding a product of two primes

In this section, we study the sub-class analog of Theorem 1.3.
Let G be a p-solvable group, x ∈ G, and let Np(G) be its unique maximal normal

p-nilpotent subgroup. If Gx is p-nilpotent, then by Lemma 2.2 we have that x ∈ Gx ≤

〈(Gx)g | g ∈ G〉 ≤ Np(G). If x ∈ Np(G), then Gx ≤ Np(G) is p-nilpotent. Therefore, Gx

is p-nilpotent if and only if x ∈ Np(G).

Lemma 3.1. Let G be a p-solvable group. Then for every fixed element x of G, p does
not divide |xG?

| if and only if x ∈ Np(G).

Proof. If x ∈ Np(G), then Gx ≤ Np(G) is p-nilpotent. Since |xG?

| = |xNp(G)? |, the
necessary part follows from Theorem 1.4. We now show the sufficient part. Suppose
that |xG?

| is a p′-number and assume that x < Np(G). By the claim established before,
Gx is not p-nilpotent. Set N = Op′(Gx) and M/N = Op(Gx/N) (that is, M = Np(Gx)).
Observe that M < Gx and that x does not lie in every proper normal subgroup of Gx.
It follows that x < M. Since CGx/N(M/N) ≤ M/N holds true for every p-solvable group
Gx (see [9, 6.4.3]), we conclude that p | |xGx |, a contradiction. �

Lemma 3.2. Let G be a {p, q}-solvable group and suppose that pq does not divide any
members of cs?(G). Then G is either p-nilpotent or q-nilpotent.

Proof. Let Np(G), Nq(G) be the maximal normal p-nilpotent and q-nilpotent
subgroups, respectively, of G. By Lemma 3.1, we have G = Np(G) ∪ Nq(G). This
implies that either G = Np(G) or G = Nq(G), and the result follows. �

Lemma 3.3. Let H be a proper subgroup of G. Suppose that p does not divide |xG?

| for
every x ∈ G − H. Then G is p-nilpotent.

Proof. We claim first that the result is true when G is p-solvable. In fact, if G is p-
solvable, then by Lemma 3.1 we have 〈G − H〉 ≤ Np(G), and therefore G = Np(G) is
p-nilpotent.

Observe that |xG?

| = |(xg)G?

| for every x, g ∈ G (see Remark 1.9). It follows that p
does not divide |vG?

| for every v ∈ G −
⋂

g∈G Hg =
⋃

g∈G(G − Hg). Therefore we may
replace H by a normal subgroup

⋂
g∈G Hg, and so we may assume that H is a maximal

normal subgroup of G. Now G/H is simple. By Lemma 2.1 and Theorem 1.1, we
obtain that G/H is p-solvable.

Case 1. Suppose that G has a maximal normal subgroup M different from H.
Then M − (M ∩ H) ≤ G − H, and by Remark 1.8, p does not divide |xM?

| for every
x ∈ M − (M ∩ H). This implies by induction that M is p-nilpotent.

Assume that M ∩ H > 1. Since the hypothesis is inherited by G/M ∩ H, it follows
that G/M ∩ H is p-nilpotent. Therefore G is p-solvable, and the result follows by the
claim established before.

Assume that M ∩ H = 1. Then G = H × M. Observe that both H and M are
simple. Suppose that G is not p-solvable. Then H is a nonabelian simple group with
p | |H|. Let 1 , u ∈ M, 1 , v ∈ H, and let us consider Guv. We claim that Guv = G.
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Otherwise, 1 < Guv < G. If Guv is p-solvable, then Guv = M, which yields a
contradiction: uv ∈ M. If Guv is not p-solvable, then Guv = H, which is also impossible.
Thus Guv = G as claimed. Now p does not divide |(uv)G?

| = |(uv)G |, and since |(uv)G | =

|uM ||vH |, we have that gcd(p, |vH |) = 1. Then Theorem 1.1 yields a contradiction. Thus
G is p-solvable, and then G is p-nilpotent.

Case 2. Suppose that H is the unique maximal normal subgroup of G.
In this case, we get that Gx = G and so that p does not divide |xG | for every

x ∈ G − H. Let P be a Sylow p-subgroup of G. Then G − H is a proper subset of⋃
g∈G CG(Pg), and so

1
2
|G| ≤ |G − H| < |G : NG(P)||CG(P)| = |G|

|CG(P)|
|NG(P)|

.

Hence NG(P) = CG(P), and so G is p-nilpotent by a well-known result of Burnside. �

Lemma 3.4. Let G be a p-solvable group and suppose that pq does not divide any
members of cs?(G). Then G is either p-nilpotent or q-nilpotent.

Proof. Let Np(G) be the unique maximal normal p-nilpotent subgroup of G. Suppose
that G is not p-nilpotent. Then Np(G) < G, and for every x ∈ G − Np(G), we conclude
by Lemma 3.1 that p | |xG?

|, and so q does not divide |xG?

|. It follows by Lemma 3.3
that G is q-nilpotent, and we are done. �

Proof of Theorem 1.5. Suppose that G is p-nilpotent or q-nilpotent. By Theorem 1.4,
pq does not divide any members of cs?(G).

Suppose conversely that pq does not divide any members of cs?(G). Assume that
G is neither p-nilpotent nor q-nilpotent, and let G be of minimal order. We will work
toward a contradiction.

By Lemma 3.4, we may assume that G is neither p-solvable nor q-solvable. Also G
is not simple by Theorem 1.3.

We claim that G possess a unique minimal normal subgroup, say E. Suppose G
has distinct minimal normal subgroups E1 and E2. Since the hypothesis is inherited
by the groups E1, E2, G/E1,G/E2, these mentioned groups are either p-nilpotent or
q-nilpotent. Since G is neither p-solvable nor q-solvable, by a standard argument we
may assume that E1 is not q-solvable and that E2 is not p-solvable. Let Vi be a simple
factor of Ei, i = 1, 2. Then both V1 and V2 are nonabelian simple groups, and q | |V1|,
p | |V2|. Let v1 ∈ V1, v2 ∈ V2 be such that q | |vV1

1 | and p | |vV2
2 |. Since Gv1v2 = V1 × V2,

pq divides |(v1v2)V1×V2 | = |(v1v2)G?

|, a contradiction.
Now E is the unique minimal normal subgroup of G. Since G is neither p-solvable

nor q-solvable, by induction we may assume that G/E is p-nilpotent, that E is q-
nilpotent but not p-nilpotent. In particular, E is a nonabelian q′-group with p | |E|.

We claim that G possesses a unique maximal normal subgroup, say M. Otherwise,
G has distinct maximal normal subgroups M1 and M2. Then E ≤ M1 ∩ M2. By
induction Mi is either p-nilpotent or q-nilpotent where i = 1, 2, thus M1, M2 are both
q-nilpotent because E is not p-nilpotent. This implies that G = M1M2 is q-nilpotent, a
contradiction.
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We claim that E is simple. Suppose that E is not simple. Let Ei be simple factors
of E, i = 1, 2, . . . , s. Then E = E1 × · · · × Es. Observe that G acts transitively on
{E1, . . . , Es}; it follows that H :=

⋂s
i=1 NG(Ei) is a proper normal subgroup of G. Let

x be an element centralizing a Sylow p-subgroup of E. Then x centralizes a Sylow p-
subgroup of Ei for every i = 1, . . . , s. It follows that x ∈ H because G acts transitively
on {E1, . . . , Es}. Since M is the unique maximal normal subgroup of G, we have
G − M ⊆ G − H. Now for every y ∈ G − M, p divides |yG | = |yG?

| because y cannot
centralize any Sylow p-subgroups of E, and thus q does not divide |yG?

|. Applying
Lemma 3.3, we obtain that G is q-nilpotent, a contradiction.

Now E is a nonabelian simple group, and then G/E ≤ Out(E) because E is
the unique minimal normal subgroup of G. By the classification of finite simple
groups, G/E is necessary solvable. Since E is q-solvable, G is q-solvable, a final
contradiction. �

4. On sub-class version of the Huppert’s ρ–σ conjecture

In this section, we study the sub-class analog of the Huppert’s ρ–σ conjecture.

Proof of Theorem 1.7. We argue using Casolo’s method (see [8, Theorem 33.10]).
For every p ∈ ρ?(G), we put

∆p = {g ∈ G | p | |gG?

|}.

Then by Lemma 3.1, we have

G − ∆p = {g ∈ G | p - |gG?

|} = Np(G),

where Np(G) is the unique maximal normal p-nilpotent subgroup of G. Write mp =

|G : Np(G)|. By Theorem 1.4, we have mp ≥ 2 for every p ∈ ρ?(G), and then

|∆p| =
mp − 1

mp
|G| ≥

|G|
2
.

We consider in ρ?(G) × (G − 1) the subset

S = {(p, g) | p | |gG?

|} =
⋃

p∈ρ?(G)

(p,∆p).

Then

(|G| − 1)σ?(G) ≥
∑

1,g∈G

σ(|gG?

|) = |S | =
∑

p∈ρ?(G)

|∆p| =
∑

p∈ρ?(G)

mp − 1
mp

|G| ≥ |ρ?(G)||G|/2.

Hence |ρ?(G)| < 2σ?(G). �
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5. Remarks

It has been shown in [5, Theorem 1] that G is supersolvable if all the members of
cs(G) are square-free. Furthermore, G is also supersolvable if |xG | is square-free for
every element x of prime power order (see [10, Theorem 8]).

Remark 5.1. Suppose that |xG?

| is square-free for every element x ∈ G of prime power
order. Then G is supersolvable.

Proof. If G is simple, then the result follows by [10, Theorem 8]. Suppose that G is not
simple and let N be a minimal normal subgroup of G. Since the hypothesis is inherited
by quotient groups and normal subgroups, we conclude by induction that G/N and
N are supersolvable, and in particular that G is solvable. By standard arguments and
induction, we may assume that G possesses a unique minimal normal subgroup N, that
G/N is supersolvable, and also that N = Fitting(G). Now it suffices to show that N is
of prime order.

Let L/N be a chief factor of G. Then there exists an element y of order q with
gcd(q, |N|) = 1 such that L = N〈y〉. Observe that L′ = N since N is minimal normal
in G; it follows that CN(y) = 1. Suppose that Ly < L and let M be a maximal normal
subgroup of L with Ly ≤ M. Then N = L′ ≤ M < L, and then M = N which is clearly
impossible. Thus Ly = L and |yG?

| = |yL? | = |yL| = |N|. This implies by our hypothesis
that N is of prime order, and so G is supersolvable. �

The finite groups in which every conjugacy class size is a prime power are studied
in [5]. In what follows, we will describe the finite groups G in which every member of
cs?(G) is a prime power. Let Npn(G) be such that Npn(G)/Op(G) = Fitting(G/Op(G)).

Remark 5.2.

(1) For a fixed element x of G and a fixed prime p, |xG?

| is a power of prime p if and
only if x ∈ Npn(G).

(2) Every member of cs?(G) is a prime power if and only if G/Op(G) is nilpotent
for some prime p. And in this case, ρ?(G) ⊆ {p}.

Proof. (1) If x ∈ Npn(G), then by Theorem 1.4, |xG?

| is a power of prime p. Assume
conversely that |xG?

| is a power of prime p. Suppose first that Gx < G. Then x ∈
Npn(Gx) by induction. Observe that Npn(Gx) is a characteristic subgroup of Gx; it
is easy to see that Npn(Gx) ≤ Npn(G) (see Lemma 2.2). This implies that x ∈ Npn(G),
and we are done. Suppose now that Gx = G. Thus x does not belong to any proper
normal subgroups of G, and so 〈xg | g ∈G〉 = G. Appealing to a theorem of Kazarin [8,
Theorem 15.7], we get that G is solvable. Now by Lemma 3.2, we get that x ∈ Nq(G)
and thus G = 〈xg | g ∈ G〉 = Nq(G) for every prime q , p. Therefore G/Op(G) is
nilpotent, and we are done.

(2) If G/Op(G) is nilpotent for some prime p, then by Theorem 1.4 we get
ρ?(G) ⊆ {p}. If every member of cs?(G) is a prime power, then Corollary C yields
that ρ?(G) ⊆ {p} for some prime p, that is, every member of cs?(G) is a power of p,
and then G/Op(G) is nilpotent by statement (1). �
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Remark 5.3. An interesting question is whether a result similar to Theorem 1.7 might
also hold true for arbitrary groups.

Remark 5.4. The study of sub-class sizes defined in this paper seems to be new, and
we hope it will promote some future research interest in this direction.
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