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Kilmister (1) has considered dynamical systems specified by coordinates
<7"(a = 1, 2, . . . ,«) and a Lagrangian

(with summation convention). He sought to determine generally covariant
conditions for the existence of a first integral, bxq

x = constant, linear in the
velocities. He showed that it is not, as is usually stated, necessary that there
must exist an ignorable coordinate (equivalently, that bx must be a Killing
field:

where covariant derivation is with respect to axf). On the contrary, a singular
integral, in the sense that baq* = 1 for all time if satisfied initially, need not be
accompanied by an ignorable coordinate.

In fact, Kilmister has shown that necessary and sufficient conditions for the
existence of a linear first integral are

P ff fi (1)

tfia^-a,.,) = 4>bf, (2)

fc'a,p = <£-0 (3)

In this note, a simple consequence of these equations will be exploited.
Namely, since the kinetic energy matrix axfS must be positive definite, bjf # 0,
so that, from (2), <j> = 0. Moreover, from (1)

b^ff = 6(bxb")2, or 6 = ( -

Finally, (3) says (a-l/2balf)iPb> = 0.
For n = 2 these equations can be integrated completely. Choosing a

coordinate system {x, y) for which bx = (1, 0), ba = aal, and (1) becomes

which is satisfied identically for a = $ = 1 and for a = 1, /? = 2 gives

al2 = auA(y).

For a = /? = 2 we find a22 = fl11/4
2(j) + 52G>). A(y) and B(y) are arbitrary.
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(2) becomes a l t 2 = a2, i or aa = VA, say. But since such terms will not
contribute to the equations of motion, they may be dropped from the

Lagrangian. (3) requires a = +C(y). Thus
2

Let £, = x+ / ^OO^y and // = J B{y)dy. Then

flu is an arbitrary positive function of I; and r\. This Lagrangian is mentioned'
by Kilmister, who implied it to be of less general interest. The integration
procedure used here fails when n > 2.

The equation (1) has been noticed by Rayner (2) while studying rigid motions
in general relativity. There, of course, aa and a have no analogues. Kilmister's
result corresponds to the fact that if a motion b" satisfies (1) (implying that the
motion is rigid) and if u" is a unit tangent to a geodesic, then bau" = 0 along the
entire geodesic if it is satisfied at one point.
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