
Glasgow Mathematical Journal (2023), 65, pp. 114–120
doi:10.1017/S0017089522000143

RESEARCH ARTICLE

Maximal order Abelian subgroups of Coxeter groups
John M. Burns and Goetz Pfeiffer

School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland
E-mails: john.burns@nuigalway.ie, goetz.pfeiffer@nuigalway.ie

Received: 15 October 2021; Revised: 16 March 2022; Accepted: 25 March 2022; First published online: 2 August 2022

Keywords: Coxeter groups, Lie algebras, root systems

2020 Mathematics Subject Classification: Primary - 20F55; Secondary - 17B22, 20E28

Abstract
In this note, we give a classification of the maximal order Abelian subgroups of finite irreducible Coxeter groups.
We also prove a Weyl group analog of Cartan’s theorem that all maximal tori in a connected compact Lie group are
conjugate.

1. Introduction

Some years ago, colleagues working in the area of statistical mechanics asked what the maximal order
Abelian subgroups of the symmetric group Sn looked like. Their question arose from consideration
of reducible representations constructed from tensor products of unitary representations arising in the
statistical mechanics of systems of n quantum spins. In particular, they wanted to understand the situation
as n → ∞. A complete classification can be derived from general results in [17], and a classification
was given in a more general setting in [9]. An elementary classification was given in [6] using Lagrange
multipliers. This method indicates that in order to maximize the product

∏
mi of the prime powers

mi (the Abelian invariants) subject to the constraint
∑

mi ≤ n (because it is an Abelian subgroup of
Sn), all or as many as possible of the integers mi should be chosen equal (to m say). The problem then
amounts to maximizing m

n
m and regarding this as a function of a real variable having a maximum at e,

we would expect that the solution to the integer-valued problem (and therefore the maximal order of an
Abelian subgroup of Sn) is of the form 3k, since 2

n
2 < 3

n
3 . This is essentially the case (see Theorem 1.1

below). In this note, we give a complete classification of the maximal order Abelian subgroups M for all
finite irreducible Coxeter groups. We also determine the number of conjugacy classes of maximal order
Abelian subgroups, and viewing a distinguished class of these subgroups as discrete analogs of maximal
tori in compact Lie groups, we obtain a Weyl group analog of Cartan’s theorem that all maximal tori in
a connected compact Lie group G are conjugate, namely:

Theorem. Let M and M′ be discrete maximal tori of W, then M′ = w−1Mw for some w ∈ W.

The first author would like to thank the Institut de Mathématiques de Marseille, Aix-Marseille
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We now recall the precise solution for Sn (i.e. W of type An−1) and then state the general result.

Theorem 1.1 Let M be an Abelian subgroup of maximal order in the symmetric group Sn, n ≥ 2. Then

(i) M �Z
k
3 if n = 3k,

(ii) M �Z
k
3 ×Z2 if n = 3k + 2,

(iii) either M �Z
k−1
3 ×Z4 or M �Z

k−1
3 ×Z2 ×Z2 if n = 3k + 1.
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A natural representative for M in Sn is generated by a collection of disjoint 3-cycles, plus a 2-cycle
or a 4-cycle if appropriate.

Since the case of the root system of type Ar is settled by the above theorem, we will exclude this case
from the statement of the general result.

Theorem 1.2 Let M be an Abelian subgroup of maximal order in a finite irreducible Coxeter group W
of rank r, then:

(a) (W crystallographic)

(i) For W of type Br or Cr, we have M �Z
s
2 ×Z

t
4 where 0 ≤ s, t with s + 2t = r and |M| = 2r.

(ii) For W of type D2k (r = 2k), we have M �Z
2k
2 and |M| = 2r.

(iii) For W of type D2k+1 (r = 2k + 1), we have M �Z
s
2 ×Z

t
4 where 0 ≤ s, t with s + 2t = r − 1

and |M| = 2r−1.
(iv) For W of type E6, we have M �Z

3
3, and |M| = 33.

(v) For W of type Er, r = 7, 8, we have M �Z
r
2 and |M| = 2r.

(vi) For W of type F4, we have M �Z2 ×Z
2
3, and |M| = 2 · 32.

(vii) For W of type G2, we have M �Z2 ×Z3, and |M| = 2 · 3.
(b) (W noncrystallographic)

(i) For W of type H3, we have M �Z2 ×Z5, and |M| = 2 · 5.
(ii) For W of type H4, we have M �Z2 ×Z

2
5, and |M| = 2 · 52.

(iii) For W of type I2(m), m ≥ 5, we have M �Zm and |M| = m.

For W of type Bn, a natural representative for M is generated by a collection of m negative 2-cycles
(having order 4) and a negative 1-cycle if n is odd.

For W of type D2k+1, a natural representative for M comes from a subgroup of type W(B2k) contained
in W(D2k+1).

For W of type D2k, a natural representative for M is a direct product of k groups of type W(A1) ×
W(A1).

2. Basic facts and definitions

All basic facts and definitions used can be found in [4] or [16]. Let (W ,S) be an irreducible finite Coxeter
system of rank r with S = {sα1 , . . . , sαr} its set of simple reflections. When W is a Weyl group (W crys-
tallographic), we have an associated connected compact Lie group G (with Lie algebra g), containing (a
fixed) maximal torus T (with Lie algebra t) so that the Weyl group W = NG(T)/T . If gC = tC ⊕ ⊕

α∈�
gα

is the root space decomposition of the complexification of gwith respect to tC (the complexification of t),
then a root α is an element of the dual spaces t∗ (pure imaginary-valued) or it∗ (real-valued). Since G is
compact, the Killing form is negative definite on t and gives an (Ad(G) invariant) real inner product 〈 , 〉
on the real vector spaces it and it∗. For w ∈ NG(T), H ∈ t and α ∈ t∗ we define w(H) = Ad(w)H = wHw−1

and w(α)(H) = α(Ad(w−1)H), and since Ad(T) acts trivially on t we obtain (faithful) induced actions of
W . Choosing a fundamental Weyl chamber in it, we can define positive roots �+ and {α1, . . . , αr} a basis
of positive simple roots whose simple reflections generate W . The fundamental weights {ω1, . . . , ωr}
are defined by the conditions that 〈ωi, 2αj〉 := 〈αj, αj〉 δij for all i, j. We will normalize 〈 , 〉 so that the
highest root α̃ has length squared equal to 2. For α, β ∈ �, we define (integers) n(α, β) = 2〈α, β〉

〈α, α〉 .
The Dynkin diagram D is the (multi) graph with r vertices (labeled by the positive simple roots), and

cijcji edges joining αi to αj where cij = n(αi, αj). The extended Dynkin diagram D̃ (always labeled as in
[4]) is the graph constructed from D by adding a new vertex α0 = −α̃ (the affine vertex or node) and
joining it to any vertex αi by (the old rule of) n(αi, α̃) · n(α̃, αi) edges. We then write the coefficient ni

over the vertex αi and n0 = 1 over α0, where α̃ = ∑r
i=1 niαi. Deletion of any vertex from D̃ and the edges

connected to it produces a new (typically non-connected) Dynkin diagram D1 (with the same number
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of vertices as D) of a semisimple Lie subalgebra g1 of g. The Lie algebra g1 is said to obtained from
g by an elementary operation. Of course, we can perform a new elementary operation on any of the
connected components of D1. Continuing this process, we obtain a chain of subalgebras g⊇ g1 ⊇ . . . ⊇
gm, each obtained from its predecessor by an elementary operation, and any semi-simple Lie subalgebra
of maximal rank is obtained by a finite number of elementary operations (see [12,18]). Note that when
a diagram of type An occurs, an elementary operation does not change the algebra. Among the maximal
rank Lie subalgebras are those corresponding to maximal subgroups of maximal rank in G, and we recall
from [20] the following for later use:

The fundamental simplex
D0 = {h ∈ it : αi(h) ≥ 0 ∀ i, α̃(h) ≤ 1}

has vertices {v0, v1, . . . , vr} where v0 = 0, αi(vj) = 1
ni
δij, and it has the property that every element of G

(connected and centerless) is conjugate to an element of exp (2π iD0). The conjugacy classes of maximal
connected subgroups of maximal rank in G are obtained from it by a theorem of Borel and de Siebenthal
which we now recall.

Theorem 2.1 ([2,20], p. 278) Let G be a compact centerless simple Lie group with fundamental simplex
D0 = {v0, v1, . . . , vr} and let 1 ≤ i ≤ r.

(i) Suppose that ni = 1, then the centralizer of the circle group {exp (2π itvi):t ∈R} is a maximal
connected subgroup of maximal rank in G with

{α1, . . . , αi−1, αi+1, . . . , αr}
as a system of simple roots.

(ii) Suppose that ni is a prime p > 1, then the centralizer of the element exp (2π ivi) (of order p) is
a maximal connected subgroup of maximal rank in G with

{α0, . . . , αi−1, αi+1, . . . , αr}
as a system of simple roots.

(iii) Every maximal connected subgroup of maximal rank in G is conjugate to one of the above
groups.

Finally, the trace of a finite Abelian group A =Zm1 ×Zm2 × . . . ×Zmk is the integer Tr(A) = ∑k
i=1 mi

(see [15]).

3. Proof of Theorem 1.2

For W of each possible type, we first prove the existence of an Abelian subgroup of the required order
and isomorphism type. We then check that W contains no Abelian subgroups of larger order, or other
isomorphism types of Abelian subgroups of maximal order. For the exceptional crystallographic types
(except G2) and the noncrystallographic type H4, the check involves computer calculations using the
computer package CHEVIE for GAP [14]. In order to prove the existence, we observe that if K is a
connected subgroup of G of maximal rank (necessarily equal to that of G), then any maximal torus of
K is also a maximal torus of G. The Weyl group W (K) of K can therefore be identified with a subgroup
of W the Weyl group of G.

For W of type Br or Cr, the elementary operation (in the extended Dynkin diagram of Cr) corre-
sponding to deletion of the vertex connected to the α0 = −α̃ vertex of D̃ (the vertex α1) gives the Dynkin
diagram D1 of a semisimple subalgebra g1 with corresponding maximal rank subgroup of G of type type
A1 × Cr−1. Repeating this process in the component of D1 corresponding to Cr−1, we eventually obtain a
maximal rank subgroup of type A1 × A1 × · · · × A1 (r copies) and hence a subgroup M �Z

r
2 of W . This

sequence of elementary operations (i.e. successive deletion of the vertex connected to −α̃, in successive
extended Dynkin diagrams) we will call the Wolf sequence (on account of its connection to Wolf spaces,
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see [13,21]), and it also produces a maximal rank subgroup of type A1 × A1 × . . . × A1 (r copies) for
types D2k and Er, r = 7, 8 and hence a subgroup M �Z

r
2 of W .

The maximal order Abelian subgroups of W for type Br or Cr containing direct factors isomorphic to
Z4 are also realized in the extended Dynkin diagram of Cr (recalling that the Weyl group for root systems
of type B2 or C2 is isomorphic to the dihedral group of order eight) as follows: as our first elementary
operation, we delete the vertex α2 from D̃ to obtain the Dynkin diagram D1 of a semisimple algebra g1

with corresponding maximal rank subgroup of G of type C2 × Cn−2. Repeating either this process or
taking the Wolf sequence, in the component of D1 corresponding to Cn−2 we can eventually obtain any
subgroup M �Z

t
4 ×Z

s
2 where 0 ≤ s, t with s + 2t = r.

In the case of W of type D2k+1, we note that not all subgroups listed arise from subgroups of maximal
rank, for example, the maximal order Abelian subgroup M �Z4 ×Z4 when W is of type D5. However,
the maximal order Abelian subgroups M �Z

2
2 ×Z4 and M �Z

4
2 both arise from a maximal rank sub-

group of type A1 × A1 × A3. The result follows, however, from the B2k case by folding the D2k+1 diagram
which comes from a regular embedding (taking a torus to a torus) of Lie groups (see [5], p. 265).

For W of type E6, F4 or G2, the elementary operation of deletion of the vertex αi such that ni = 3,
where α̃ = ∑r

i=1 niαi, gives a maximal rank subgroup of type A2 × A2 × A2, A2 × A2 or A2, respectively,
giving rise to an Abelian subgroup M of W with M �Z

3
3, Z2

3 or Z3, respectively. Since −1 ∈ W for F4

and G2 and the center Z(W) �Z2 � 〈−1〉 ([11]), we can extend these groups by Z(W ) in both these
cases.

We now consider the noncrystallographic cases. For W of type I2(m), m ≥ 5 (the Dihedral groups),
the result is clear. For W of type H3 and H4, the classification of their maximal proper subroot systems
in [8,10] gives rise to Abelian subgroups M of W with M �Z5 (from a maximal subroot system of
type I2(5)), and Z

2
5 (from a maximal subroot system of type I2(5) × I2(5)) in H3 and H4, respectively.

Extending these groups by their centers Z(W) �Z2 gives the required Abelian subgroups M.
We now show that the obtained lower bounds on |M| are also upper bounds, and that there are no other

isomorphism types of maximal order Abelian subgroups. Before doing so, we remark (see [3], p. 134)
that a subgroup of W isomorphic toZs

p (p a prime) admits a faithful real representation of dimension r (on
t) and therefore s ≤ r if p = 2 and s ≤ r

2
if p �= 2. There is therefore no larger order elementary Abelian

2-group in W(Br), W(D2k), W(E7), or W(E8), and no larger order elementary Abelian 3-group in W(E6)
than obtained above. In ruling out other possibilities, we begin with the infinite families (i.e. classical
types). We embed M in a symmetric group SN and use the fact that we must then have Tr(M) ≤ N. Here,
the vertices of the extended Dynkin diagram D̃ with ni = 1 and the maximal subgroup of maximal rank
K corresponding to part (i) of Theorem 2.1. play a role. This subgroup is the isotropy subgroup of
an Hermitian symmetric space H = G/K. Taking a maximal torus T of G to lie in K , the Weyl group
W acts transitively and faithfully on the fixed point set F(T ,H) of the action of T on H. This set has
cardinality equal to the Euler number χ (H) of H which is equal to 2r when W is of type Br or Dr

(and its elements are pairwise antipodal on totally geodesic two-dimensional spheres in H) see [19],
so that Tr(M) ≤ 2r. Alternatively, instead of F(T ,H), we can take the weights {±λ1, . . . , ±λr} of the
vector representation of g for the simple Lie algebras of type Cr and Dr. Now for Br and Dr (r even),
the center Z(W) � 〈−1〉 is contained in M so that the orbits 
k of M have even cardinality and M is the
direct product of its restrictions to the orbits 
k. Since a transitive Abelian permutation group has order
equal to its degree, we can rule out elements of order three in M since they must contribute at least six
to Tr(M) and |M|, whereas Z3

2 contributes six to Tr(M) and eight to |M|. The argument for ruling out
higher torsion elements of M other than four is similar, so that 2r is the maximal order of an Abelian
subgroup in these cases. Again, the case of D2k+1 follows from folding to B2k. The remaining large order
cases are in the exceptional families and were verified by computer calculations.

Definition 3.1.

(i) The 2-rank of W is equal to the integer r2 such that the maximal order of an elementary Abelian
2-subgroup of W is 2r2 .
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(ii) A pair of roots α and β ∈ � are said to be strongly orthogonal (s.o.) if α + β is not a root and
α − β is not a root. A subset consisting of pairwise s.o. roots will be called a s.o. set of roots.

We now have the following corollary to Theorem 1.2.

Corollary 3.1. Let W be the Weyl group of an irreducible root system, then the 2-rank (r2) of W is equal
to the maximal cardinality of a set of strongly orthogonal roots and r2 = r if and only if −1 ∈ W.

Proof: As in the proof of Theorem 1.2, the Wolf sequence of elementary operations corresponding to
successive deletion of the vertex connected to −α̃ (in successive extended Dynkin diagrams) produces
a maximal rank subgroup of G of type A1 × A1 × . . . × A1 (with r copies), and corresponding maximal
order elementary 2-subgroup M �Z

r
2 of W , unless we start with or encounter a diagram of type As

with 2 ≤ s, in which case r2 < r. This will occur only in diagrams of type Ar, Dr, r odd, or E6, namely
in those cases where −1 /∈ W, and then r2 takes the values �(r + 1)/2�, r − 1 and 4, respectively. That
the corresponding elementary 2-groups are of maximal order was checked by computer for E6, follows
from Theorem 1.2 for Dr, r odd and by induction for Ar. That these procedures also produce a set of
s.o. roots of maximal cardinality r2 follows from orthogonality in the simply laced cases and from the
classification of maximal sets of strongly orthogonal roots in [1], p. 121 and p. 127 otherwise.

Definition 3.2. A maximal order Abelian subgroup M (of a finite irreducible Coxeter group W) with
minimal number of Abelian invariants is called a discrete maximal torus of W.

Remarks and Examples: The Weyl group of Type A3 is the symmetric group S4, and it already hints
at the definition of a maximal torus (of W ). S4 has three conjugacy classes of maximal order Abelian
subgroups, those of M1 = 〈(1234)〉, M2 = 〈(12), (34)〉, and M3 = 〈(12)(34), (13)(24)〉. Whereas M2 and
M3 are isomorphic as abstract groups they are not as permutation groups, that is, they are not conjugate
in S4. On the other hand, the cycle (1234) is a Coxeter element and it generates (for W of any type) a
maximal Abelian subgroup of W (in this case also of maximal order) and a distinguished conjugacy class.
Similarly, the Weyl group of Type B2 has three conjugacy classes of maximal order Abelian subgroups,
two of which are isomorphic to Z

2
2 and the other (isomorphic to Z4) is corresponding to the Coxeter

element. Whereas the Abelian subgroup generated by the Coxeter element (although maximal) is no
longer of maximal order in higher rank, by Theorem 1.2. the above conjugacy class phenomenon persists
for classical types (excluding D2k).

We now prove an analog (for W ) of Cartan’s theorem that all maximal tori of a compact connected
Lie group G are conjugate in G.

Theorem 3.1. Let M and M′ be discrete maximal tori of W, then M′ = w−1Mw for some w ∈ W.

Proof: For W of type Ar, we note that Theorem 1.1 and the definition of a maximal torus M of W
imply that

(i) M �Z
k
3 if r + 1 = 3k,

(ii) M �Z
k
3 ×Z2 if r + 1 = 3k + 2, and

(iii) M �Z
k−1
3 ×Z4 if r + 1 = 3k + 1.

Since all direct factors correspond to disjoint cycles of length 2, 3, or 4, (with the sum of all lengths
equal to r + 1) and at most one transposition occurring, the result follows from the fact that permutations
of the same cycle type are conjugate in Sn.

For W of type Br, viewed as all signed permutations of {1, 2, . . . , r}, that is, injective maps from
{1, 2, . . . , r} to {±1, ±2, . . . , ±r}, with either i or −i in the image, elements can again be expressed in
cyclic form, and the above argument generalizes. Cycles either contain both i and −i (called negative
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cycles) and are of the form (i1i2 . . . ik − i1 − i2 · · · − ik) or do not contain both i and −i for any i (called
positive cycles), and they occur in pairs of the form (i1i2 . . . ik)( − i1 − i2 · · · − ik). Since (as with ordi-
nary permutations) conjugation by w of a signed permutation in cyclic form sends i to w(i), two signed
permutations are conjugate if and only if they have the same number of positive and negative cycles of
every length. We now recall that a maximal torus M of W (by Theorem 1.2.) is of the form:

(i) M �Z
k
4 if r = 2k and

(ii) M �Z
k
4 ×Z2 if r = 2k + 1.

When r = 2k, the k commuting Z4 factors are negative cycles (i1i2, −i1 − i2) (Coxeter elements of a
B2 or C2 system), and we have that all maximal tori are conjugate. When r = 2k + 1, the argument is the
same because the additional Z2 factor must be a negative 1-cycle. The case of Dr (r odd) is similar.

We next consider those cases where a maximal torus is of the form M �Z
r
2, that is, D2k and

Er, r ∈ {7, 8}. Using the fact that for these cases 〈−1〉 = Z(W) must be contained in M, it is not hard to
prove that M has a set of r generators, none of which is a nontrivial product of commuting reflections.
These generating reflections therefore yield a maximal set of orthogonal roots that are in fact strongly
orthogonal as the root systems are simply laced in the cases at hand ([1], p. 117). However, by [1],
p. 119, all maximal subsets of strongly orthogonal roots are in the same Weyl group orbit for simply
laced root systems (the number of such W -orbits is the number of short simple roots), and therefore the
corresponding stabilizing sets of reflection generators of the discrete maximal tori are conjugate in W .

Similarly in the case of E6, there is a unique W orbit of sets of three orthogonal roots ([7] p. 14),
and therefore (as we now show) there is a unique W orbit of subroot systems of type 3A2 = A2 + A2 +
A2, and therefore all stabilizers (the M’s) are conjugate. Deletion of the branch node in the extended
Dynkin diagram gives a subroot system of type 3A2 with simple roots {α1, α3}, {α5, α6}, and {α̃, α2}.
Let {α′

1, α
′
3}, {α′

5, α
′
6}, and {α̃′, α′

2} be the simple roots of another 3A2, and by [7] p. 14 we may assume
that w(α′

1) = α1, w(α′
5) = α5, and w(α̃′) = α̃ for some w ∈ W. We now show that w(α′

2) ∈ {α2, α̃ − α2}.
Since 〈α̃, w(α′

2)〉 = 〈w(α̃′), w(α′
2)〉 = 〈α̃′, α′

2〉 �= 0, we have that b2 �= 0, where w(α′
2) = ∑r

i=1 biαi, because
α̃ = ω2. Similarly w(α′

2) must be orthogonal to α1 = 2ω1 − ω3 and α3 = −ω1 + 2ω3 − ω4 so that 2b1 = b3

and b1 + b4 = 2b3 = 4b1 and therefore 3b1 = b4. As there are only two positive roots with α4-coefficient
equal to 3, namely α̃ = ω2 and sα2 (ω2) = −ω2 + ω4 = α̃ − α2 (because the next highest root sα4 (sα2 (ω2)) =
−ω4 + ω3 + ω5 has α4-coefficient equal to 2), we have that either b1 = 1 and w(α′

2) = α̃ − α2 or b1 = 0 =
b4 = b3 and therefore w(α′

2) = α2 as the only positive root of the system of type A2 + A1 + A2 (as b4 = 0)
with nonzero α2-coefficient. An identical argument gives w(α′

6) ∈ {α6, α5 + α6} and w(α′
3) ∈ {α3, α1 +

α3}. That all maximal order Abelian subgroups are conjugate for the cases G2, F4, H3, and H4 follows
from Sylow’s Second Theorem, as the groups M/〈−1〉 are Sylow p-subgroups of W/〈−1〉 with p = 3
or 5.

Remark: The definition of a discrete maximal torus as a maximal order Abelian subgroup with
minimal number of Abelian invariants applies to any finite group. However, in general, there is more
than one conjugacy class of them, as illustrated by Q8. A computer search of groups of small order
indicates that groups with a single conjugacy class of maximal tori are the exception rather than the
rule.
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