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Abstract The well-behaved Sylow theory for soluble groups is exploited to prove an Euler product for
zeta functions counting certain subgroups in pro-soluble groups. This generalizes a result of Grunewald,
Segal and Smith for nilpotent groups.
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1. Introduction

Let G be a finitely generated group. Denote by a�
n (G) the number of subgroups of index

n in G. We can encode these numbers in a Dirichlet series which we call the zeta function
of G:

ζ�
G (s) =

∞∑

n=1

a�
n (G)n−s.

We also have a zeta function encoding the lattice of normal subgroups:

ζ�
G(s) =

∞∑

n=1

a�
n(G)n−s,

where a�
n(G) denotes the number of normal subgroups of index n in G.

These functions were first introduced in [3] where they were studied in the particular
case in which G is a finitely generated torsion-free nilpotent group. These groups have
the property that the global zeta function can be written as an Euler product of natural
local factors defined for each prime p: for ∗ ∈ {�, �},

ζ∗
G,p(s) =

∞∑

n=0

a∗
pn(G)p−ns.

To say that there is an Euler product for ζ∗
G(s) in terms of these local factors is to express

analytically the fact that a subgroup of finite index is the intersection in a unique way of
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subgroups of p-power index. For nilpotent groups this follows from the fact that a finite
nilpotent group is a direct product of its Sylow p-subgroups.

There is another class of groups with a well-behaved Sylow theory, namely soluble
groups. A number of people have asked whether this Sylow theory for soluble groups
translates into an Euler product for associated zeta functions. In this paper we seek to
provide an answer to this question. We prove that a pro-soluble group has a Sylow basis
(see Lemma 3.2). We then show that the zeta function counting subgroups permutable
with this Sylow basis has an Euler product (see Theorem 3.4).

2. Nilpotent groups

First we recall the proof for nilpotent groups. The most general setting is set out in the
following theorem.

Theorem 2.1. Suppose that G is a finitely generated group with the property that
every finite quotient of G is nilpotent. Then, for ∗ ∈ {�, �},

ζ∗
G(s) =

∏

p prime

ζ∗
G,p(s).

Proof. We must show that if n = pe1
1 . . . pek

k , where p1, . . . , pk are distinct primes,
then

a∗
n = a∗

p
e1
1

. . . a∗
p

ek
k

(where we denote a∗
n = a∗

n(G)). Since G is finitely generated, there exists a normal
subgroup contained in every subgroup of index less than or equal to n. We may therefore
suppose that G is a finite nilpotent group and further that p1, . . . , pk are the prime
divisors of |G|. For i = 1, . . . , k let Si denote the (normal) Sylow pi-complement in G. If
H is a subgroup of index n in G, then

H =
k⋂

i=1

HSi

and |G : HSi| = pei
i . Conversely, if Hi is a subgroup of index pei

i for each i = 1, . . . , k and
H =

⋂k
i=1 Hi, then Hi = HSi. Hence

a�
n = a�

p
e1
1

. . . a�
p

ek
k

.

(Note that if G is not nilpotent, then H cannot in general be written uniquely as an
intersection of subgroups of prime power index.)

The subgroup H is normal in G if and only if Hi is normal in G for each i = 1, . . . , k.
Hence

a�
n = a�

p
e1
1

. . . a�
p

ek
k

.

�
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The condition that every finite quotient of G is nilpotent is equivalent to the profinite
completion Ĝ of G being pro-nilpotent.

For finite groups the existence of an Euler product is equivalent to the group being
nilpotent.

Proposition 2.2. If G is finite, then

(1) ζ�
G (s) =

∏
p prime ζ�

G,p(s) if and only if G is nilpotent; and

(2) ζ�
G(s) =

∏
p prime ζ�

G,p(s) if and only if G is nilpotent.

Proof. Let |G| = pn1
1 . . . pnr

r . (1) Consider the subgroups of index |G|. The Euler
product implies that

a�
p

ni
i

(G) = 1

for each i. This implies that the number of Sylow pi-subgroups is

a�
|G|/p

ni
i

(G) =
∏

j �=i

a�
p

nj
j

(G) = 1.

Hence there is a unique Sylow pi-subgroup for each i = 1, . . . , r, which in turn implies
that G is nilpotent.

For (2) the same argument implies that there exists a normal Sylow pi-subgroup for
each i = 1, . . . , r, which again implies that G is nilpotent. �

However, in [2] we give examples of infinite non-nilpotent groups whose zeta functions
enjoy an Euler product.

Theorem 2.3.
(1) The group pg = 〈x, y, t | [x, y], t2 = y, xt = x−1〉 is not nilpotent but

ζ�
pg(s) = ζ(s)ζ(s − 1) =

∏

p prime

ζ�
pg,p(s).

(2) The group pm = 〈x, y, m | [x, y], m2, xm = x, ym = y−1〉 is not nilpotent but

ζ�
pm(s) = (1 + 2−s+2)ζ(s)ζ(s − 1) =

∏

p prime

ζ�
pm,p(s).

(3) The group cm = 〈x, y, t | [x, y], t2, xt = xy, yt = y−1〉 is not nilpotent but

ζ�
cm(s) = (1 + 2−2s+2)ζ(s)ζ(s − 1) =

∏

p prime

ζ�
cm,p(s).

The groups ‘pg’, ‘cm’ and ‘pm’ are three of the 17 wallpaper groups and are finite
extensions of the free abelian group Z

2 of rank 2. This Euler product is somewhat acci-
dental. We would still be interested in providing an example to answer the following
question (presumably in the negative).
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Question 2.4. If ζ�
G (s) =

∏
p prime ζ�

G,p(s), then is Ĝ, the profinite completion of G,
virtually pro-nilpotent?

In contrast to the situation for subgroups, if the normal zeta function of G has an
Euler product, then Puchta has proved that the profinite completion of G is in fact
pro-nilpotent (see [4]).

Proposition 2.5. Let G be a finitely generated profinite group. Then G is pro-
nilpotent if and only if ζ�

G(s) =
∏

p prime ζ�
G,p(s).

3. Soluble groups

We can use the well-controlled Sylow structure of finite soluble groups to establish some
analogue of Theorem 2.1. We recall the following definition.

Definition 3.1. Let G be a finite soluble group. A set B consisting of pairwise per-
mutable Sylow p-subgroups of G, exactly one for each p dividing |G| together with the
identity subgroup is called a Sylow basis of G.

Note that a finite group is soluble if and only if it has a Sylow basis.

Lemma 3.2. Let G be a pro-soluble group. Then G has a Sylow basis. (Here, a closed
subgroup of a profinite group is said to be a p-Sylow group of G if P is a pro-p-group for
which p � | [G : U ] for all open subgroups U containing P .)

Proof. Denote the family of open normal subgroups of G by N . For each N ∈ N
denote the set of all p-Sylow groups of G/N which contain H/N by Sp(N). Let B(N) ⊆∏

p prime Sp(N) be the set of Sylow basis of G/N . Since G/N is a soluble finite soluble
group, B(N) is finite and non-empty. If M ∈ N and M � N , then the canonical map
G/M → G/N maps a Sylow basis for G/M onto a Sylow basis for G/N . It therefore
defines a canonical map of B(M) into B(N). Thus the inverse limit of the sets B(N)
is non-empty. So there is a Sylow basis {Sp(N) | p prime} for each N ∈ N , where we
interpret Sp(N) = 1 for p � | |G/N |, such that if M � N , then Sp(M) is mapped onto
Sp(N). The inverse limit

Sp = lim←−Sp(N)

is a Sylow pro-p-subgroup of G and our construction ensures that SpSq = SqSp, hence
{Sp | p prime} is a Sylow basis. �

Definition 3.3. For any set of subgroups X of G we call a subgroup H of G X-
permutable if SH = HS for all S ∈ X. We shall write H ⊥ X in this case. If N is
a subgroup of G, we denote the set of all X-permutable subgroups of N by X ⊥X(N).
Define

ζ⊥X
N (s) =

∑

H∈X ⊥X(N)

|N : H|−s.

When X is a Sylow basis we have the following Euler product.
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Theorem 3.4. Let G be a finitely generated pro-soluble group. Then, if B is a Sylow
basis for G,

ζ⊥B
G (s) =

∏

Sp∈B

ζ⊥B
Sp,p(s).

Proof. As in Theorem 2.1 we must show that

a⊥B
n (G) = a⊥B

p
e1
1

(Sp1) . . . a⊥B
p

ek
k

(Spk
),

where n = pe1
1 . . . pek

k and

a⊥B
n (N) = card {H ∈ X ⊥B(N) : |N : H| = n} = cardX ⊥B

n (N).

To prove this we may assume that G is a finite soluble group and that the set
{Sp1 , . . . , Spk

, Spk+1 , . . . , Spl
} is a Sylow basis for G. (Note that when G is soluble we

cannot in general assume that l = k.) We claim that the map H 
→ (H∩Sp1 , . . . , H∩Spk
)

defines a bijection between X ⊥B
n (G) and

X ⊥B
p

e1
1

(Sp1) × · · · × X ⊥B
p

ek
k

(Spk
).

First we prove that the map is well defined. The index |Spi : H ∩ Spi | = |SpiH : H| is a
power of pi and, since H is B-permutable, SpiH defines a group. Hence

|SpiH : H| = |G : H|pi |G : SpiH|−1
pi

= pei · 1,

since Spi
H contains a Sylow pi-subgroup. This argument proves that H∩Spi

is a Sylow pi-
subgroup of H for i = 1, . . . , k, and the argument works equally well for i = k + 1, . . . , l.
By the proof of Lemma 4.19 in [1], the Sylow subgroups {Spi ∩ H : i = 1, . . . , l} are
pairwise permutable. Order considerations show that

H =
l∏

i=1

(H ∩ Spi).

Hence the above map is injective.
We are still required to prove that (Spi ∩ H) ⊥ B for i = 1, . . . , k. But

Spi , . . . , Spi ∩ H, . . . , Spl

are Sylow subgroups of the group HSp1 . . . Spi−1Spi+1 . . . Spl
(note that this is a group,

since H ⊥ B). Again by Lemma 4.19 in [1],

{Sp1 , . . . , (Spi ∩ H), . . . , Spl
}

are pairwise permutable, i.e. (Spi ∩ H) ⊥ B.
Finally we must show that the map is surjective. Let

(P1, . . . , Pk) ∈ X ⊥B
p

e1
1

(Sp1) × · · · × X ⊥B
p

ek
k

(Spk
),
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and let H =
⋂k

i=1 Sp1 . . . Pi . . . Spl
. Since Pi ⊥ B, H is a group. It is a straightforward

exercise to prove that H ⊥ B and that H ∩ Spi
= Pi. Also

|G : H| =
k∏

i=1

|Sp1 . . . Spl
: Sp1 . . . Pi . . . Spl

| = pe1
1 . . . pek

k = n.

Hence the map is surjective. This completes the proof of the Euler product. �

In a sense this is an unsatisfactory Euler product, since the local factors ζ⊥B
Sp,p are still

defined globally, i.e. we count those subgroups of Sp which commute with each element
of the Sylow basis.

Since normal subgroups are X-permutable for any system of subgroups, one might hope
that this theorem would translate into an Euler product for the zeta function counting
normal subgroups in soluble groups. However, we know this is not the case, since the
wallpaper groups are all soluble and their normal zeta functions do not enjoy Euler
products as observed at the end of the last section. The problem in the correspondence
above if we restrict to normal subgroups is that H 
→ (H ∩ Sp1 , . . . , H ∩ Spk

) does not
define a surjection from X �

n(G) onto X �
p

e1
1

(Sp1) × · · · × X �
p

ek
k

(Spk
). All we know is that for

(P1, . . . , Pk) ∈ X �
p

e1
1

(Sp1) × · · · × X �
p

ek
k

(Spk
),

the group H =
⋂k

i=1 Sp1 . . . Pi . . . Spl
is B-permutable but not necessarily normal.

References

1. K. Doerk and T. Hawkes, Finite soluble groups, de Gruyter Expositions in Mathemat-
ics, vol. 4 (de Gruyter, Berlin, 1992).

2. M. P. F. du Sautoy, J. J. McDermott and G. C. Smith, Zeta functions of crystal-
lographic groups and analytic continuation, Proc. Lond. Math. Soc. 79 (1999), 511–534.

3. F. J. Grunewald, D. Segal and G. C. Smith, Subgroups of finite index in nilpotent
groups, Inventiones Math. 93 (1988), 185–223.

4. J.-C. Puchta, Groups with multiplicative subgroup growth, Israel J. Math., in press.

https://doi.org/10.1017/S0013091500000456 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500000456

