Fifth Meeting, 8th March 1907.

J. Archibald, Esq., M.A., President, in the Chair.

On Area-Theory, and some applications.

By P. Pinkerton, M.A.

1. In the Cambridge and Dublin Mathematical Journal, vol. v., 1859, De Morgan gives the definition of the "area contained within a circuit" as the area swept out by a radius vector which has one end (the pole) fixed and the other describing the circuit (in a determinate mode), on the supposition that each element of area is positive or negative, according as the radius is revolving positively or negatively. He remarks that the definition satisfies existing notions, that it provides the necessary extension of the meaning of the word area, and proceeds to show that it gives to every circuit the same area, whatever point the pole may be. The object of this paper is to give an Area-Theory beginning with the triangle and going on to circuits bounded by straight or curved lines. The fundamental proposition is derived from Analysis, and the geometry of the applications is therefore an Analytical Geometry; indeed, one of the objects of the paper is to emphasise the advantage of keeping Analysis and Geometry in close correspondence. As evidence of the difficulty of pursuing an Area-Theory in Geometry, without the aid of Analysis, it may be noticed that Townsend in his Modern Geometry (1863), §83, lays down Salmon's Theorem in this form: "If A, B, C, D be any four points on a circle taken in the order of their disposition, and P any fifth point, without, within, or upon the circle, but not at infinity, then always
area $\mathrm{BCD} . \mathrm{AP}^{2}$ - area CDA. $\mathrm{BP}^{2}+$ area DAB. CP^{2} - area $\mathrm{ABC} . \mathrm{DP}^{2}=0$, regard being had only to the absolute magnitudes of the several areas which from their disposition are incapable of being compared in sign." Yet, previous to this, he uses positive and negative area of the triangle ; and, later on (Chap. viI), works out at some length a formal definition of the "area of a polygon," "whether convex, reentrant, or intersecting."
2. Let (x_{1}, y_{1}) and (x_{2}, y_{2}) be the coordinates of points $\mathrm{P}_{1}, \mathrm{P}_{2}$ with reference to a rectangular Cartesian system of reference, origin O ; to find an expression for the measure of $\triangle O P_{1} \mathrm{P}_{3}$ in terms of $x_{1}, y_{1}, x_{2}, y_{2}$.

Let $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ be polar coordinates of P_{1}, P_{2} with reference to O as pole and $O X$ as initial line ; r_{1}, r_{2} being positive, and θ_{1}, θ_{2} being any angles through which OX must turn to come into the positions $\mathrm{OP}_{1}, O \mathrm{P}_{2}$. Let $\mathrm{P}_{1} \widehat{\mathrm{O}} \mathrm{P}_{2}$ be the angle through which OP_{1} must turn to come into the position OP_{2}, under the condition that the radius vector traces out the angle O of the triangle $\mathrm{P}_{1} \mathrm{OP}_{2}$; then $\mathrm{P}_{1} \widehat{\mathrm{O}}_{2} \mathrm{P}$ has sign as well as magnitude.

Then

$$
\begin{aligned}
& \quad \theta_{1}+\mathrm{P}_{1} \widehat{\mathrm{O}} \mathrm{P}_{2}=2 n \pi+\theta_{2}(n \text { integral or zero }) ; \\
& \therefore \quad \mathrm{P}_{1} \widehat{\mathrm{O}} \mathrm{P}_{2}=2 n \pi+\left(\theta_{2}-\theta_{1}\right) ; \\
& \therefore \\
& \sin \mathrm{P}_{1} \mathrm{OP}_{2}=\sin \left(\theta_{2}-\theta_{1}\right),
\end{aligned}
$$

and is positive or negative according as $\mathrm{OP}_{1} \mathrm{P}_{2} \mathrm{O}$ indicates the trigonometrically positive sense or the trigonometrically negative sense of rotation in the plane.

Now the absolute measure of $\frac{1}{2} r_{1} r_{2} \sin \mathrm{P}_{1} \mathrm{OP}_{2}$ is the area of triangle $O P_{1} \mathrm{P}_{2}$; we introduce positive and negative area by defining $\frac{1}{2} r_{1} r=\sin \mathrm{P}_{1} \mathrm{OP}_{2}$ on- $\frac{1}{2} \tau_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)$ as the measure of $\triangle \mathrm{OP}_{1} \mathrm{P}_{2}$, and write

$$
\begin{aligned}
& \triangle \mathrm{OP}_{1} \mathrm{P}_{2}=\frac{1}{2} r_{1} r_{2} \sin \left(\theta_{2}-\theta_{1}\right)=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{3}\right), \\
\text { and } \quad & \mathrm{OP}_{2} \mathrm{P}_{1}=\frac{1}{2} r_{2} r_{1} \sin \left(\theta_{1}-\theta_{2}\right)=\frac{1}{2}\left(x_{2} y_{1}-x_{1} y_{2}\right) .
\end{aligned}
$$

The sign of the expression $\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)$ has a specific geometrical meaning, and the order of the letters $\mathrm{OP}_{1} \mathrm{P}_{2}$ has a corresponding significance.

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three points in a plane, we say that $\triangle \mathrm{ABC}$ is "a positive area" or "a negative area," according as the sequence of letters ABCA indicates the positive or negative sense of circulation in the plane, as already agreed on in Trigonometry.
3. To find an expression for the measure of $\triangle \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$ in terms of the coordinates $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ of three points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ in the plane of the axes.
$\triangle P_{1} P_{2} P_{3}$, that is, $\frac{1}{2} P_{1} P_{2} \cdot P_{1} P_{3} \sin P_{s} P_{1} P_{3}$, is unaltered by change of axes. Change to parallel axes through the point (x_{1}, y_{1}). Let $\left(\xi_{2}, \eta_{3}\right),\left(\xi_{3}, \eta_{3}\right)$ be the new coordinates of $\mathrm{P}_{2}, \mathrm{P}_{3}$; then

$$
\begin{aligned}
\Delta \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} & =\frac{1}{2}\left(\xi_{2} \eta_{3}-\xi_{3} \eta_{2}\right)=\frac{1}{2}\left\{\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(x_{3}-x_{1}\right)\left(y_{2}-y_{1}\right)\right\} \\
& =\frac{1}{2}\left\{\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\left(x_{3} y_{1}-x_{1} y_{3}\right)\right\} .
\end{aligned}
$$

4. From $\$ 3$ comes the general Area-theorem,

$$
\Delta \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}=\Delta O \mathrm{P}_{1} \mathrm{P}_{2}+\Delta \mathrm{OP}_{2} \mathrm{P}_{3}+\Delta O \mathrm{P}_{3} \mathrm{P}_{1}
$$

connecting the areas (regarded as having sign) associated with any four coplanar points.

Cor. 1. The relation can be more systematically expressed thus : for any four coplanar points $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}$

$$
\Delta P_{2} P_{3} P_{4}-\Delta P_{3} P_{4} P_{1}+\Delta P_{4} P_{1} P_{2}-\Delta P_{1} P_{2} P_{3}=0
$$

Cor. 2. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots \mathrm{K}, \mathrm{L}$ are collinear points, and O any other point

$$
\triangle \mathrm{OAL}=\triangle \mathrm{OAB}+\triangle \mathrm{OBC}+\ldots+\mathrm{OKL} .
$$

5. This theorem may be regarded as proving that if $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are fixed points, and Q a variable point of their plane

$$
\left(\triangle \mathrm{QP}_{1} \mathrm{P}_{2}+\triangle \mathrm{QP}_{2} \mathrm{P}_{3}+\triangle \mathrm{QP}_{3} \mathrm{P}_{1}\right)
$$

does not vary with Q .
The theorem in this form has the following important extension : If $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n}$ are any n given coplanar points, and Q a variable point of their plane, $\left(\triangle \mathrm{QP}_{1} \mathrm{P}_{2}+\triangle \mathrm{QP}_{2} \mathrm{P}_{3}+\ldots+\triangle \mathrm{QP}_{n-1} \mathrm{P}_{n}+\triangle \mathrm{QP}_{n} \mathrm{P}_{1}\right)$ does not vary with Q .

Proof. If O is any base point of the plane,

$$
\begin{aligned}
\Delta \mathrm{QP}_{r} \mathrm{P}_{r+1} & =\triangle \mathrm{OQP}_{r}+\triangle \mathrm{OP}_{r} \mathrm{P}_{r+1}+\Delta \mathrm{OP}_{r+1} \mathrm{Q} \\
& =\Delta \mathrm{OP}_{r} \mathrm{P}_{r+1}+\triangle \mathrm{OQP}_{r}-\triangle \mathrm{OQP}_{r+1} .
\end{aligned}
$$

$\therefore \quad \Sigma \triangle Q P_{r} P_{r+1}=\Sigma \mathrm{SP}_{r} \mathrm{P}_{r+1}$, for a complete cycle.
6. Now consider a simple closed plane space bounded by straight lines $\mathrm{P}_{1} \mathrm{P}_{\mathbf{2}}, \mathrm{P}_{2} \mathrm{P}_{\mathbf{3}} \ldots, \mathrm{P}_{n-1} \mathrm{P}_{n}, \mathrm{P}_{n} \mathrm{P}_{1}$ in order and first suppose the boundary is convex. Give Q a position within the boundary. Then $\left(\triangle Q P_{1} P_{2}+\triangle \mathrm{QP}_{2} \mathrm{P}_{3}+\ldots+\triangle \mathrm{QP}_{n} \mathrm{P}_{1}\right)$ is in absolute measure the area* of the closed space. Therefore the absolute measure of the same expression is the area* of the closed space, for all positions of \mathbf{Q}.

Next suppose that the boundary is not convex. Break the area*

[^0]of the closed space into areas* of simple closed spaces with convex boundaries by introducing cross-lines such as $\mathrm{P}_{r} \mathrm{P}_{4}$ in fig. 18. Then
$$
\left(\triangle \mathrm{QP}_{1} \mathrm{P}_{2}+\triangle \mathrm{QP}_{2} \mathrm{P}_{3}+\ldots+\triangle \mathrm{QP}_{n} \mathbf{P}_{1}\right)
$$
$=\left\{\Delta \mathbf{Q P}_{\mathbf{1}} \mathbf{P}_{2}+\ldots+\triangle \mathbf{Q P}_{n} \mathbf{P}_{1}+\mathbf{\Sigma}\left(\Delta \mathbf{Q P}_{r} \mathbf{P}_{\mathbf{1}}+\Delta \mathbf{Q} \mathbf{P}_{\mathbf{r}} \mathbf{P}_{r}\right)\right\}$
$= \pm$ sums of areas* of closed spaces with convex boundaries, since each of these areas* would appear with the same sign prefixed.
Hence again
absolute measure of $\left(\triangle \mathbf{Q} P_{1} \mathbf{P}_{2}+\triangle \mathbf{Q P}_{2} \mathbf{P}_{3}+\ldots+\triangle \mathbf{Q P} \mathbf{P}_{n} \mathbf{P}_{1}\right)$
$=$ area * of closed space.
Hence for the most general coplanar positions of $P_{1}, P_{2}, \ldots, P_{n}$, we define area $\mathrm{P}_{1} \mathrm{P}_{2} \ldots \mathrm{P}_{n} \mathrm{P}_{1}$ to be
$$
\left(\triangle \mathrm{QP}_{1} \mathrm{P}_{2}+\triangle \mathrm{QP}_{2} \mathrm{P}_{3}+\ldots+\triangle \mathrm{QP}_{n-1} \mathrm{P}_{n}+\triangle \mathrm{QP}_{n} \mathrm{P}_{1}\right)
$$

Q being any coplanar point.
7. Any one of the lines $\mathbf{P}_{1} \mathbf{P}_{2}, \mathbf{P}_{\mathbf{2}} \mathrm{P}_{3}, \ldots, \mathrm{P}_{\boldsymbol{n}} \mathrm{P}_{1}$, supposed terminated at the extremities P_{1}, P_{2}; etc., may now cross any other. Consider fig. 19. Each of the lines $\mathrm{P}_{1} \mathrm{P}_{2}$, etc., crosses two or more of the others. Mark the crossing-points as in the figure. Then

$$
\begin{gathered}
\triangle Q P_{1} P_{2}=\triangle Q P_{1} R_{1}+\triangle Q R_{1} R_{2}+\triangle Q R_{2} P_{2} \\
\triangle Q P_{2} P_{3}=\triangle Q P_{2} R_{3}+\triangle Q R_{3} R_{4}+\triangle Q_{4} R_{5}+\triangle Q R_{5} P_{3} \\
\text { etc., etc. }
\end{gathered}
$$

\therefore Area $\mathrm{P}_{1} \mathrm{P}_{2} \ldots \mathrm{P}_{6} \mathrm{P}_{1}$

$$
\begin{aligned}
& =\text { Area } P_{1} R_{1} R_{4} R_{5} P_{1}+\text { Area } P_{2} R_{3} R_{2} P_{2}+\text { Area } P_{3} R_{6} R_{5} P_{3} \\
& + \text { Area } P_{4} R_{3} R_{4} R_{7} P_{4}+\text { Area } P_{5} R_{1} R_{2} P_{5}+\text { Area } P_{8} R_{6} R_{7} P_{6} .
\end{aligned}
$$

In estimating Area $P_{1} R_{1} R_{4} R_{5} P_{1}$, etc., give Q a position within each boundary in turn, and the signs of these partial areas are seen to be, in order,,,,,,++---+ . This result corresponds to De Morgan's Rule for Area.

The following sections contain some applications of the above theory.
8. Note (i) that $\triangle Q_{1} A B, \triangle Q_{2} A B$ are of the same or of opposite sign according as Q_{1}, Q_{2} are on the same or on opposite sides of the AB-line.

[^1](ii) that if AB, CD are steps on the same line, $\triangle \mathrm{QAB}$ and $\triangle Q C D$ are of the same or of opposite signs according as $A B, C D$ are steps of the same or of opposite sign.

Hence the fundamental theorem

$$
\triangle \mathrm{QAB}: \triangle \mathrm{QCD}=\mathrm{AB}: \mathrm{CD}
$$

is to be regarded as taking account of sign.
In particular, if M is the middle point of $A B, \triangle Q A M=\triangle Q M B$.
Euc. VI., 2 can be written out in such a way as to suit all figures. Let $\mathrm{B}_{1} \mathrm{C}_{1}$ parallel to base BC of triangle ABC meet the lines $A B, A C$ in B_{1}, C_{1} respectively. Then B_{1}, C_{1} are on the same side of BC ,

$$
\therefore \quad \triangle \mathrm{BCC}_{1}=\triangle \mathrm{BCB}_{1}
$$

$\therefore \quad \triangle \mathrm{ABC}+\triangle \mathrm{ACC}_{1}+\triangle \mathrm{AC}_{1} \mathrm{~B}=\triangle \mathrm{ABC}+\triangle \mathrm{ACB}_{2}+\triangle \mathrm{AB}_{1} \mathrm{~B}$,

$$
\therefore \quad \triangle \mathrm{AC}_{1} \mathrm{~B}=\triangle \mathrm{ACB}_{1} \text {, since } \triangle \mathrm{ACC}_{1}=0=\triangle \mathrm{AB}_{1} \mathrm{~B} .
$$

Hence

$$
\begin{aligned}
\mathrm{AB}: \mathrm{AB}_{1}=\triangle \mathrm{ABC}: \triangle \mathrm{AB}_{1} \mathrm{C} & =\triangle \mathrm{ABC}: \triangle \mathrm{ABC}_{1} \\
& =\mathrm{AC}: \mathrm{AC}_{1} .
\end{aligned}
$$

Again, a direct and general proof of Ceva's Theorem can be given.
Let concurrent lines AOD, BOE, COF meet the sides BC, CA, AB of triangle $A B C$ in D, E, F respectively.

$$
\begin{aligned}
\mathrm{BD}: \mathrm{CD}=\triangle \mathrm{OBD}: \triangle \mathrm{OCD} & =\triangle \mathrm{ABD}: \triangle \mathrm{ACD} \\
& =\triangle \mathrm{OAB}+\triangle \mathrm{OBD}: \triangle \mathrm{OAC}+\triangle \mathrm{OCD}, \\
& \quad \text { since } \triangle \mathrm{ODA}=0 \\
& =-(\triangle \mathrm{OAB}: \triangle \mathrm{OCA})
\end{aligned}
$$

Similarly

$$
\mathrm{CE}: \mathrm{AE}=-(\triangle \mathrm{OBC}: \triangle \mathrm{OAB})
$$

$$
\mathrm{AF}: \mathrm{BF}=-(\triangle \mathrm{OCA}: \triangle \mathrm{OBC})
$$

$$
\therefore \frac{\mathrm{BD}}{\mathrm{CD}} \cdot \frac{\mathrm{CE}}{\mathrm{AE}} \cdot \frac{\mathrm{AF}}{\mathrm{BF}}=-1
$$

(iii) $\triangle \mathrm{Q}_{1} \mathrm{AB}: \triangle \mathrm{Q}_{2} \mathrm{AB}=p_{1}: p_{2}$,
where p_{1}, p_{2} are the ordinates of Q_{1}, Q_{2} with respect to the AB-line, in other words the perpendiculars from Q_{1}, Q_{2} to the $A B$-line, if the perpendiculars are regarded as steps.

This may be shown by taking A, B as points on the x-axis of a system of Rectangular axes and applying the formula for $\triangle P_{1} P_{2} P_{3}$ in terms of the coordinates of P_{1}, P_{2}, P_{3}.
9. If A, B, C, O are any four points in a plane and G the middle point of BC , then

$$
\triangle O A B+\triangle O A C=2 \triangle O A G
$$

For $\quad \triangle O A B+\triangle O B G+\triangle O G A=\triangle A B G=\triangle A G C$

$$
=\triangle \mathrm{OAG}+\triangle \mathrm{OGC}+\triangle \mathrm{OCA}
$$

$\therefore \triangle O A B+\triangle O A C=2 \triangle O A G$, since $\triangle O B G=\triangle O G C$.
Hence, if M is the middle point of $A B, P$ and Q two other points of the plane

$$
\triangle \mathrm{APQ}+\triangle \mathrm{BPQ}=2 \Delta \mathrm{MPQ}
$$

being a form of $\quad \triangle P Q A+\triangle P Q B=2 \triangle P Q M$.
And again, if M is half-way from A to the $P Q$-line,
$\triangle \mathrm{APQ}=2 \triangle \mathrm{MPQ}$.
10. If A, B, C, D are any four points of a plane $; E, F, G, H$ the middle points of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}$ respectively, then

$$
\text { Area } \mathrm{EFGH}=\frac{1}{2} \text { Area } \mathrm{ABCD}
$$

Area $\mathrm{EFGH}=\triangle \mathrm{AEF}+\triangle \mathrm{AFG}+\triangle \mathrm{AGH}+\triangle \mathrm{AHE}$
$\triangle \mathrm{AEF}=\frac{1}{2} \triangle \mathrm{ABF}=\frac{1}{4} \triangle \mathrm{ABC}$,
$\triangle \mathrm{AFG}=\frac{1}{2}(\triangle \mathrm{AFC}+\triangle \mathrm{AFD})=\frac{1}{4}(\triangle \mathrm{ABC}+\overline{\triangle \mathrm{ABD}+\triangle \mathrm{ACD}})$,
$\triangle \mathrm{AGH}=\frac{1}{2} \triangle \mathrm{AGD}=\frac{1}{4} \triangle \mathrm{ACD}$,
$\triangle \mathrm{AHE}=\frac{1}{2} \triangle \mathrm{ADE}=\frac{1}{4} \triangle \mathrm{ADB}$,
\therefore Area $\mathbf{E F G H}=\frac{1}{2}(\triangle \mathrm{ABC}+\triangle \mathrm{ACD})=\frac{1}{2}$ Area ABCD .
11. If A, B, C, D are any four points of a plane, P and Q the middle points of AC, BD respectively, X the point of intersection of the AD- and the BC-lines, Y the point of intersection of the $A B$ and CD-lines, then

$$
\begin{aligned}
& \quad \triangle X P Q=\quad \frac{1}{4} \text { Area } \mathrm{ABCD}, \\
& \text { and } \quad \triangle Y P Q=-\frac{1}{4} \text { Area } \mathrm{ABCD} . \\
& \begin{aligned}
& \triangle \triangle \mathrm{XPQ}=\triangle \mathrm{XPD}+\triangle \mathrm{XPB}, \\
&= \frac{1}{2} \triangle \mathrm{XCD}+\frac{1}{2} \triangle \mathrm{XAB}, \\
&= \frac{1}{2}(\triangle \mathrm{XAB}+\triangle \mathrm{XBC}+\triangle \mathrm{XCD}+\triangle \mathrm{XDA}), \\
& \quad \text { since } \triangle \mathrm{XBC}=0=\triangle \mathrm{XDA} . \\
&= \frac{1}{2} \text { Area } \mathrm{ABCD} .
\end{aligned}
\end{aligned}
$$

Similarly $\quad \triangle Y P Q=-\frac{1}{4}$ Area ABCD.
Cor. Hence $\quad \triangle \mathrm{XPQ}+\triangle \mathrm{YPQ}=0$
therefore the middle point of XY is on the PQ -line, i.e., the middle points of the diagonals of a complete quadrilateral are collinear.
12. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are any four given points of a plane, and if a variable point P moves so that

$$
\text { m. } \triangle \mathrm{PAB}+n . \triangle \mathrm{PCD}=\text { constant }
$$

when m, n are any fixed multiples positive or negative, then the locus of P is a straight line.

Let the AB - and CD -lines meet in O . Let $\mathrm{OX}=m . \mathrm{AB}$ and $\mathrm{OY}=n . \mathrm{CD}$ in sign and magnitude, and let G be the middle point of XY .

Then

$$
\text { m. } \begin{aligned}
\triangle \mathrm{PAB}+n \cdot \Delta \mathrm{PCD} & =\triangle \mathrm{POX}+\triangle \mathrm{POY} \\
& =2 \triangle \mathrm{POG} .
\end{aligned}
$$

\therefore locus of P is a straight line parallel to OG.
An obvious extension is that if $\mathrm{A}_{1} \mathrm{~B}_{1}, \mathrm{~A}_{2} \mathrm{~B}_{2}, \ldots, \mathrm{~A}_{n} \mathrm{~B}_{n}$ are n fixed lines in a plane, and P a variable point such that

$$
a_{1} \cdot \Delta \mathrm{PA}_{1} \mathrm{~B}_{1}+a_{2} \cdot \Delta \mathrm{PA}_{2} \mathrm{~B}_{2}+\ldots+a_{n} \cdot \Delta \mathrm{PA}_{n} \mathrm{~B}_{n}=\text { constant },
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are fixed multiples, positive or negative, then the locus of \mathbf{P} is a straight line.

Cor. An equation of the first degree in areal coordinates represents a straight line.
13. The following problem illustrates the use of the theory geometrically.

Let A, B be two fixed points in a plane, C, D two variable points in the plane, such that CD is fixed in magnitude and direction and Area $A B C D$ is fixed; to find the loci of C and D.

Draw AE parallel to CD such that $\mathrm{AE}=\mathrm{DC}$, in sign and magnitude.

Then Area $\mathrm{ABCD}=\triangle \mathrm{ABE}+\triangle \mathrm{CEB}+\triangle \mathrm{CDAE}$,
\therefore Area $\mathrm{ABCD}-\triangle \mathrm{ABE}$
$=\triangle \mathrm{CEB}+2 \triangle \mathrm{CAE}$
$=\triangle \mathrm{CEB}+\triangle \mathrm{CEF}$, where AE is produced to F so that $\mathrm{EF}=2 \mathrm{AE}$ in sign and magnitude
$=2 \triangle \mathrm{CEG}$, if G is the middle point of BF ;
therefore \triangle CEG is constant. Hence the locus of C is a straight line parallel to EG , and therefore the locus of D is a parallel straight line, since $C D$ is fixed in magnitude and direction.
14. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{O}$ are any four coplanar points, the mean centre of the points A, B, C for multiples $\triangle O B C, \triangle O C A, \triangle O A B$, or multiples proportional to these, is the point O.

For

$$
\frac{\triangle \mathrm{OBC}}{\triangle \overline{\mathrm{OCA}}}=-\frac{\triangle \mathrm{BCO}}{\triangle \mathrm{ACO}}=-\frac{b}{a},
$$

where b, a are the perpendiculars from B, A to OC , account being taken of sign.

$$
\therefore a \cdot \triangle \mathrm{OBC}+b . \triangle \mathrm{OCA}=0
$$

and hence $O C$ passes through the mean centre of ABC for multiples $\triangle \mathrm{OBC}, \triangle \mathrm{OCA}, \mathrm{OAB}$.

Similarly OA, OB pass through the mean centre for those multiples. Therefore O is the mean centre.

Hence if A, B, C, D be any four points on a circle, and O any fifth point in the plane
$\mathrm{OB}^{2} . \triangle \mathrm{ACD}+\mathrm{OC}^{2} \cdot \triangle \mathrm{ADB}+\mathrm{OD}^{2} . \triangle \mathrm{ABC}-(\triangle \mathrm{ABC}+\triangle \mathrm{ACD}$ $+\triangle \mathrm{ADB}) \mathrm{OA}^{2}$ $=\mathrm{AB}^{2} \cdot \triangle \mathrm{ACD}+\mathrm{AC}^{2} \cdot \triangle \mathrm{ADB}+\mathrm{AD}^{2} \cdot \triangle \mathrm{ABC}$ $=$ constant, for all positions of 0 .

Giving O the position of the centre of the circle, and noting that $\triangle \mathrm{ABC}+\triangle \mathrm{ACD}+\triangle \mathrm{ADB}=\triangle \mathrm{BCD}$, we see that $\mathrm{OA}^{2} . \triangle \mathrm{BCD}-\mathrm{OB}^{2} \triangle \mathrm{CDA}+\mathrm{OC}^{2} \triangle \mathrm{DAB}-\mathrm{OD}^{2} . \triangle \mathrm{ABC}=0$,
and
$\mathrm{AB}^{2}, \triangle \mathrm{ACD}+\mathrm{AC}^{2} \triangle \mathrm{ADB}+\mathrm{AD}^{2} \triangle \mathrm{ABC}=0$,

Also, if x, y, z are the areal coordinates of any point \mathbf{P} on a circle and ABC, the triangle of reference, taking $\mathbf{P}, \mathrm{A}, \mathrm{B}, \mathrm{C}$ in turn as mean centres of $\mathrm{A}, \mathrm{B}, \mathrm{C} ; \mathrm{B}, \mathrm{C}, \mathrm{P}$; etc. ; we have

$$
\begin{gathered}
x . \mathrm{PA}^{2}+y \cdot \mathrm{~PB}^{2}+z \cdot \mathrm{PC}^{2}=0, \\
\mathrm{PA}^{2}=y c^{2}+z b^{2}, \\
\mathrm{~PB}^{2}=z a^{2}+x c^{2}, \\
\mathrm{PC}^{2}=x b^{2}+y a^{2}, \\
y z a^{2}+z a b^{2}+x y c^{2}=0 .
\end{gathered}
$$

whence
15. In extending the theory to areas of closed plane spaces bounded by curves or partly bounded by curves, the following Lemma is useful :

If $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n}$ be any n given points of a plane, $\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots, \mathrm{~L}_{n}$ n collinear points of the plane

Area $\mathrm{P}_{1} \mathrm{P}_{2} \ldots \mathrm{P}_{n} \mathrm{P}_{1}=$ Area $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{~L}_{2} \mathrm{~L}_{1}+\ldots+$ Area $\mathrm{P}_{r} \mathrm{P}_{r+1} \mathrm{~L}_{r+1} \mathrm{~L}_{r}+\ldots$ $\ldots+$ Area $\mathrm{P}_{n} \mathrm{P}_{1} \mathrm{~L}_{1} \mathrm{~L}_{n}$.
For
Area $\mathrm{P}_{r} \mathrm{P}_{r+1} \mathrm{~L}_{r+1} \mathrm{~L}_{r}=\triangle \mathrm{OP}_{r} \mathrm{P}_{r+1}-\Delta \mathrm{OL}_{r} \mathrm{~L}_{r+1}-\left(\triangle \mathrm{OP}_{r} \mathrm{~L}_{r}-\Delta \mathrm{OP}_{r+1} \mathrm{~L}_{r+1}\right)$ and $\quad \Sigma \triangle O L_{r} L_{r+1}=0, \Sigma\left(\triangle O P_{r} L_{r}-\triangle O P_{r+1} \mathrm{~L}_{r+1}\right)=0$.

If $L_{i}, L_{2}, \ldots, L_{n}$ be the projections $M_{1}, M_{2}, \ldots, M_{n}$ of $\mathbf{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n}$ on the x-axis of a rectangular Cartesian system,

Area $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{M}_{2} \mathrm{M}_{1}=\triangle O \mathrm{P}_{1} \mathrm{P}_{2}+\triangle \mathrm{OP}_{2} \mathrm{M}_{2}+\Delta \mathrm{OM}_{2} \mathrm{M}_{1}+\triangle \mathrm{OM}_{1} \mathrm{P}_{1}$

$$
\begin{aligned}
& =\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}-x_{2} y_{2}+x_{2} y_{1}\right) \\
& =-\frac{1}{2}\left(x_{2}-x_{1}\right)\left(y_{1}+y_{2}\right) .
\end{aligned}
$$

If $L_{1}, L_{2}, \ldots, L_{n}$ be the projections $N_{1}, N_{2}, \ldots, N_{n}$ of $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{n}$ on the y-uxis,

Area $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{~N}_{2} \mathrm{~N}_{1}=\frac{1}{2}\left(x_{1}+x_{2}\right)\left(y_{2}-y_{1}\right)$.
16. If $P_{1} P_{2} \ldots P_{n} P_{1}$ specifies the boundary of a closed curve, the area of the space enclosed is defined to be

$$
\underset{n=\infty}{\mathrm{Lt}} \Sigma\left(\triangle \mathrm{QAP}_{1}+\triangle \mathrm{QP}_{1} \mathbf{P}_{2}+\ldots+\triangle Q P_{n} \mathbf{A}\right),
$$

where A is a fixed point on the curve and the P's are distributed on
the curve according to some law such that $\operatorname{Lt}_{n=\infty} \mathbf{P}_{r} P_{r+1}=0$ and that a current point P moving steadily round the curve from A to A passes through $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n}$ in succession.
Hence Area $=\frac{1}{2} \int r^{2} d \theta$ from Lt $\cup r(r+\Delta r) \sin \triangle \theta$,
and Area $=\frac{1}{2} \int(x d y-y d x)$ from Lt $\Sigma \frac{1}{2}\{x(y+\Delta y)-(x+\Delta x) y\}$.
Again, from the expressions for Area $P_{1} P_{2} M_{2} M_{1}$ and Area $P_{1} P_{2} N_{2} N_{1}$ in § 15 it is clear that

$$
\text { Area }=-\int y d x=\int x d y
$$

If HA, KB are ordinates of A, B two points on a curve represented by the equation $y=f(x)$, where $f(x)$ is a single-valued continuous function of x, then along AH and $\mathrm{BK}, d x=0$; and along HK, $y=0$. Therefore Area $\mathrm{AHKB}=\int_{u}^{b} y d x$, where a, b are the abscissae of A, B.
And if P is a variable point (x, y) on the curve and MP its ordinate

$$
\frac{d \mathrm{~A}}{d x}=y
$$

where $\mathbf{A}=$ Area $\mathbf{A H M P}$.
For take Q a point on the curve near to P, then

$$
\begin{gathered}
A+\triangle \mathrm{A}=\text { Area } \mathrm{AHNQ}=\text { Area AHMP }+ \text { Area PMNQ } \\
\therefore \Delta \mathbf{A}=\text { Area } \mathrm{PMNQ}=+y \triangle x \\
\therefore \frac{d \mathbf{A}}{d x}=y .
\end{gathered}
$$

If a new variable t be introduced where x, y are single-valued functions of t, and t varies always in one sense (that is, always increasing or always decreasing) from t_{1} to $t_{\text {. }}$ as the current point \mathbf{P} moves round the curve from A to A, passing through P_{1}, P_{2}, \ldots, in succession, we have formulæ such as

$$
\text { Area }=\frac{1}{2} \int_{t_{1}}^{t_{1}}\left(x \frac{d y}{d t}-y \frac{d x}{d t}\right) d t .
$$

It is sometimes said that t must be chosen so as to go on increasing when the current point \mathbf{P} moves steadily round the' boundary leaving the area on the left. There are two misleading
elements in such a statement. First, t may go on decreasing or increasing. Secondly, in cases where the boundary crosses itself, it is not possible for the current point P to move steadily round the boundary and always leave the area on left or right.

For example, in fig. 20

$$
\begin{aligned}
\frac{1}{2} \int_{t_{1}}^{t_{2}}\left(x \frac{d y}{d t}-y \frac{d x}{d t}\right) d t & =\text { Area } A_{1} P_{2} \ldots \mathrm{P}_{5} \mathrm{~A} \\
& =\text { area* of space }(2)-\text { area }^{*} \text { of space }(1)
\end{aligned}
$$

space (2) being to left of current point, while space (1) is to right of current point.

In fig. 21

$$
\begin{aligned}
\text { Integral } & =\text { Arca } A P_{1} P_{2} \ldots P_{5} A \\
& =\text { twice area* of space }(1)+\text { area }^{*} \text { of space }(2),
\end{aligned}
$$

space (2) not including the shaded portion.
In fig. 22

$$
\begin{aligned}
\text { Integral }= & \text { Area } A P_{1} P_{2} \ldots P_{12} A \\
= & \text { area* of shaded space }+ \text { twice area* of space }(4) \\
& \quad-\text { sum of areas* of spaces }(1),(2),(3) .
\end{aligned}
$$

It is worth noting that, using double integrals, we have

$$
\iint d x d y=\frac{1}{2} \int\left(x \frac{d y}{d t}-y \frac{d x}{d t}\right) d t
$$

the simplest case of Stokes's Theorem.

* "Area" being here neither positive nor negative.

On Commutative Matrices.

By J. H. Maclagan-Wedderburn, M.A.

[^0]: * "Area" here means simply area, and is of course neither positive nor negative.

[^1]: *"Area" means simply area, and of course is neither positive nor negative.

