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1. In the Cambridge and Dublin Mathematical Journal, vol. v.,
1859, De Morgan gives the definition of the " area contained within a
circuit" as the area swept out by a radius vector which has one end
(the pole) fixed and the other describing the circuit (in a determinate
mode), on the supposition that each element of area is positive or
negative, according as the radius is revolving positively or negatively.
He remarks that the definition satisfies existing notions, that it
provides the necessary extension of the meaning of the word area,
and proceeds to show that it gives to every circuit the same area,
whatever point the pole may be. The object of this paper is to give
an Area-Theory beginning with the triangle and going on to circuits
bounded by straight or curved lines. The fundamental proposition
is derived from Analysis, and the geometry of the applications is
therefore an Analytical Geometry; indeed, one of the objects of the
paper is to emphasise the advantage of keeping Analysis and
Geometry in close correspondence. As evidence of the difficulty of
pursuing an Area-Theory in Geometry, without the aid of Analysis,
it may be noticed that Townsend in his Modern Geometry (1863),
§ 83, lays down Salmon's Theorem in this form: " If A, B, C, D be
any four points on a circle taken in the order of their disposition,
and P any fifth point, without, within, or upon the circle, but not
at infinity, then always
area BCD. AP2 - area CDA.BF + area DAB.CP* - area ABC.DP2 = 0,

regard being had only to the absolute magnitudes of the several
areas which from their disposition are incapable of being compared
in sign." Yet, previous to this, he uses positive and negative area
of the triangle; and, later on (Chap, vn), works out at some length
a formal definition of the "area of a polygon," "whether convex,
reentrant, or intersecting."
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2. Let (x,, j/,) and (*j, y2) be the coordinates of points P,, P2

with reference to a rectangular Cartesian system of reference,
origin O; to find an expression for the measure of A0P,P2 in
terms of xlt yu x,, y.,.

Let (r,, 0J and (r2, 02) be polar coordinates of P,, P.. with
reference to O as pole and OX as initial line; rt, r, being positive,
and 6,, 02 being any angles through which OX must turn to come
into the positions OPj, OP2. Let PiOP2 be the angle through which
OP, must turn to come into the position OP.,, under the condition
that the radius vector traces out the angle O of the triangle PiOP2;
then PiO2P has sign as well as magnitude.

Then 0, + P,OP2 = 2mr + 62 (n integral or zero);

and is positive or negative according as O P ^ O indicates the
trigonometrically positive sense or the trigonometrically negative
sense of rotation in the plane.

Now the absolute measure of ^^r^inP^Pa is the area of
triangle OP,P2; we introduce positive and negative area by defining
!r1»\.sinP,OP2 o»«-̂ r;r2sin(02 - #,) as the measure of AOPiP2, and write

and AOPJP, = ft
The sign of the expression J(x,i/j - ay/,) has a specific geometrical
meaning, and the order of the letters OPjP2 has a corresponding
significance.

If A, B, C are three points in a plane, we say that AABC is
" a positive area "or "a negative area," according as the sequence
of letters ABCA indicates the positive or negative sense of circula-
tion in the plane, as already agreed on in Trigonometry.

3. To find an expression for the measure of APjP2P3 in terms of
the coordinates (xlt yj, (x2, yj, (x3, y%) of three points P,, P2, P3 in
the plane of the axes.

A^PjPs, that is, £P,P2. P^jsinP.PjP,, is unaltered by change
of axes. Change to parallel axes through the point (a-,, yx). Let
(£>) V?)* (£)> Vs) be the new coordinates of P2, P3; then

AP,P2P3 = £(£#., - £3i;2) = \ {(x2 - xjfa - y,) - (xs -
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4. From § 3 comes the general Area-theorem,

A P ^ = AOP.P, + AOP2P3 + A O P ^ ,

connecting the areas (regarded as having sign) associated with any
four coplanar points.

Cor. 1. The relation can be more systematically expressed thus :
for any four coplanar points P,P2P3P4

AP2P3P4 - A P ^ P . + A P ^ P , - A P ^ P , = 0.

Cor. 2. If A, B, C, ... K, L are collinear points, and O any
other point

AOAL = AOAB + AOBC +. . . + OKL.

5. This theorem may be regarded as proving that if Pi,'P,, P3

are fixed points, and Q a variable point of their plane

( A Q P ^ + AQP2P3 + AQP3P,)
does not vary with Q.

The theorem in this form has the following important extension :
If Pi, P2, ..., P, are any n given coplanar points, and Q a variable
point of their plane, (AQP^ , + AQP2P3 +... + AQPn_,P» + AQPBP,)
does not vary with Q.

Proof. If O is any base-point of the plane,

AQPrPr+1 = AOQP, + AOPrPr+I + AOPr+iQ,

= AOPrPr+1 + AOQPr - AOQPr+1.

.-. 2AQPrPr+1 = 2OPrP,+1, for a complete cycle.

6. Now consider a simple closed plane space bounded by straight
lines ~P^P2, P2P, ..., Pn_!Pn, P,Pi in order and first suppose the
boundary is convex. Give Q a position within the boundary. Then
(AQP^j + AQP2Pa + ... + AQP.P,) is in absolute measure the area*
of the closed space. Therefore the absolute measure of the same
expression is the area* of the closed space, for all positions of Q.

Next suppose that the boundary is not convex. Break the area*

* "Area" here means simply area, and is of course neither positive nor
negative.
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of the closed space into areas* of simple closed spaces with convex
boundaries by introducing cross-lines such as PrP, in fig. 18. Then

(AQPJP, + AQP2P3 +. . . + AQP.P.)
= {AQP,P2 + . . + AQP.P, + 2(AQPrP, + AQP.P,)}
= + sums of areas* of closed spaces with convex boundaries, since

each of these areas* would appear with the same sign prefixed.
Hence again

absolute measure of (AQP,P2 + AQP2P3 + ... + AQP.P,)
= area* of closed space.

Hence for the most general coplanar positions of P^ P2, ..., Pn) we
define area P ^ ... P , ^ to be

(AQP,P2 + AQP2P3 + ... + AQP, _,P. + AQPnP,),
Q being any coplanar point.

7. Any one of the lines P ^ , P2PS, ..., P»Pi, supposed ter-
minated at the extremities P:, P2; etc., may now cross any other.
Consider fig. 19. Each of the lines PjP2, etc., crosses two or more
of the others. Mark the crossing-points as in the figure. Then

A Q P ^ j = AQP,R, + AQI^Rj + AQR2P2,
AQP2P3 = AQP2R3 + AQR3R, + AQR4R5 + AQRSP3,

etc., etc.,
PP

= Area P^RjRjPj + Area PJRJRJP, + Area P3R,R6Pa

+ Area P ^ R . R j P , + Area PsR^^P,, + Area P ^ R r P , .

In estimating Area P ^ ^ R j P , , etc., give Q a position within each
boundary in turn, and the signs of these partial areas are seen to be,
in order, +, +, - , - , - , + . This result corresponds to De
Morgan's Rule for Area.

The following sections contain some applications of the above
theory.

8. Note (i) that AQ,AB, AQ^AB are of the same or of opposite
sign according as Q^ Q2 are on the same or on opposite sides of the
AB-line.

* "Area" means simply area, and of course is neither positive nor
negative.
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(ii) that if AB, CD are steps on the same line, AQAB and
AQCD are of the same or of opposite signs according as AB, CD
are steps of the same or of opposite sign.

Hence the fundamental theorem
AQAB : AQCD = AB: CD

is to be regarded as taking account of sign.
In particular, if M is the middle point of AB, AQAM = AQMB.
Euc. VI., 2 can be written out in such a way as to suit all

figures. Let B,C, parallel to base BC of triangle ABC meet the
lines AB, AC in B n C, respectively. Then Bj, Ct are on the same
side of BC,

.-. ABCC^ABCB, ,

.-. AABC + AACC, + A AC,B = AABC + AACB, + A A B ^ ,

.-. AAC1B = AACB1, since AACCj = 0 = AAB,B.

Hence AB : AB, = AABC : AAB,C = AABC : AABC,
= AC:ACl.

Again, a direct and general proof of Ceva's Theorem can be given.
Let concurrent lines AOD, BOE, COF meet the sides BC, CA, AB

of triangle ABC in D, E, F respectively.

BD : CD = AOBD : AOCD = A ABD : A ACD
= AOAB + AOBD: AOAC + AOCD,

since AODA = 0
= -(AOAB:AOCA).

Similarly CE : AE = - (AOBC : AOAB),

AF: BF = - (AOCA: AOBC)

BD CE A F _
•'" C D ' A E ' B F "

(iii)
where plt pt are the ordinates of Q,, Q2 with respect to the AB-line,
in other words the perpendiculars from Q,, Qj to the AB-line, if the
perpendiculars are regarded as steps.

This may be shown by taking A, B as points on the a;-axis of a
system of Rectangular axes and applying the formula for AP,P2P3

in terms of the coordinates of P,, Ps, P3.
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0. If A, B, C, O arc any four points in a plane and G the middle
point of BC, then

AO AB + AO AC = 2 AOAG.

= AOAG + AOGC + AOCA

.-. AOAB + AOAC = 2AOAG, since AOBG = AOGC.

Hence, if M is the middle point of AB, P and Q two other points
of the plane

AAPQ + ABPQ = 2 AMPQ,

being a form of APQA + APQB = 2APQM.

And again, if M is half-way from A to the PQ-line,

AAPQ = 2 AMPQ.

10. If A, B, C, D are any four points of a plane; E, F, G, H the
middle points of AB, BC, CD, DA respectively, then

Area EFGH = £ Area ABCD.

Area EFGH = AAEF + AAFG + AAGH + AAHE
A AEF - JAABF = £ A ABC,

AAFG = J( A AFC + A AFD) = £( AABC + AABD + A ACD),

AAGH = \ AAGD = \ A ACD,

AAHE = \ AADE = \ AADB,

.-. Area EFGH = $( AABC + A ACD) = \ Area ABCD.

11. If A, B, C, D are any four points of a plane, P and Q the
middle points of AC, BD respectively, X the point of intersection
of the AD- and the BC-lines, Y the point of intersection of the AB-
and CD-lines, then

AXPQ = \ Area ABCD,
and AYPQ = - \ Area ABCD.

2 AXPQ = AXPD + AXPB,

\{ AXAB + AXBC + AXCD + AXDA),
since AXBC = O = AXDA,

| Area ABCD,
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Similarly AYPQ = - 1 Area ABCD.

Cor. Hence AXPQ + AYPQ = O

therefore the middle point of XY is on the PQ-line, i.e., the middle
points of the diagonals of a complete quadrilateral are collinear.

12. If A, B, C, D are any four given points of a plane, and if a
variable point P moves so that

m. APAB + n. APCD = constant,

when m, n are any fixed multiples positive or negative, then the
locus of P is a straight line.

Let the AB- and CD-lines meet in 0. Let OX = m. AB and
OY = n. CD in sign and magnitude, and let G be the middle point
of XY.

Then m. APAB + n. APCD = APOX + APOY
= 2 APOG.

.". locus of P is a straight line parallel to OG.

An obvious extension is that if AJBJ, A2B2, ..., AnBtl are n fixed
lines in a plane, and P a variable point such that

Oj. A P A ^ i + o2. APA2B2 + ... + a, . APAnBn = constant,

where a,, a,,, ..., an are fixed multiples, positive or negative, then
the locus of P is a straight line.

Cor. An equation of the first degree in areal coordinates repre-
sents a straight line.

13. The following problem illustrates the use of the theory
geometrically.

Let A, B be two fixed points in a plane, C, D two variable
points in the plane, such that CD is fixed in magnitude and direction
and Area ABCD is fixed; to find the loci of C and D.

Draw AE parallel to CD such that AE = DC, in sign and
magnitude.
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Then Area ABCD = AABE + ACEB + ACDAE,

.-. Area ABCD - AABE

= ACEB + 2ACAE

= ACEB + ACEF, where AE is produced to F

so that EF = 2AE in sign and magnitude

= 2 ACEG, if G is the middle point of BF;
therefore ACEG is constant. Hence the locus of C is a straight
line parallel to EG, and therefore the locus of D is a parallel straight
line, since CD is fixed in magnitude and direction.

14. If A, B, C, 0 are any four coplanar points, the mean centre
of the points A, B, C for multiples AOBC, AOCA, AOAB, or
multiples proportional to these, is the point O.

AOBC ABCO b
For

AOCA AACO a

where b, a are the perpendiculars from B, A to OC, account heing
taken of sign.

.-. a.AOBC + 6.AOCA = 0

and hence OC passes through the mean centre of ABC for multiples
AOBC, AOCA, OAB.

Similarly OA, OB pass through the mean centre for those
multiples. Therefore O is the mean centre.

Hence if A, B, C, D be any four points on a circle, and O any
fifth point in the plane

OB2. AACD + OC2.AADB + ODJ. AABC - (AABC + AACD
+ AADB)OA2

= AB2. AACD + AC. AADB + AD2. AABC

= constant, for all positions of 0.

Giving O the position of the centre of the circle, and noting that

AABC + AACD + AADB = ABCD, we see that

OA2. ABCD - 0B2ACDA + OCADAB - 0D2 .AABC = 0,

and
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Also, if x, y, z are the areal coordinates of any point P on a
circle and ABC, the triangle of reference, taking P, A, B, C in turn
as mean centres of A, B, C ; B, C, P ; etc.; we have

whence yza" + zxb- + xy<? = 0.

15. In extending the theory to areas of closed plane spaces
bounded by curves or partly bounded by curves, the following
Lemma is useful:

IfT?i, P2, ..., P, be any n given points of a plane, L n L,, ..., Ln

n collinear points of the plane

Area PjPo... PnPj = Area P iP . , ! ^ + ... + Area PrPr+iLr+1Lr + ...
...+Area P.P

For
Area Pf Pr+1Lr+1Lf = AOPrPr+1 - A O L J , ^ - (AOP,Lr -

and 2AOL;L,.+1 = 0, S(AOP,Lr - AOP^L^.,) = 0.

If Lj, Lj, ..., L, be the projections M,, M2, ..., M,, of
Pj, Pa, ..., Pn on the a;-axis of a rectangular Cartesian system,

Area P ^ M ^ = AOP,P2 + AOP2M2 + AOMjM, + AOM.P,

If Ii,, Lj, ..., Lo be the projections N,, N2, ..., Nn of
Pj, P2, ..., PB on the y-axis,

Area P.P.N.N, = K*. + *,)<», ~ Vi).

16. If P,P.2... PnPj specifies the boundary of a closed curve, the
area of the space enclosed is defined to be

Lt 2(AQAP, + AQP.P, + ... + AQPnA),
rt=»

where A is a fixed point on the curve and the P's are distributed on
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the curve according to some law such that Lt PrPr+J = 0 and that

a current point P moving steadily round the curve from A to A
passes through Pj, P2, ..., Pn in succession.

Hence Area = i | r V 0 from Lt ?r(r + Ar)sinA0,

and Area = i (xdy - ydx) from Lt 2 i {x(y + Ay) -(x + Ax);/}.

Again, from the expressions for Area PJPOMOMJ and Area P]PSN2N1

in § 15 it is clear that

Area = - ydx = xdy.

If HA, KB are ordinates of A, B two points on a curve
represented by the equation y =_/*(#), where f(x) is a single-valued
continuous function of x, then along AH and BK, dx — 0; and

along HK, y = 0. Therefore Area AHKB = ydx, where a, b are
J«

the abscissae of A, B.

And if P is a variable point (.r, y) on the curve and MP its ordinate

dA
-dx-=y

where A = Area AHMP.

For take Q a point on the curve near to P, then

A + AA = Area AHNQ = Area AHMP + Area PMNQ

. -. A A = Area PMNQ = + y Ax

dA
•"• ~dx- = y-

If a new variable t be introduced where x, y are single-valued
functions of t, and t varies always in one sense (that is, always
increasing or always decreasing) from lt to t, as the current point P
moves round the curve from A to A, passing through P,, P2, ... , in
succession, we have formulae such as

It is sometimes said that t must be chosen so as to go on
increasing when the current point P moves steadily round the'
boundary leaving the area on the left. There are two misleading
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elements in such a statement. First, t may go on decreasing or
increasing. Secondly, in cases where the boundary crosses itself, it
is not possible for the current point P to move steadily round the
boundary and always leave the area on left or right.

For example, in fig. 20

= area* of space (2) -area* of space (1),
space (2) being to left of current point, while space (1) is to right of
current point.

In fig. 21
Integral = AreaAP,P2 ... P5A

= twice area* of space (1) +area* of space (2),
space (2) not including the shaded portion.

In fig. 22
Integral = Area APiP2 ... P,,A

= area* of shaded space + twice area* of space (4)

-sum of areas* of spaces (1), (2), (3).

It is worth noting that, using double integrals, we have

the simplest case of Stokes's Theorem.

* " Area" being here neither positive nor negative.

On Commutative Matrices.
By J. H. MACLAGAN-WEDDERBURN, M.A.
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