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Jet from a very large, axisymmetric,
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We demonstrate that gravity acting alone at large length scales (compared to the capillary
length) can produce a jet from a sufficiently steep, axisymmetric surface deformation
imposed on a quiescent, deep pool of liquid. Mechanistically, the jet owes it origin to
the focusing of a concentric, surface wave towards the axis of symmetry, quite analogous
to such focusing of capillary waves and resultant jet formation observed during bubble
collapse at small scales. A weakly nonlinear theory based on the method of multiple
scales in the potential flow limit is presented for a modal (single-mode) initial condition
representing the solution to the primary Cauchy–Poisson problem. A pair of novel,
coupled, amplitude equations are derived governing the modulation of the primary mode.
For moderate values of the perturbation parameter ε (a measure of the initial perturbation
steepness), our second-order theory captures the overshoot (incipient jet) at the axis of
symmetry quite well, demonstrating good agreement with numerical simulation of the
incompressible, Euler equation with gravity (Popinet 2014, Basilisk. http://basilisk.fr)
and no surface tension. We demonstrate that the underlying wave focusing mechanism
may be understood in terms of radially inward motion of nodal points of a linearised,
axisymmetric, standing wave. This explanation rationalises the ubiquitous observation of
such jets accompanying cavity collapse phenomena, spanning length scales from microns
to several metres. Expectedly, our theory becomes inaccurate as ε approaches unity. In
this strongly nonlinear regime, slender jets form with surface accelerations exceeding
gravity by more than an order of magnitude. In this inertial regime, we compare the jets
in our simulations with the inertial, self-similar, analytical solution by Longuet-Higgins
(J. Fluid Mech., 1983, vol. 127, pp. 103–121) and find qualitative agreement with the same.
This analysis demonstrates, from first principles, an example of a jet created purely under
gravity from a smooth initial perturbation and provides support to the analytical model of
Longuet-Higgins (J. Fluid Mech., 1983, vol. 127, pp. 103–121).
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1. Introduction

The dynamics of waves and jets at geophysical scales has been of recurrent interest. The
study by Miles (1968), for example, refers to an insightful quote from Van Dorn (1968):
‘. . . the concentric circulate ridges that surround the crater Orientale at lat. 20◦S and long.
95◦W on the moon may have been initiated as gravity waves on a viscous liquid under the
impact of a meteorite’. Miles (1968) subsequently presents an analytical solution to the
viscous, linear, Cauchy–Poisson problem motivated by the need to validate this hypothesis.
The inviscid, irrotational, linear, Cauchy–Poisson initial value problem (IVP) and its
solution (Cauchy 1816; Poisson 1818) governing linear wave evolution on a pool of deep
liquid was reported more than one hundred and fifty years before the viscous extension to
the same by Miles (1968) for a localised surface perturbation. Our topic of interest here is
the gravity-induced collapse of a large cavity and a resultant (Worthington-like) jet which
may be ejected during such collapse, at scales large enough to be geophysically relevant.
As will be seen below, the Cauchy–Poisson (CP hereafter) linear solution provides a useful
reference, against which the formation of this jet may be compared. Throughout this study,
when we characterise lengths to be large, this is relative to both the capillary length scale
(≈2.7 mm) as well as the amplitude of the initial perturbation. Relevant non-dimensional
numbers are quoted appropriately.

Jets can often be seen associated with waves at geophysical scales. For example,
numerical models of asteroid impact often depict the generation of a thin ejecta sheet
shooting upwards due to impact; see Range et al. (2022, figure 1(a)). This sheet may be
treated as being similar to a Worthington jet (in two dimensions) and can be modelled as
an infinitely tall spike of cross-sectional area A0. Within the CP linear framework, one
can ask what surface waves may be produced due to this ejecta sheet? As explained by
Lamb (1924) (sections 238–241) for the infinite depth case and also by Pidduck (1912),
the air–water interface represented by the variable η̂(x̂, t̂) (x̂ is the direction of wave
propagation and t̂ is time) becomes wavy due to such an initial disturbance and evolves
self-similarly under acceleration due to gravity g. The evolution is predicted by the CP
solution as

πx̂η̂(x̂, t̂)
A0

= f
(

gt̂2

2x̂

)
, (1.1)

where the functional form of f (·) in (1.1) is provided by Lamb (1924). In contrast to the
two-dimensional description above, our interest here lies in axisymmetric, surface gravity
waves and jets produced therein, in cylindrical geometry. In cylindrical coordinates, for an
initial surface perturbation η̂(r̂, t̂ = 0) (with φ̂(r̂, ẑ = 0, t̂ = 0) = 0, where r̂ is the radial
coordinate, η̂ represents the perturbation of the free surface and φ̂ is the perturbation
velocity potential) on a radially unbounded pool of infinite depth, the classical solution to
the linearised CP problem predicts (Debnath 1994)

η̂(r̂, t̂) =
∫ ∞

0
dk kJ0(kr̂)H[η̂(r̂, 0)] cos(

√
gkt̂). (1.2)

Here, H[·] represents the zeroth-order Hankel transform, J0(·) is the zeroth-order Bessel
function of the first kind and k represents wavenumber. When the initial surface
perturbation, η̂(r̂, t̂ = 0), has a finite width (i.e. has a characteristic length scale), the
CP integral in (1.2) needs to be evaluated numerically and, unlike (1.1), does not lead
to self-similar evolution of the interface. We are specifically interested here in initial
conditions (i.e. η̂(r̂, 0)) which lead to jets, yet are simple enough to permit analytical
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Figure 1. Jet formation due to cavity relaxation at length scales separated by approximately three orders of
magnitude. (a) A cavity (blue) at an air–water interface generated numerically (Popinet 2014) from an initial
hump (see inset of figure 2a) of the form η ≡ η̂(r̂, 0)/â0 = exp(−r2)[1 − r2] with r ≡ r̂/d̂, non-dimensional
parameters β ≡ â0/d̂ ≡ 0.584 and Bond number Bo = ∞ (zero surface tension). Here r̂ is the radial
coordinate, â0 is measure of the initial hump amplitude and d̂, a measure of its width. A jet (red curve) is
formed due to the relaxation of the cavity, rising sharply upwards at the symmetry axis, r̂ = 0. (b) A tiny bubble
(blue) of radius r̂c = 8.57 × 10−3 cm (Bond number Bo ≡ ρgr̂2

c/T = 0.001, where T is surface tension, ρ is
the water density and g is gravity) at the air–water interface whose collapse produces a jet (red curve) (Gordillo
& Rodríguez-Rodríguez 2019; Duchemin et al. 2002). In (b), η ≡ η̂/r̂c and r ≡ r̂/r̂c (variables with hats are
dimensional) where r̂c is the radius of the bubble. Due to the length scale disparity between (a) and (b), the
cavity relaxation is dictated nearly entirely by gravity in (a) and almost entirely by surface tension in (b).
The dimensional width of the cavity in (a) (blue curve) is ≈60 cm compared with the bubble diameter (blue
curve) in (b) which is 2r̂c ≈ 1.714 × 10−2 cm. The (non-dimensional) time corresponding to the jet (red curve)

in (a) is t = (t̂
√

g/d̂)/2π = 0.717. In (b), the non-dimensional time corresponding to the jet (red curve) is

t = (t̂
√

T/ρ r̂3
c )/2π = 0.0963. Note that the simulation in (a) is started from a crest (inset of figure 2a) unlike

the trough-like initial shape of the bubble in (b). Thus, a difference of approximately 0.5 is expected in the
non-dimensional time of jet formation between (a) and (b).

progress into the nonlinear regime. For such initial conditions, we aim to go beyond
the linear regime dictated by (1.2) and solve the weakly nonlinear, axisymmetric CP
initial-value problem to understand what aspects of jet formation are contained in such
an analytical solution.

1.1. Jets from initial surface deformations
Figure 1 depicts two such jets obtained from different initial conditions in axisymmetric
geometry. Figure 1(a) depicts a cavity at an air–water interface (blue curve) which
has been generated starting from an axisymmetric hump (crest, see inset of figure 2a),
by solving the incompressible Euler equations with gravity (and zero surface tension)
using the open-source code Basilisk (Popinet 2014). The cavity relaxes producing a
Worthington-like jet, indicated by the red curve in this figure. The initial hump is given by
the formula η̂(r̂, 0) = â0 exp(−r̂2/d̂2)[1 − (r̂/d̂)2], â0, d̂ > 0 with characteristic height â0
and width d̂ (see inset of figure 2a). Figure 1(b), however, also depicts a Worthington jet
(red) but is obtained from the relaxation of a nearly spherical cavity (blue), representative
of a bubble bursting at an air–water interface (flat line in blue) for low Bond number
with zero viscosity. One notes the generation of jets in both situations despite the nearly
three orders of magnitude length scale separation and different initial conditions. These
jets share qualitatively similar features: the one in figure 1(a) rises significantly beyond
its maximum initial amplitude (unity in non-dimensional scale). Similarly, for the jet in
figure 1(b), as already noted by Gordillo & Rodríguez-Rodríguez (2019, p. 557), last
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Figure 2. Linear evolution of a cavity from a hump of the initial form η ≡ η̂(r̂, 0)/â0 = exp(−r2)[1 − r2],
r ≡ r̂/d̂. In CGS units, â0 = 0.54, d̂ = 25, β ≡ â0/d̂ = 0.0216 � 1. (a) t̂ = 0.32 s when a cavity is formed
from the initial perturbation (shown in inset). Lin is the linear prediction obtained from expression (1.2). (b)
Downward motion of a bump formed at the symmetry axis. Note the very good agreement between simulations
and the linear CP prediction. The physical parameters are chosen corresponding to air and water. (a) t =
t̂
√

g/d̂/2π = 0.314 and (b) t = t̂
√

g/d̂/2π = 0.717.
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Figure 3. Nonlinear evolution of a cavity starting from a hump of the same form as inset of figure 2(a)
with parameters (CGS) â0 = 14.6, d̂ = 25, β ≡ â0/d̂ = 0.584 ∼ O(1). Note the formation of a slender jet

in (b) which rises significantly beyond the initial perturbation amplitude â0. (a) t = t̂
√

g/d̂/2π = 0.314 and

(b) t = t̂
√

g/d̂/2π = 0.717.

paragraph, the droplet ejection velocity from such a jet can be up to twenty times the
capillary velocity based on the initial bubble radius.

The initial condition which is used to generate the jet in figure 1(a) was proposed by
Miles (1968) and represents a volume conserving, free-surface deformation. The linear
dimensions of this perturbation (see figure 3 captions for parameter values) was chosen in
the simulation to be far greater than the capillary-gravity length (2.7 mm) for air–water.
The cavity is thus expected to relax dominantly under the influence of gravity with
surface tension playing a relatively insignificant role, particularly in the early stage of
relaxation, thereby justifying our neglect of surface tension in the simulation. When
the non-dimensional aspect ratio of the cavity β ≡ â0/d̂0 � 1, the collapse is a linear
process governed by the CP solution in (1.2). This is seen from the excellent agreement
in figure 2(a,b) between numerical simulations and linearised prediction from solving
the integral in (1.2) numerically. In contrast, when β is increased to O(1), the cavity
collapse once again generates a bump earlier, but which now evolves into a thin, sharply
shooting jet. This is shown in figure 3(b). As noted earlier, this jet rises significantly higher
(≈20 cm s, see figure 3b) compared with the initial hump height â0 = 14.6 cm. In this
case, the temporal evolution is distinctly nonlinear as seen from the rather poor match
observed between the numerical simulations and the CP linear solution (1.2) (indicated as
‘Lin’ in the figure legend).
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1.2. Literature survey: initial value problems (IVPs)
These numerical results, presented in figure 3, emphasise the need for solving the
nonlinear CP problem (i.e. predictions beyond (1.2)) for a prescribed surface deformation
η̂(r̂, 0) and zero surface potential φ̂(r̂, ẑ = 0, t̂ = 0) = 0, particularly when one seeks a
first-principles understanding of the generation mechanism of the jet seen in figure 3(b).
The theory literature on the solution to such IVPs particularly in axisymmetric coordinates
is quite sparse with the bulk of the rich analytical work being focused on understanding
of time-periodic, nonlinear, standing (Strutt 1915) or travelling wave solutions (Stokes
1847, 1880). Commencing from these seminal studies (Stokes 1847; Strutt 1915), a rich
literature has since developed on finite amplitude, time-periodic surface waves, both in
two-dimensional coordinates (Penney et al. 1952; Taylor 1953; Tadjbakhsh & Keller 1960;
Fultz 1962; Schwartz & Whitney 1981; Schwartz & Fenton 1982; Dalzell 1999) as well
as cylindrical, axisymmetric coordinates (Mack 1962; Tsai & Yue 1987). Additionally,
several studies of the stability of these finite amplitude solutions (Benjamin & Feir 1967;
Mercer & Roberts 1992) have also been reported.

Here our focus, however, is not on these aforementioned time-periodic solutions but
rather on those initial surface deformations which generate a sharply shooting jet, viz. one
which rises significantly higher than its parent perturbation, similar to the one seen in
figure 3(b). An additional requirement is that the prescribed initial surface deformation
η̂(r̂, 0) should be simple enough to permit analysis in the nonlinear regime, at least
perturbatively. The initial condition presented by Miles (1968) and discussed earlier in
figures 2 and 3 excites a continuum of modes (radially) initially. Extending the surface
response due to such an initial perturbation beyond the CP linear regime described by
(1.2) is technically demanding; this is mainly due to the necessity of accounting for
interactions of a continuum of modes, interacting quadratically in a radial, axisymmetric
geometry. In further analysis, we opt instead to study an alternative and apparently simpler
initial condition in a radially confined geometry. The confinement assumption is mainly
for analytical ease as it causes the radial part of the spectrum to be discrete instead of
continuous.

In the initial condition that we study here, the free surface of a pool of very large depth
(compared with the wavelength of the surface perturbation) is deformed at time t̂ = 0
as a single (radial) eigenmode to the cylindrical, axisymmetric, Laplacian operator, i.e.
the zeroth-order Bessel function. This surface deformation thus has the form η̂(r̂, 0) =
â0J0(lq(r̂/R̂0)), with â0 being the initial perturbation amplitude, r̂ the radial coordinate,
R̂0 being the domain radius and lq (q = 1, 2, . . .) a root of the Bessel function J1(·), this
being necessary to satisfy no-penetration at the domain boundary. The length scales are
chosen appropriately: the domain radius R̂0 as well as the width of the initial perturbation
around the symmetry axis (≈2πR̂0l−1

q ) are chosen to be quite large, i.e. 6 m and ≈0.4 m,
respectively, compared with the capillary-gravity length scale of 2.7 mm for the air–water
interface (see figure 4). At sufficiently large â0 (>18 times the air–water capillary length,
see table 1), numerical simulation of the incompressible Euler equation with gravity (and
no surface tension) with this initial surface deformation reveals the formation of a sharply
shooting jet at the symmetry axis (r̂ = 0) in figure 4. We notice the qualitative similarity
of this jet to the one seen earlier in figure 3(c), i.e. both rise far beyond their respective
initial, maximum perturbation height â0. We will understand the mechanism of generation
of this jet from first principles here by solving the corresponding IVP. To place our current
study in perspective, we briefly summarise the literature on initial-value problems below.
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Figure 4. Development of a jet starting from a surface deformation in the shape of single Bessel mode at t̂ = 0,
i.e. η̂(r̂, 0) = â0J0(l35(r̂/R̂0)). The width of the initial hump is ≈40 cm while the width of the radial domain
is R̂0 = 600 cm, only a part of which is shown here. Note that we depict this as a large amplitude perturbation
as its non-dimensional steepness ε ≡ â0lq/R̂0 = 1.5 > 1. The resultant jet rises >60 cm at its maximum,
far exceeding the initial amplitude â0 = 8.13 cm (i.e. approximately seven times the initial perturbation
amplitude). Note the formation of droplets from the tip of the jet close to t̂ = 0.5 s (non-dimensional t = 6.28,
see (3.1a–c) for temporal scale). The jet profile at t̂ = 0.58 s (t = 7.81) is shown in the inset with vertical
and horizontal axes non-dimensional as per (3.1a–c). Parameters correspond to Case 5 in table 1. For this
simulation, ε = 1.5, lq = l35 = 110.74. The drops visible at the tip of the jet in the inset have been manually
removed in the main figure.

Case ε lq(q = 35) R̂0 â0 Ĥ T ρ �t̂ ν g

1 0.1 110.74 600 0.54 300 0 1 0.001 0 −981
2 0.5 110.74 600 2.70 300 0 1 0.001 0 −981
3 0.9 110.74 600 4.86 300 0 1 0.001 0 −981
4 1.3 110.74 600 7.02 300 0 1 0.001 0 −981
5 1.5 110.74 600 8.10 300 0 1 0.001 0 −981
6 1.6 110.74 600 8.64 300 0 1 0.001 0 −981
7 0.6 110.74 600 3.25 300 0 1 0.001 0 −981
8 0.7 110.74 600 3.79 300 0 1 0.001 0 −981
9 0.8 110.74 600 4.34 300 0 1 0.001 0 −981
10 1.2 110.74 600 6.48 300 0 1 0.001 0 −981

Table 1. Axisymmetric simulations parameters (CGS units) with air (above)–water (below) parameters
conducted in Basilisk (Popinet 2014). T is the surface tension coefficient, ρ is the density of water, �t̂ is
the output time step, ν being the kinematic viscosity of water and g is the acceleration due to gravity. All
simulations have been conducted with uniform 20482 grid. Case 1 agrees with linear theory and is not discussed
in the text.

There are two classes of initial conditions for the solution to the linear CP problem. These
are (a) waves are generated from fluid at rest and a specified initial surface deformation
(termed the primary CP problem recently by Tyvand, Mulstad & Bestehorn (2021a) and
of current interest; (b) waves and fluid motion are generated from a flat surface due to an
initial surface impulse (see expressions 3.2.10 and 3.2.12 in Debnath 1994). This is the
secondary CP problem (Tyvand et al. 2021a).
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The primary and the secondary CP problems in two-dimensional coordinates were
investigated numerically using the potential flow equations by Saffman & Yuen (1979).
For the latter case, the authors applied a sinusoidal, in space and time, pressure force for
a certain duration on a flat interface, and reported the subsequent evolution of the free
surface after this forcing was turned off. For the primary CP problem, they used the the
finite amplitude solution of Price & Penney (1952) as their initial surface deformation. In
both cases, they investigated waves of highest amplitude, obtaining good agreement with
the well-known experiments of Taylor (1953). In two-dimensional Cartesian coordinates,
the primary CP problem was subsequently numerically investigated by Longuet-Higgins
(2001) and Longuet-Higgins & Dommermuth (2001b). The authors imposed a prescribed
surface deformation in the shape of a circular trough, flanked by circular crests of
larger radii. A trough as it collapsed in time was numerically found to generate a
jet rising upwards, see Longuet-Higgins & Dommermuth (2001b, figure 7). Notably,
peak accelerations exceeding 10g were observed at the base of their cavity prior to the
formation of the jet. In a follow-up work, the secondary CP problem was also investigated
numerically by Longuet-Higgins & Dommermuth (2001a). These authors numerically
solved the IVP employing an initial condition, which corresponds to a standing wave
solution to the linearised problem. The horizontal (û(x̂, ẑ, t̂)) and vertical (v̂(x̂, ẑ, t̂))
components of fluid motion in their simulation were prescribed in two-dimensional
coordinates, initially as û(x̂, ẑ, 0) = C exp(kẑ) cos(kx̂), v̂(x̂, ẑ, 0) = C exp(kẑ) sin(kx̂) with
the surface being flat initially (η̂(x̂, 0) = 0). For C � 1, a linear standing wave was
observed. However, at larger C = O(1), the authors reported formation of a jet-like
structure at x = 0 during the downward motion of the crest (see Longuet-Higgins &
Dommermuth 2001a, figure 9b). Recently, the nonlinear, secondary CP problem in
two-dimensional Cartesian coordinates has also been solved analytically, employing small
time expansion (Tyvand et al. 2021a; Tyvand, Mulstad & Bestehorn 2021b). These
authors demonstrate significant differences between the linear and the nonlinear CP
solution, with increasing amplitude of the initial pressure impulse. However, a clear jet-like
structure, analogous to what was presented in the numerical solution by Longuet-Higgins
& Dommermuth (2001a), is not discernable in their figure 6(c) (Tyvand et al. 2021a).
Of note are also several experimental studies which have investigated the emergence of
jets in set-ups which closely resemble the secondary CP problem (i.e. via application of
surface impulse), mostly at capillarity dominated length scales. These include the studies
by Antkowiak et al. (2007), Bergmann et al. (2008), Gordillo, Onuki & Tagawa (2020)
of the tubular jet as well as several versions of the so-called Pokrowski’s experiment
(Lavrentiev & Chabat 1980).

The modal initial condition of interest to us in this study, i.e. η̂(r̂, 0) = â0J0(lq(r̂/R̂0)),
corresponds to the primary CP problem described above (Tyvand et al. 2021a), albeit in
cylindrical, axisymmetric coordinates. This initial condition was first studied by Farsoiya,
Mayya & Dasgupta (2017) to analytically solve the viscous, linear, IVP at length scales
(approximately a few centimetres) chosen such that surface tension as well as gravity were
equally important. It was observed in the direct numerical simulations (DNS) reported by
Farsoiya et al. (2017) that by systematically increasing the perturbation amplitude â0, a
capillarity-gravity dominated jet emerged at the symmetry axis rising significantly higher
than â0. The viscous, linear theory presented by Farsoiya et al. (2017) was unable to
describe the formation of this jet or even account for its inception. In a subsequent study
(Basak, Farsoiya & Dasgupta 2021), the weakly nonlinear solution to the IVP within an
inviscid framework and accurate up to O(ε2) (ε ≡ â0lq/R̂0) corresponding to the same
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initial condition as that of Farsoiya et al. (2017) was developed. Here too the length
scales of interest were similar to that of Farsoiya et al. (2017) with gravity and surface
tension forces being equally strong and both forces were accounted for in the theory.
This nonlinear theory (Basak et al. 2021) was a significant improvement over the linear
model of Farsoiya et al. (2017) and was able to predict the inception of the jet, comparing
well with inviscid simulations of Euler’s equations with gravity and surface tension (Basak
et al. 2021). The physical mechanism underlying this jet formation was however not
presented by Basak et al. (2021). Additionally, for a given choice of lq, surface tension and
gravity, the analytical theory of Basak et al. (2021) becomes singular for certain values of
the domain size R̂0, this being related to triadic internal resonance. It was demonstrated
(Basak et al. 2021) that these singularities owed their origin to the presence of both
surface tension as well as gravity in the theoretical model and represented the cylindrical
counterparts of such singularities, better known in the context of Wilton ripples (Wilton
1915) in two-dimensional coordinates.

Now, it is already known from experimental as well as simulation studies on
bubble bursting at millimetric (Tagawa et al. 2012; Deike et al. 2018; Gordillo &
Rodríguez-Rodríguez 2019) and micron length scales (Lee et al. 2011) that jets accompany
such cavity collapse quite routinely at these scales, where gravity is insignificant compared
with surface tension during the collapse. Motivated partly by this observation, simulations
of the incompressible, Euler’s equation with only surface tension (no gravity) with the
aforementioned initial condition of Farsoiya et al. (2017) have been reported recently
by Kayal, Basak & Dasgupta (2022). It was demonstrated clearly in these simulations
that surface tension alone at sufficiently small scales can produce a jet similar to what
was observed at much larger capillary-gravity length scales by Farsoiya et al. (2017) and
Basak et al. (2021). Concomitantly, the weakly nonlinear solution to the IVP for this
initial condition and taking into account only surface tension has also been developed
by Kayal et al. (2022). Comparison of this analytical theory against numerical simulations
demonstrated very good agreement (Kayal et al. 2022), additionally also shedding light
into the physical mechanism at work driven by gradients of curvature. It was proven (Kayal
et al. 2022) that to describe the inception of the jet in the surface tension driven case, one
needs to account for nonlinear effects of curvature (the gradient of which drives the flow).
To capture this accurately, it was shown that the analytical theory needs to be at least
third-order accurate, i.e. O(ε3). This third-order accurate solution was reported by Kayal
et al. (2022) and has been found to be free from the aforementioned internal resonance
related singularities by Basak et al. (2021), thereby also alleviating a practical deficiency
of the capillary-gravity model studied earlier by Basak et al. (2021).

Our present study treats the converse case of Kayal et al. (2022) considering large
amplitude surface waves (we typically analyse cases where the initial wave steepness
ε > 0.5) under the influence of gravity (and no surface tension, i.e. infinite Bond number).
To be consistent, we choose our length scales of interest to be typically in the metre
range (radial domain size is 6 m), far greater than the air–water capillary length and this
represents a scale up of nearly two orders of magnitude in length, as compared to all our
earlier studies (Farsoiya et al. 2017; Basak et al. 2021; Kayal et al. 2022). Due to the length
scale of our initial perturbation, far exceeding the capillary scale, we expect the relaxation
of the perturbation to be dominated by gravity with surface tension playing a negligible
role. The motivation to search for jets at such scales comes from the rogue wave literature
where a very interesting recent experimental observation of McAllister et al. (2022)
reported a ‘spike wave’. McAllister et al. (2022) generate a spike wave which rises up to
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Figure 5. Temporal evolution and development of a jet at the symmetry axis. This is from simulations with
ε = 1.5, lq = l35 = 110.74 (Case 5 in table 1). The arrows indicate the local direction of motion of the interface
at that time instant. The inset is a non-dimensional representation of the main figure.

6 m in height, via focusing of waves at the symmetry axis of a cylindrical pool. Note that in
their case, the focusing was achieved not directly via cavity collapse but via wavemakers
at the periphery of a very large cylindrical tank (25 m diameter) which generated wave
components arranged to be in phase at the symmetry axis, leading to a spike wave there.
McAllister et al. (2022) also demonstrated that the shape of the spike wave (with the
exception of a small region around the symmetry axis) could be accounted for by linear,
dispersive focusing. Given our numerical observation of purely capillarity driven jets (sans
gravity) for the surface deformation η̂(r̂, t̂ = 0) = â0J0(lq(r̂/R̂0)) at millimetric length
scales in Kayal et al. (2022), we ask here if gravity acting alone, at typical length scales of
tens of metres, may also produce a jet similar to the one previously seen by us (Kayal et al.
2022), employing the same initial condition. We also note here that the experimental study
by McAllister et al. (2022) demonstrated recently that similar waves, purely due to gravity,
may be generated via focusing. We will show here, theoretically and computationally, that
the answer to our question is in the affirmative and also explain the physical mechanism
at work. Analogous to the purely surface tension driven, nonlinear theory developed by us
in Kayal et al. (2022), the purely gravity driven, second-order, nonlinear theory developed
here is devoid of singularities, arising from internal resonance. This theory developed via
multiple scale analysis is then compared with numerical simulations obtaining very good
agreement.

2. Physical mechanism of jet formation: wave focusing

Figure 5, illustrated further in Appendix C, depicts the radially inward motion of the crests,
highlighted by horizontal arrows. To understand physically this radially inward motion
seen in figure 5 (Appendix C), we shall employ mass conservation via the kinematic
boundary condition. Recall that the solution to the linear CP problem provided in (1.2) for
the modal surface deformation, i.e. η̂(r̂, t̂ = 0) = −â0J0(lq(r̂/R̂0)) and φ̂(r̂, ẑ = 0, 0) = 0
(â0 > 0), is

η̂(r̂, t̂) = −â0J0

(
lq

r̂

R̂0

)
cos

(√
lq

g

R̂0
t̂
)

, (2.1a)
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ûz(r̂, ẑ, t̂) = â0l1/2
q g1/2

R1/2
0

J0

(
lq

r̂

R̂0

)
exp

(
lq

ẑ

R̂0

)
sin
(√

lq
g

R̂0
t̂
)

, (2.1b)

ûr(r̂, ẑ, t̂) = − â0l1/2
q g1/2

R1/2
0

J1

(
lq

r̂

R̂0

)
exp

(
lq

ẑ

R̂0

)
sin
(√

lq
g

R̂0
t̂
)

, (2.1c)

where ûr and ûz are the radial and axial components of perturbation velocity. Here a
negative sign is deliberately used in the prescription for η̂(r̂, t̂ = 0) to generate an initial
trough (instead of a hump) around r̂ = 0 resembling locally a cavity around the symmetry
axis. The linearised kinematic boundary condition, i.e. (∂η̂/∂ t̂) = ûz(ẑ = 0, r̂, t̂), implies
that the temporal evolution of the interface (at linear order) is determined only by the
vertical component of perturbation velocity ûz at the undisturbed liquid level ẑ = 0. Thus
for this initial condition, the zeros of the initial surface deformation, viz. the solution to
J0(lq(r̂/R̂0)) = 0, behave as nodes (at linear order).

Let us denote the radial location of the first zero of J0(lq(r̂/R̂0)) = 0 as r̂∗. Observe
from (2.1c) that ûr(r̂ = r̂∗, ẑ = 0, 0 < t̂ < T̃0/4) /= 0, being a small negative value in the
first quarter of the oscillation cycle with time period T̃0, i.e. the early stages of cavity
collapse. Thus, linear theory predicts a radially inward, horizontal velocity at the location
r̂ = r̂∗, as seen from the negative sign of (2.1c) for r̂ = r̂∗, ẑ = 0 and t̂ < T̃0/4. This
radially inward velocity affects the solution only at nonlinear order leading to radial inward
motion of the first node, as may be seen via consideration of the nonlinear term in the
kinematic boundary condition. One can now correlate this radially inward motion of the
node, with the radially inward motion highlighted earlier in figure 5 (also see Appendix C).
Notably, our allusion to the nonlinear term in the kinematic boundary condition implies
that the physical mechanism of inward radial motion of the nodes may be understood
purely from a kinematic viewpoint (using only mass conservation) without appealing to
forces or pressure gradients, which drive the flow. This thus provides insight into why one
should generically expect jets from such large amplitude monochromatic perturbations,
independent of whether one is investigating the phenomena at capillarity driven length
scales (Kayal et al. 2022) or far larger, gravity driven scales as is our present case.

Our analytical argument above complements the well accepted viewpoint that these jets
are a consequence of flow focusing and thus appear in a wide range of situations. Examples
include large cavity collapse (Ghabache, Séon & Antkowiak 2014), impact-driven liquid
jets (Antkowiak et al. 2007), needle-less injection (Tagawa et al. 2012) or collapse in
granular jets (Lohse et al. 2004).

3. Weakly nonlinear theory: multiple scale approach

In this section, we develop an O(ε2) weakly nonlinear theory employing the method of
multiple scales and ε ≡ â0lq/R̂0 as perturbation parameter to predict from first principles
how the jet develops. Note that in our earlier studies (Basak et al. 2021; Kayal et al. 2022),
we have used the closely related method of strained coordinates (Lindstedt–Poincare
technique). Our usage of multiple scales here is motivated by the fact that at sufficiently
early time, the effect of nonlinearity should be small and the interface should behave as a
linear standing wave. At a longer time window, however, the effect of nonlinearity becomes
apparent including the production of free and bound mode components absent initially.
We derive here the amplitude equations governing the modulation of the primary mode as
this was not obtained earlier in the strained coordinate method (Basak et al. 2021; Kayal
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et al. 2022). As our study is restricted to jets on a water pool only, for pure water, the
corresponding viscous-gravity length scale (ν2/g)1/3 � 1 mm is quite small compared to
the length scales of interest to us here. Consequently, we resort to the inviscid, irrotational,
potential flow approximation as is standard practise in analysing large-scale surface gravity
waves (McAllister et al. 2022). These potential flow equations are non-dimensionalised
using the following scales:

(r, z, η) ≡ lq
R̂0

(r̂, ẑ, η̂), t ≡
(

lq
g

R̂0

)1/2

t̂, φ ≡
(

l3q
R̂3

0g

)1/2

φ̂, (3.1a–c)

which yields the following set of equations written in axisymmetric, cylindrical
coordinates. Here (non-dimensional) φ represents the disturbance velocity potential and
(non-dimensional) η represents the disturbed free surface. The governing equations and
boundary conditions are

∇2φ = ∂2φ

∂r2 + 1
r

∂φ

∂r
+ ∂2φ

∂z2 = 0, (3.2a)

η +
(

∂φ

∂t
+ 1

2

(
∂φ

∂r

)2

+ 1
2

(
∂φ

∂z

)2
)

z=η

= 0, (3.2b)

∂η

∂t
+
(

∂η

∂r
∂φ

∂r
− ∂φ

∂z

)
z=η

= 0, (3.2c)

(φ)z→−∞ → finite,
(

∂φ

∂r

)
r=lq

=
(

∂η

∂r

)
r=lq

= 0, (3.2d,e, f )

∫ lq

0
dr rη(r, t) = 0, (3.2g)

with initial conditions η(r, 0) = εJ0(r),
∂η

∂t
(r, 0) = 0, φ(r, z, 0) = 0. (3.2h,i, j)

Equation (3.2a) is the Laplace equation in cylindrical axisymmetric coordinates, (3.2b,c)
are the constant pressure condition (from Bernoulli’s equation) and the kinematic
boundary condition, respectively, both at the free surface. Equation (3.2d) is the finiteness
of the velocity potential at infinite depth (deep water limit is assumed for simplicity).
Equation (3.2e, f ) are the no-penetration and free-edge boundary conditions at the outer
radial boundary r̂ = R̂0. Equation (3.2g) is the overall mass conservation while (3.2h,i,j)
are initial conditions corresponding to the primary CP problem.

The number lq (q ∈ Z+) in the initial condition η̂(r̂, t̂ = 0) = â0J0(lq(r̂/R̂0)) satisfies
J1(lq) = 0. The chosen integer value of q in ε ≡ lq(â0/R̂0) is related to the number of
extremas of J0 within the radial domain R̂0. The numerical value of R̂0l−1

q provides a rough
measure of the wavelength of the initial perturbation while nonlinearity is controlled by the
magnitude of the perturbation amplitude â0 relative to R̂0l−1

q . To minimise the effect of the
confining radial boundary R̂0 on the cavity collapse process, we require R̂0l−1

q � R̂0 and
this is ensured by choosing lq � 1. In this study, we choose q = 35 implying l35 = 110.74.
The variables φ, η and t are expanded in a power series in ε (ε � 1) for finite lq. Employing
multiple scale analysis, we replace the temporal dependencies in all dependent variables
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as Tn ≡ εnt (up to second order). Thus, we have up to second order,

φ(r, z, T0, T2) = εφ1(r, z, T0, T2) + ε2φ2(r, z, T0, T2) + O(ε3), (3.3)

η(r, T0, T2) = εη1(r, T0, T2) + ε2η2(r, T0, T2) + O(ε3), (3.4)

where T0 ≡ t and T2 ≡ ε2t. After performing a Taylor series expansion of (3.2b) and (3.2c)
about the unperturbed interface z = 0 and thereafter substituting expansions (3.3) and (3.4)
in (3.2a–j), we extract the following set of linear equations governing φi(r, z, T0, T2) and
ηi(r, T0, T2) at the ith order for all i = 1, 2, 3, . . .. Hence, at every O(εi) and using the
short-hand symbol Dn ≡ ∂/∂Tn, we have

∇2φi = 0, (3.5a)

D0φi + ηi = Ni(r, T0, T2),
∂φi

∂z
− D0ηi = Mi(r, T0, T2) at z = 0, (3.5b,c)

(φi)z→−∞ → finite,
(

∂φi

∂r

)
r=lq

= 0,

(
∂ηi

∂r

)
r=lq

= 0, (3.5d,e, f )

∫ lq

0
dr rηi(r, T0, T2) = 0 (3.5g)

and

ηi(r, 0, 0) = δ1iJ0(r), D0ηi(r, 0, 0) = 0, φi(r, z, 0, 0) = 0. (3.5h,i, j)

Here, δ1i is the Kronecker delta while Mi(r, T0, T2) and Ni(r, T0, T2) are nonlinear
terms involving products of lower-order solutions of φi and ηi with M1(r, T0, T2) =
N1(r, T0, T2) = 0. Due to this at the linear order, we have a homogeneous set of equations.
The expressions for M2(r, T0, T2),N2(r, T0, T2) as well as M3(r, T0, T2),N3(r, T0, T2)
(necessary for eliminating resonant forcing) are provided in the Appendix. As all φi satisfy
the Laplace equation (3.5a), we expand φi and ηi at every order in a Dini series (Mack
1962) in the following form (note that q is a given fixed integer used to indicate the primary
Bessel mode that is excited initially):

φi(r, z, T0, T2) =
∞∑

j=0

p( j)
i (T0, T2) exp(αj,qz)J0(αj,qr) (3.6)

and

ηi(r, T0, T2) =
∞∑

j=0

a( j)
i (T0, T2)J0(αj,qr), αj,q ≡ lj

lq
, i = 1, 2, 3, j = 1, 2, 3, 4 . . . .

(3.7)

By construction, each term in the expansion in (3.6) satisfies the Laplace equation (3.5a),
while each term in (3.7) satisfies the mass conservation equation (3.5g). In addition,
(3.6) and (3.7) together respect the finiteness condition as well as the no-penetration and
the free-edge conditions (3.5d,e, f ). Our task thus reduces to ensuring that (3.5b,c) are
satisfied, and these in turn determine equations governing p( j)

i (T0, T2) and a( j)
i (T0, T2)

in the expansions (3.6) and (3.7). These equations have to be solved subject to initial
conditions (3.5h,i,j).
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Substituting (3.6) and (3.7) into (3.5b,c), taking inner products with J0(αn,q)r dr and
using the orthogonality relations for Bessel functions (see the supplementary material
of Basak et al. (2021) for the relevant orthogonality relations), we obtain the following
equations at each O(εi):

(D2
0 + ω2

j,q)p
( j)
i (T0, T2)

= 2
l2qJ2

0(lj)

∫ lq

0
dr rJ0(αj,qr){D0Ni(r, T0, T2) + Mi(r, T0, T2)} (3.8a)

and

a( j)
i (T0, T2) = 2

l2qJ2
0(lj)

∫ lq

0
dr rJ0(αj,qr)Ni(r, T0, T2) − D0p( j)

i (T0, T2). (3.8b)

Here, ω2
j,q ≡ αj,q is the non-dimensional form of the dispersion law for pure gravity waves

on a free surface. Equation (3.8a) is a second-order, partial differential equation which is
solved subject to the following initial conditions (these are obtained by substituting (3.6)
and (3.7) into initial conditions (3.5h,i,j)):

p( j)
i (0, 0) = 0, D0p( j)

i (0, 0) = 2
l2qJ2

0(lj)

∫ lq

0
dr rJ0(αj,qr)Ni(r, 0, 0) − δ1iδqj. (3.9a,b)

The expression for a( j)
i (T0, T2) may then be obtained from (3.8b), knowing the expression

for p( j)
i (T0, T2) from the solution to (3.8a).

3.1. Linear solution (i = 1)
At O(ε), Ni(r, T0, T2) = Mi(r, T0, T2) = 0 which reduces (3.8a) to a homogeneous
equation along with initial conditions obtained from (3.9) for i = 1, i.e.

p( j)
1 (0, 0) = 0, D0p( j)

1 (0, 0) = −δqj. (3.10a,b)

This leads to
p(q)

1 (T0, T2) = (μ1q(T2) cos T0 + ν1q(T2) sin T0) (3.11)

and
a(q)

1 (T0, T2) = (μ1q(T2) sin T0 − ν1q(T2) cos T0),

p( j)
1 (T0, T2) = 0, a( j)

1 (T0, T2) = 0 ∀j /= q,

}
(3.12)

where μ1q(T2) and ν1q(T2) in 3.11 and 3.12 are functions of the slow time scale T2 and
satisfy initial conditions μ1q(0) = 0, ν1q(0) = −1, obtained from (3.10). Hence at O(ε),
φ1 and η1 are obtained as

φ1(r, z, T0, T2) = (μ1q(T2) cos T0 + ν1q(T2) sin T0)J0(r) exp(z) (3.13)

and
η1(r, T0, T2) = (μ1q(T2) sin T0 − ν1q(T2) cos T0)J0(r). (3.14)

Note that if we were to terminate our calculation at this order, then μ1q and ν1q would be
treated as constants being μ1q = 0, ν1q = −1 and substituting these in (3.13) and (3.14),
we obtain the standing wave that is predicted at linear order, i.e.

φ(r, z, T0) = −ε sin(T0)J0(r) exp(z), η(r, T0) = ε cos(T0)J0(r). (3.15a,b)
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Equations (3.15) predict that the interface η evolves temporally as a standing wave with unit
frequency (in non-dimensional sense). Expectedly, at all time, there is only the primary
mode and no transfer of energy to modes other than this mode (index q) is predicted
at this order. Consequently, there is no jet seen in the time evolution of the standing
wave. At the axis of symmetry, the initial perturbation represented by η in (3.15) has
an amplitude ε at T0 = 0 and after one time period at T0 = 2π, once again rises to
the same amplitude at this location. While we have seen earlier that the radial velocity
at the node (r = r∗) is non-zero and radially inward already at this order, this velocity
does not affect the time evolution of the standing wave. To theoretically predict the radial
inward movement of nodes which leads to the jet seen in figure 4, our calculation must be
extended to nonlinear order. We expect to obtain amplitude equations governing μ1q(T2)
and ν1q(T2) appearing in 3.13 and 3.14 by going up to nonlinear order, and this is presented
next.

3.2. Nonlinear solution (i = 2, 3)
On a longer time scale T2, the amplitude of the primary mode ( j = q) gets modulated,
this being dictated by nonlinear equations governing μ1q(T2) and ν1q(T2). To determine
these equations, it becomes necessary to obtain expressions up to O(ε3) for M2 and N2
as well as M3 and N3), where resonant forcing of the primary mode is encountered and
eliminated. The nonlinear calculation proceeds in an analogous manner to the linear one
outlined above, although the algebra, expectedly, becomes increasingly tedious. We outline
only the important steps here.

For i = 2, M2(r, T0, T2) /= 0 and N2(r, T0, T2) /= 0, and expressions for these are
provided in the Appendix. As a result, (3.8a) governing p(i)

2 (T0, T2) is an inhomogeneous
equation. To prevent very lengthy calculation for solving this equation, we introduce an
approximation as follows. While solving (3.8a) for p( j)

2 (T2) ( j = 0, 1, 2, 3, . . .), constants
of integration appear which, strictly speaking, are not constants but functions of the slow
time scale T2. These govern the modulation of the amplitude of the secondary modes.
To determine the equations governing this modulation, one needs to go to higher order
(presumably beyond third order). Our purpose here is to obtain a nonlinear approximation
which contains enough physics to model the inception of the jet seen earlier. Thus, to
prevent very lengthy, higher-order calculations, we ignore the temporal variation of these
functions treating them instead as constants to be determined from initial conditions.
Our analytical solution thus contains the modulation of the amplitude of the linear
solution (i.e. the primary mode with index q), but neglects amplitude modulation of the
secondary modes generated in the spectrum, via nonlinearity. The justification for this
will be obtained a posteriori, when we compare our analytical predictions with numerical
simulations. After lengthy algebra, the O(ε2) corrections are found to be

φ2(r, z, T0, T2) =
[

ν1q(T2)
2 − μ1q(T2)

2

2
sin(2T0) + μ1q(T2)ν1q(T2) cos(2T0)

]
J2

0(lq)

+
∞∑

n=1

[ξ (2)
n,q sin(ωn,qT0) + ξ (3)

n,q(μ1q(T2), ν1q(T2)) cos(2T0)

+ ξ (4)
n,q(μ1q(T2), ν1q(T2)) sin(2T0)] exp(αn,qz)J0(αn,qr) (3.16)
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and

η2(r, T0, T2) =
∞∑

n=1

[ζ (1)
n,q cos(ωn,qT0) + ζ (3)

n,q (μ1q(T2), ν1q(T2)) cos(2T0)

+ ζ (4)
n,q (μ1q(T2), ν1q(T2)) sin(2T0) + ζ (5)

n,q (μ1q(T2), ν1q(T2))]J0(αn,qr). (3.17)

In (3.16), ξ
(1)
n,q = 0, ξ

(2)
n,q are constants (part of the complementary function for (3.8a),

these being assumed to be constants instead of being functions of T2, as explained earlier).
Expressions for ξ

(2)
n,q , ξ

(3)
n,q(μ1q(T2), ν1q(T2)) and ξ

(4)
n,q(μ1q(T2), ν1q(T2)) are provided in

the Appendix. Similarly, in (3.17), ζ
(1)
n,q and ζ

(2)
n,q = 0 are constants while expressions for

ζ
(3)
n,q (μ1q(T2), ν1q(T2)), ζ

(4)
n,q (μ1q(T2), ν1q(T2)) and ζ

(5)
n,q (μ1q(T2), ν1q(T2)) are provided in

the Appendix. Note that these expressions depend on the unknowns μ1q(T2) and ν1q(T2).
Equations for these two unknowns are obtained at O(ε3) via elimination of resonant
forcing terms for the primary mode.

3.3. Amplitude equation(s)
To obtain the equations governing μ1q(T2) and ν1q(T2), it is necessary to carry out the
calculation till O(ε3) and seek terms which resonate with the primary mode. As the natural
frequency on the left-hand side of (3.18a) is unity for j = q (ω2

q,q = 1), we look for terms
on the right-hand side in (3.18a) which are proportional to cos(T0) or sin(T0). Writing
(3.8a) for i = 3 and j = q,

(D2
0 + 1)p(q)

3 (T0, T2) = 2
l2qJ2

0(lq)

∫ lq

0
dr rJ0(r){D0N3 + M3}. (3.18)

Expressions for M3(r, T0, T2),N3(r, T0, T2) necessary to evaluate the right-hand side of
(3.18) are provided in the Appendix. Note in particular that M3 and N3 both contain terms
like D2η1 and D2φ1 which lead to time derivatives of μ1q(T2) and ν1q(T2). Elimination of
the coefficients of cos(T0) and sin(T0) appearing on the right-hand side of (3.18) lead us
to two nonlinear, coupled ordinary differential equations governing evolution of μ1q(T2)
and ν1q(T2) over the slow time scale T2. The algebra is again quite lengthy and we provide
only the amplitude equations here. These are of the form

D2μ1q = r1μ1q + r2ν1q, D2ν1q = r3μ1q − r1ν1q,
μ1q(0) = 0, ν1q(0) = −1

}
. (3.19a,b)

Here, r1, r2 and r3 in (3.19a) and (3.19b) are nonlinear functions of μ1q and ν1q whose
expressions are provided in the Appendix. Equations (3.19a) and (3.19b) are solved
numerically in MATLAB and together with expressions at linear and quadratic order
provided earlier in (3.13), (3.14), (3.16) and (3.17), we obtain a second-order solution to
the primary CP problem for our initial condition. This analytical prediction is free from
any fitting parameters and is tested against numerical simulations of the incompressible
Euler equation with gravity, in the next section.

3.4. Comparison of theory with numerical simulations
In this section, the results from numerical simulations are compared against the theoretical
predictions made earlier. To do this, we truncate the infinite series in (3.16) and (3.17) at
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Figure 6. (a–d) Comparison of the interface profile η/ε at various instants with linear and weakly nonlinear,
analytical solutions. Solid red, O(ε2) weakly nonlinear theory; solid brown, O(ε) linear theory and numerical
simulation (Sim, solid blue line) for ε = 0.5 and l35 = 110.74 (Case 2 in table 1). (b) Inset depicts a
close-up view of the first zero crossing of the perturbed interface. Note the qualitative differences between
the simulation and linear theory particularly in (c) and (d). The shaded region in blue in (c) depicts the
wave crest whose inward focusing results in an overshoot. Significant overshoot (≈37 %) is seen in the
numerical simulation, i.e. above the dashed pink line in (d), at r = 0. Unlike linear theory, the weakly
nonlinear theory predicts this overshoot nearly correctly as seen in (d). (a) t̂ = 0 (non-dimensional t = 0),
(b) t̂ = 0.266 s (t = 3.58), (c) t̂ = 0.337 s (t = 5.07) and (d) t̂ = 0.483 s (t = 6.5).

n = 70. This number is twice the index of the primary mode, which in the present study
has been chosen to be q = 35. Figure 12 in Appendix B presents the Hankel transform
of the interface for ε = 0.5 from our O(ε2) theory, comparing with the Hankel transform
of the interface obtained from numerical simulations. This is done at t̂ = 0.483 s and the
interface at this instant of time is depicted in figure 6(d). It is clearly seen that at this
instant of time, when the interface shows more than 37 % overshoot at the symmetry axis
(figure 6d), there is a perceptible amount of potential energy around the second harmonic
of the primary mode, i.e. q = 70, see inset of figure 12. However, our theoretical model
predicts very little potential energy beyond this and consequently, we have truncated our
expansion at n = 70 in expressions (3.16) and (3.17).

The numerical simulations have been carried out using the open source code Basilisk
(Popinet 2014) employing a cylindrical domain of radius R̂0 = 600 cm and depth Ĥ = 300
cm. As the chosen value of q = 35, this implies that the (approximate) wavelength of the
initial perturbation is far smaller than Ĥ = 300, justifying the deep water approximation
that we make in our theory. The parameters of various simulations are summarised in
table 1. In all simulations, we have employed free-edge boundary conditions at the wall
implying that the interface intersects the solid boundary at R̂0 at an angle of π/2 at all
times.

Figure 6 shows the comparison of linear and weakly nonlinear theory with the
simulation for ε = 0.5. It can be seen that the weakly nonlinear theory captures the
simulation profiles quite well. Note in particular figure 6(d), showing clearly that the
overshoot seen in the simulation at the symmetry axis over and above unity (pink dashed
line in the figure) is predicted well by the O(ε2) theory. This overshoot is the precursor
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O(ε)

O(ε2)

12
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Figure 7. Radial inward motion of the first zero crossing between figures 6(b) and 6(c). Note from figure 6
that within this time window, the interface is shaped as a cavity around r = 0 and the collapse of this cavity
occurs nonlinearly, leading to the overshoot seen in figure 6. As noted earlier, the inward motion of the first zero
crossing of η(r = r∗, t) may be interpreted as radial inward focusing of the two humps shown earlier in figure 5.
As seen, linear theory (pink symbols) does not allow any radial displacement of the zero crossings. However,
the weakly nonlinear theory is able to describe the inward motion of the nodes correctly qualitatively, although
some quantitative differences persist between theory and simulations. The inset depicts the main figure with
dimensional axes.

to the slender jet that develops at the axis of symmetry, seen for far larger values of
ε = 1.5, please refer to figure 4. Figure 7 shows the inward movement of the first zero
crossing of the interface η (around r = −2.4 in figure 6b) from panels (b) to (c). Note
the good agreement in figure 7 between nonlinear theory and simulation. During this
time window, the interface around the axis of symmetry is shaped like a cavity which
collapses subsequently, leading to the overshoot seen in figure 6(d). In figure 8, we test
the limit of our theory, extending the magnitude of ε to 0.9 (Case 3 in table 1). It is seen
that although the O(ε2) theory shows the overshoot, it significantly underdescribes the jet
being unable to capture its slenderness well. For reference, the initial condition is also
provided in this figure in green. This value of ε ∼ 0.9 represents a simulation which lies
outside the range of utility of the O(ε2) theory for describing these jets. While the theory
is able to describe the inception (up to ε = 0.5), it is unsuitable in this parametric regime
where nonlinearity becomes very strong. This regime will be analysed in detail in the next
sub-section. We note that the inability of the current multiple scale analysis to capture
the overshoot accurately for ε > 0.6 is unrelated to the approximation discussed above in
(3.16). To check this, we have compared our current solution with the stretched coordinate
solution reported earlier by Basak et al. (2021) (setting surface tension equal to zero in the
latter) and found that predictions from the two methods are indistinguishable. Figure 9(a)
compares the overshoot seen at the symmetry axis (r = 0) as a function of ε. This figure
demonstrates that the weakly nonlinear theory presented here may be used reliably up
to ε ∼ 0.6 beyond which it becomes quite inaccurate. Figure 9(b) demonstrates that the
displacement of the tip of the jet, viz. η̂(r̂ = 0, t̂), displays a parabolic dependence in time,
in agreement with the earlier observations of Ghabache et al. (2014).

We have argued earlier that the development of the jet requires radially inward focusing
of surface gravity waves at the axis of symmetry, much akin to the phenomena of bubble
collapse albeit at far smaller capillary scales, where radially inward focusing of capillary
waves are implicated in the formation of a slender jet (Duchemin et al. 2002; Gordillo &
Rodríguez-Rodríguez 2019). Predictions from our theoretical model vis-a-vis numerical
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Figure 8. Interface for ε = 0.9, t̂ = 0.47 s (non-dimensional t = 6.33) before the maximum height is reached.
The O(ε2) theory is unable to describe the slender jet seen in simulations although it manages to get the
overshoot correct qualitatively. The line in green represents the initial condition.
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Figure 9. (a) Comparison of the maximum height (η̂max/â0) at the symmetry axis, as a function of
increasing ε. Note that ηovershoot ≡ η̂max/â0 − 1 = O(ε2) which translates in dimensional variables to
η̂overshoot ∼ â3

0/R̂2
0 (Ghabache et al. 2014). Our weakly nonlinear model estimates the overshoot with an error

of <20 % up to ε ∼ 0.6. Up to this ε = 0.6, the shape of the jet in theory and simulation agree reasonably well.
Beyond this, the weakly nonlinear model becomes quite inaccurate. Note that the analytical model displays
overshoot earlier in time compared with the simulation. The thin blue line indicates the linear solution which
does not have any overshoot. The green curve has the equation 0.32ε2 + 0.19ε + 1.1 and is obtained by fitting a
parabola to the analytical model (diamonds). (b) Variation of non-dimensional amplitude with time at the axis
of symmetry. Dots represent simulation data while solid curves are parabolic fits to the same, in qualitative
agreement with observations of Ghabache et al. (2014, figure 2).

simulations presented in figure 6, where an inward motion of the first nodes is visible, see
panel (b) inset for the weakly nonlinear theory as well as simulations, demonstrate that this
radially inward flow focusing at large length scales may also be interpreted as the reason
for the generation of jets at these large length scales. Alternatively, this process may also
be interpreted as constructive interference at the symmetry axis from a large number of
(free) modes in the spectrum. In our study, these free modes are produced via quadratic
interactions of the monochromatic initial condition.

3.5. Strongly nonlinear regime, inertial regime
In the previous section, we have studied simulations for ε < 1 and the weakly nonlinear
theory was able to describe the inception of the jet up to ε ≈ 0.5. We now move to
the strongly nonlinear regime (ε > 1) where, due to stronger nonlinearity, the theory
becomes inadequate and a slender jet emerges in the numerical simulations (figure 4).
Here, qualitative understanding may be obtained by referring to the analytical solution on
hyperboloidal jets by Longuet-Higgins (1983) in axisymmetric, extensional flow. It will
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be seen that this analytical model of Longuet-Higgins (1983) provides a reasonably good
approximation to the jets that arise in our simulations, when ε > 1.2.

Interestingly, this exact solution is singular at t̂ = 0 where it predicts a divergent velocity
(ċ ∼ t̂−1/3) and a divergent acceleration (c̈ ∼ t̂−4/3) at the tip of the free surface shaped as
a hyperboloid, viz. at ẑ = c(t̂). In a time window around this initial ‘jerky start’ to motion,
the half-angle θ between the asymptotes to the hyperbola are predicted to evolve from its
initial value θ(0) = tan−1

√
2 ≈ 54.5◦ as (Longuet-Higgins 1983)

tan θ(t̂) ∼
√

2
[

1 + U
L

(
t̂ − t̂0√

3

)]−3/2

, (3.20)

where t̂0 is time shift that will be necessary for comparison with our simulations, but is
zero for Longuet-Higgins (1983).

To compare our strongly nonlinear jets (ε > 1) with the solution of Longuet-Higgins
(1983), we first extract the time window where gravity may be neglected in our simulations.
Figure 10(a,c,e,g) depict the interface displacement at the symmetry axis, viz. η̂(r̂ = 0, t̂)
versus time for various ε > 1. We fit parabolas (in red and green) of the form αt̂2 + O(t̂)
to each of these datasets to estimate the average acceleration in this time window,
numerically. This is done at early time (red parabolas indicating the early time window
of jet inception indicated by the formula η̂e(0, t̂) = αt̂2 + O(t̂)) and at a later time (green
parabolas indicating a late time window when a well-developed jet has already formed
and indicated by a similar formula η̂l(0, t̂)). The value of 2α from each of these datasets
provides an approximate measure of the acceleration of the interface viz. (∂2η̂/∂ t̂2)(r̂ =
0, t̂) at the symmetry axis. The jerkiness in the data for figures 10(e) and 10(g) is due to the
numerical noise associated with the tendency to eject small droplets at the jet tip, which
typically tear off and are subsequently excluded in our estimation for η̂(r̂ = 0, t̂). For these
two figures, as a slightly better estimate of the jet acceleration, we have also estimated
the acceleration as above but by tracking the interface displacement at a radial location
slightly off the symmetry axis where drop formation does not occur. This is depicted as
η̂(r̂ ≈ 1.8, t̂) and is plotted on the left vertical axes of figures 10(e) and 10(g).

Note from these figures that around the time of jet formation, the value of 2α (red
parabolas) climbs from 5236 cm s−2 (i.e. 5×g) at ε = 1.2 (figure 10a) to approximately
21 684 cm s−2 (≈20×g) at ε = 1.6 (figure 10g). Also note that the green parabolas
in these figures predict a value of 2α ranging from −965 cm s−2 for figure 10(a) to
≈ − 524 cm s−2 for figure 10(g) (indicating that the jet is still experiencing upward
acceleration and has not relaxed yet to g = −980). One must note that these numbers
only comprise rough estimates for acceleration, this being due to estimating the second
derivative from noisy data introducing significant uncertainties. We also caution the
reader that for the simulations for ε = 1.2 − 1.6 in figures 20–23 (Appendix E), the
detailed shape of the jet in a small region around the symmetry axis (r = 0) remains
grid dependent at the current resolution of 20482, further affecting the accuracy of the
asymptotes and the jet tip acceleration reported here. Subject to these uncertainties, the
qualitative conclusion inferred from the above analysis is that for ε > 1, there exists a
time window when gravity may be neglected in our simulations, enabling comparison
with the solution of Longuet-Higgins (1983). To compare the angle θ obtained from our
simulations with the prediction from (3.20), we set t̂0 to be the instant of time when θ

is closest to the initial angle in the model of Longuet-Higgins (1983), i.e. ≈54.5◦. This
definition is also consistent with recent experimental measurements of large-scale jets
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Figure 10. (a,c,e,g) Interface height at the symmetry axis, i.e. η̂(r̂ = 0, t̂) versus time measured from
simulations at various ε > 1. Acceleration at the symmetry axis (r̂ = 0) or slightly off it (r̂ ≈ 1.8) is measured
by fitting parabolas (see text) to these data and estimating the second derivative. (b,d, f,h) Comparison of the
angle θ (in degrees) enclosed at the jet crest starting from t̂ = t̂0 with the prediction by Longuet-Higgins (1983).
The variable τ ≡ U(t̂ − t̂0)/L is the non-dimensional time. (a,b) ε = 1.2, (c,d) ε = 1.3, (e, f ) ε = 1.5 and (g,h)
ε = 1.6.

by McAllister et al. (2022), who too compared their jet angle with the model of
Longuet-Higgins (1983). Note that the model of Longuet-Higgins (1983) implies not only
an infinite initial acceleration but also infinite initial velocity at the tip of the hyperboloid.
We have checked that the velocity of the jet in our simulation (ε ∼ O(1)) at the instant
of such peak acceleration is significantly larger than a typical gravity based velocity scale√

gl, l being the displacement of the interface at r̂ = 0. These justify the relevance of the
model of Longuet-Higgins (1983) for our case and the comparison with this model, which
we describe next.

For comparing our simulations with the prediction in (3.20), we choose U and L
to be equal to the jet velocity and the jet width, respectively, in the simulation, both
values obtained at t̂ = t̂0. Here, U is estimated from the (red) parabolic fits at t̂0 in
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Figure 11. (Inset) A hyperboloid of two sheets symmetric about the vertical z axis with parameters a = 50,
b = 50 and c = 200, and having the equation −x̂2/a(t̂)2 − ŷ2/b(t̂)2 + ẑ2/c(t̂)2 − 1 = 0. Only the lower sheet
(z < 0) is depicted here and serves as a reference for measuring the jet angle 2θ , seen in simulations. The
angle 2θ (Longuet-Higgins 1983) is defined as the angle between the two asymptotes to the hyperboloid of
Longuet-Higgins (1983). Also note that the small bulge around the jet tip is approximately 3 mm in radius
which is close to the air–water capillary length scale and can eject droplets at later time. Hence, a small region
close to the tip of the jet is excluded in our estimation of asymptotes. The main figure depicts the interface η̂

obtained from numerical simulation with ε = 1.5, a few time steps after jet inception occurs (i.e. a few time
steps after t̂0). Further asymptotes are also provided in Appendix D for ε = 1.2, 1.3, 1.5 and 1.6.

figure 10(a,c,e,g) and L is a measure of the width of the jet at the same time instant.
The angle θ is measured in our simulations by visually fitting straight lines to the jet tip as
depicted in figure 11 (also see Appendix D). The inset to this figure shows a hyperboloid
of two sheets with parameter values indicated in the caption to this figure. Note that the
angle 2θ is the angle made by the two straight lines which represent the asymptote to the
hyperboloid at large distance. Hence, while generating these fits, we have excluded a small
region at the jet tip where the slope of the interface is nearly zero or has a droplet-like
bulge, whose dimensions are close to the capillary length, see e.g. figure 16(a) in
Appendix D. This is consistent with Longuet-Higgins (1983, figure 3). Figure 10(b,d, f,h)
present the temporal evolution of the angle θ with time τ ≡ U(t̂ − t̂0)/L. The L-H in
these figure legends indicates the prediction in (3.20) by Longuet-Higgins (1983). It is
observed that for ε ≥ 1.3, our jets evolve in the qualitative manner predicted by (3.20),
the agreement getting better with increasing ε. Despite this apparent good agreement, we
must note that our angle estimation has a degree of subjectivity associated with our visual
choice of asymptotes (see sample asymptotes provided in Appendix D). Consequently,
significant subjectivity persists in the degree of agreement that may be inferred between
the jets in our simulations with those of Longuet-Higgins (1983). This is partly due to
the formation and ejection of droplet-like features from the jet tip in our simulations
(without surface tension), which render accurate estimation of jet acceleration challenging.
In addition, the jet of Longuet-Higgins (1983) is shaped as a hyperboloid at all times, in
contrast to our jet which arises as a superposition of Bessel modes. This implies that the
model of Longuet-Higgins (1983) devoid of gravity and capillarity is, at best, only a local
approximation to our jet. This local region of applicability where asymptote angles may
be defined has been performed visually in the present case, as illustrated in Appendix D.
Importantly, we have neglected droplets at the jet tip, when their size is close to the
air–water capillary length for consistency with the exclusion of surface tension in the
simulations. Subject to these varied approximations, one may thus conclude only a rough
qualitative agreement of our jets at large ε, with the theory of Longuet-Higgins (1983).

We also query the relation between our study and that of earlier ones like Mack
(1962) and Tsai & Yue (1987), both of which have investigated time periodic solutions in
this geometry. We emphasise that as we are solving an IVP, our analysis needs to take into
account free modes (coming from the complementary function in the solution to (3.8a))
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as well as particular integrals which produce bound components. The presence of the
former leads to aperiodicity as the frequencies of the free modes are not rational multiples
of each other. The nonlinearly produced free modes, when they have the same temporal
phase as the primary mode and frequencies close to the primary mode, can reinforce the
primary mode when the latter reaches its maximum at the symmetry axis and this provides
a rough physical picture of the origin of the overshoot seen in simulations. However, as we
are solving an IVP, there are also bound components in the solution (free modes and the
bound components are both necessary to satisfy the initial conditions) and the precise role
of these in the overshoot requires further study, and is proposed as future work.

In conclusion, we note that here our motivation has been to study a simple initial
condition, for which jet formation occurs at sufficient perturbation amplitude and which
permits analytical foray into the nonlinear regime. Due to the solution being specific to the
initial condition, all our conclusions need not be generic or applicable to jets in scenarios
mentioned in the introduction. However, our analysis yields useful insights towards what
is necessary to generate an overshoot, an essential characteristic of a jet. An important
attribute of our analytical solution is that we do not impose time periodicity and our
initial condition excites a single mode only. In future studies, we would like to compare
our present approach to those of Mack (1962), Dalzell (1967), Tsai & Yue (1987) who
also studied surface waves in cylindrical geometry, particularly towards understanding
the role of free modes vis-a-vis bound components in jet formation and to elucidate the
role of nonlinearity further. We conclude by highlighting the theoretical contribution by
Dalzell (1999) who studied quadratic interactions for two surface gravity modes in deep
water (Cartesian geometry) and, particularly, also investigated the standing wave limit;
Dalzell (1999, (32) and (33)) provide time-periodic expressions. An investigation of jets
in Cartesian geometry using our IVP approach is currently underway and comparisons
of the same, vis-a-vis these earlier insightful nonlinear approaches, will be presented in a
forthcoming publication.

4. Conclusions

We have shown in this study, numerically as well as from a first-principles theory, that
gravity driven focusing of a nonlinear surface wave towards the axis of symmetry can
produce jets quite analogous to what also occurs at small scales for pure capillary waves.
Our theory developed using multiple scale analysis leads to novel amplitude equations
governing the modulation of the primary mode, excited initially. The solution to these
equations are found to be able to describe the formation of the jet up to ε ∼ 0.5, capturing
the overshoot qualitatively, albeit quantitative differences with numerical simulations are
also detected. As ε is increased to nearly O(1), the weakly nonlinear theory becomes
expectedly inaccurate, while simulations in this regime show slender jets shooting up
with intense accelerations. Here, we find qualitative agreement of the time evolution of
these jets around the symmetry axis, with a self-similar solution due to Longuet-Higgins
(1983). Remarkably, this solution was derived by Longuet-Higgins (1983) for the purely
inertial regime with zero gravity and we find evidence of such a time window in our
simulations. In marked contrast to the pure surface tension driven jets at small scales
studied recently by Kayal et al. (2022), where surface tension is a part of the self-similar
evolution via Keller–Miksis scales (Keller & Miksis 1983), we find here that in the pure
gravity driven case and for ε > 1, there is a time window when gravitational acceleration
at the jet tip becomes small compared to the pressure gradient driven, inertial acceleration
of the fluid. During this, the interface around the jet tip evolves self-similarly showing
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qualitative agreement with the exact solution provided by Longuet-Higgins (1983). Our
study discusses reasons for why such an agreement may be expected and also explains
the physical mechanism for jet formation based on mass conservation, thus independent
of dynamics of the problem. These, in turn, provide insights into why these jets may be
generically observed accompanying cavity collapse phenomena across scales, spanning
several orders of magnitude (Lee et al. 2011; McAllister et al. 2022).

In conclusion, we note a remark by Longuet-Higgins (2001) (page 496, first paragraph)
who insightfully observed that in axisymmetric geometry, the flow focusing responsible for
jet formation would be very intense. We hypothesise that accelerations significantly more
than those reported here may be momentarily generated in this geometry by increasing
the value of ε further. Finally, we note that the theory developed here may be viewed as a
weakly nonlinear solution to the primary CP problem in axisymmetric coordinates, which
provides insights into development of sharply shooting jets in a radial confined geometry.
Our study has several implications for such large-scale jets generated, for example, in the
ocean as well as in other geophysical contexts such as impact craters (Lherm et al. 2022).
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Appendix A: Analytical expressions

The expressions for M2,N2,M3,N3 are

M2(r, T0, T2) ≡
(

∂φ1
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− η1

(
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−
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)(
∂φ2

∂r

)
−
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∂φ1

∂z

)(
∂φ2

∂z

)
−
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∂φ1

∂T2

)
, z = 0, (A4)

ξ
(1)
j,q ≡ 0, ξ

(2)
j,q ≡ 2

J2
0(lj)ωj,q(ω

2
j,q − 4)

[(αj,q − 2)I0−q,0−q,0−j + 2I1−q,1−q,0−j], (A5)

ξ
(3)
j,q (μ1q(T2), ν1q(T2)) ≡ −4μ1q(T2)ν1q(T2)

J2
0(lj)(ω2

j,q − 4)
[I0−q,0−q,0−j + I1−q,1−q,0−j], (A6)

ξ
(4)
j,q (μ1q(T2), ν1q(T2)) ≡

2(μ2
1q − ν2

1q)

J2
0(lj)(ω2

j,q − 4)
[I0−q,0−q,0−j + I1−q,1−q,0−j], (A7)

ζ
(1)
j,q ≡ − 2

J2
0(lj)(ω2

j,q − 4)
[(αj,q − 2)I0−q,0−q,0−j + 2I1−q,1−q,0−j], (A8)

ζ
(2)
j,q ≡ 0, (A9a)

ζ
(3)
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1q

2J2
0(lj)(ω2
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Figure 12. Justification of the neglect of terms in the infinite series beyond n = 70, i.e. 2q in (3.16) and (3.17).
The plot presents the Hankel transform of the analytical solution, i.e. εη1 + ε2η2 for ε = 0.5 (Case 2 in table 1)
at t̂ = 0.483 s when the interface reaches nearly its maximum height (see figure 6d). For comparison, the
Hankel transform of the interface obtained from numerical simulation of Euler’s equation at this time instant is
also presented. It is seen that there is no significant potential energy in modes beyond n = 70, thereby justifying
truncation of the infinite series beyond this n. The inset is a blowup of the region highlighted in green and shows
gravitational potential energy present in modes with n ≤ 70.

r3 ≡ 1
J2

0(lq)

[ ∞∑
m=1

{(
−ζ (3)

m,q(μ1q(T2), ν1q(T2)) − 1
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(α2
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where

Iν1−m1,ν2−m2,ν3−m3,...

≡ 1
l2q

∫ lq

0
dr rJν1(αm1,qr)Jν2(αm2,qr)Jν3(αm3,qr) . . . , {m1, m2, . . .} ∈ Z

+. (A15)

Appendix B: Hankel transformation

Figure 12 shows the Hankel transformation of the interface η̂(r̂, t̂). We have used the
definition of Basak et al. (2021) and it is defined as follows and is used in figure 12:

H(lj, t̂) ≡ 2

R̂2
0J2

0(lj)

∫ R̂0

0
r̂η̂(r̂, t̂)J0

(
lj

r̂

R̂0

)
dr̂. (B1)

Appendix C: Radial inward focusing

Radial inward focusing of surface waves is depicted by inward arrows in figure 13(a–d).
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Figure 13. Radial inward focusing corresponding to the simulation presented in figure 5. (a–d) Same
simulation as figure 5, providing a closer view of the inward focusing of the concentric, large, amplitude
surface-gravity wave towards the symmetry axis. The inward motion of the crests (in blue) leads to the eventual
emergence of the jet at t̂ ≈ 0.389 s. (a) t̂ = 0.285, (b) t̂ = 0.35 s, (c) t̂ = 0.38 s and (d) t̂ = 0.39 s.
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Figure 14. (a–d) Asymptotes at different time instants for ε = 1.2: (a) τ = 0; (b) τ = 0.06; (c) τ = 0.11 and
(d) τ = 0.2.

Appendix D: Asymptotes

In figures 14–17, we present the asymptotes to the jet at various ε. The angle depicted in
these figures have been used to calculate the jet angle θ(τ ) presented in figure 10(b,d, f,h).
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Figure 15. (a–d) Asymptotes at different time instants for ε = 1.3: (a) τ = 0; (b) τ = 0.39; (c) τ = 0.78 and
(d) τ = 1.17.
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Figure 16. (a–d) Asymptotes at different time instants for ε = 1.5: (a) τ = 0; (b) τ = 0.8; (c) τ = 4.02 and
(d) τ = 5.62.
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Figure 17. (a–d) Asymptotes at different time instants for ε = 1.6: (a) τ = 0; (b) τ = 2.35; (c) τ = 3.52 and
(d) τ = 4.70.
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Figure 18. Grid convergence for ε = 0.5 at three grid resolutions (uniform): (red symbols) 5122; (blue
symbols) 10242 and (brown symbols) 20482. (a) ε = 0.5, t/2π = 0.696, (b) ε = 0.5, t/2π = 0.857,
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Appendix E: Grid convergence

In figures 18–23, we provide the effect of grid change on the simulations reported in the
study.
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Figure 19. Grid convergence for ε = 0.9 at grid resolutions (uniform): (red symbols) 5122; (blue symbols)
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0.964 and (d) ε = 0.9, t/2π = 1.035.
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Figure 20. Grid convergence for ε = 1.2 at grid resolutions (uniform): (red symbols) 5122; (blue symbols)
10242 and (brown symbols) 20482. Note the tendency to form droplets at the jet tip (t/2π = 0.943) for all grid
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Figure 21. Grid convergence for ε = 1.3 at three grid resolutions (uniform): (red symbols) 5122; (blue
symbols) 10242 and (brown symbols) 20482. Note the tendency to form droplets at the jet tip for all grid
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in Appendix D for larger version of the insets. (a) t/2π = 0.750, (b) t/2π = 0.853, (c) t/2π = 0.857,
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Figure 22. Grid convergence for ε = 1.5. Note the tendency to form droplets at the jet tip for all grid
resolutions which makes it challenging to define asymptotes at the tip of the jet. The insets represent the
time instants when asymptotes are estimated and the boxed region in the main figures in (b, c, d, e) provides the
region which is depicted in the inset. Please refer to figure 16 in Appendix D for larger versions of the insets.
(a) t/2π = 0.750, (b) t/2π = 0.827, (c) t/2π = 0.829, (d) t/2π = 0.838, (e) t/2π = 0.842, ( f ) t/2π = 0.878
and (g) t/2π = 0.943.
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Figure 23. Grid convergence for ε = 1.6. There is a tendency to eject tiny droplets at the jet tip which
makes it extremely challenging to measure jet asymptotes reliably. The insets represent the time instants
when asymptotes are estimated and the boxed region in the main figures (b, c, d, e) provides the region
which is depicted in the inset. Please refer to figure 17 in Appendix D for larger versions of the insets.
(a) t/2π = 0.750, (b) t/2π = 0.823, (c) t/2π = 0.827, (d) t/2π = 0.829, (e) t/2π = 0.831, ( f ) t/2π = 0.878
and (g) t/2π = 0.943.
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